1
|
Hebert JF, Funahashi Y, Emathinger JM, Nickerson MN, Groat T, Andeen NK, Gurley SB, Hutchens MP. Parental recovered acute kidney injury causes prenatal renal dysfunction and fetal growth restriction with sexually dimorphic implications for adult offspring. Front Physiol 2024; 15:1357932. [PMID: 38681142 PMCID: PMC11045984 DOI: 10.3389/fphys.2024.1357932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is rapidly increasing in global incidence and a healthcare burden. Prior maternal AKI diagnosis correlates with later pregnancy complications. As pregnancy influences developmental programming, we hypothesized that recovered parental AKI results in poor pregnancy outcomes, impaired fetal growth, and adult offspring disease. Methods: Using a well-characterized model of rhabdomyolysis-induced acute kidney injury (RIAKI), a form of AKI commonly observed in young people, we confirmed functional renal recovery by assessing glomerular filtration rate (GFR) 2 weeks following RIAKI. We bred sham and recovered RIAKI sires and dams in timed, matched matings for gestational day (GD) 16.5 and offspring (birth-12 weeks, 6 months) study. Results: Despite a normal GFR pre-pregnancy, recovered RIAKI dams at GD16.5 had impaired renal function, resulting in reduced fetoplacental ratios and offspring survival. Pregnant RIAKI dams also had albuminuria and less renal megalin in the proximal tubule brush border than shams, with renal subcapsular fibrosis and higher diastolic blood pressure. Growth-restricted offspring had a reduced GFR as older adults, with evidence of metabolic inefficiency in male offspring; this correlated with reduced renal AngII levels in female offspring from recovered RIAKI pairings. However, the blood pressures of 6-month-old offspring were unaffected by parental RIAKI. Conclusions: Our mouse model demonstrated a causal relationship among RIAKI, gestational risk, and developmental programming of the adult-onset offspring GFR and metabolic dysregulation despite parental recovery.
Collapse
Affiliation(s)
- Jessica F. Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Yoshio Funahashi
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | | | - Megan N. Nickerson
- Operative Care Division, Portland Veterans Administration Medical Center, Portland, OR, United States
| | - Tahnee Groat
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Nicole K. Andeen
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| | - Susan B. Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Keck School Medicine of University of Southern California, Los Angeles, CA, United States
| | - Michael P. Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
- Operative Care Division, Portland Veterans Administration Medical Center, Portland, OR, United States
| |
Collapse
|
2
|
Song W, Guo Q, Puttabyatappa M, Elangovan VR, Wang J, Li F, Liu F, Bi X, Li H, Fu G, Padmanabhan V, Wu X. FGR-associated placental insufficiency and capillary angiogenesis involves disruptions in human placental miRNAs and mRNAs. Heliyon 2024; 10:e28007. [PMID: 38509973 PMCID: PMC10951647 DOI: 10.1016/j.heliyon.2024.e28007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Fetal growth restriction (FGR) is one of the most common pregnancy complications culminating in adverse fetal outcome, including preterm birth, neonatal mortality and stillbirth. Compromised placental development and function, especially disruption in angiogenesis and inadequate nutrient supply are contributing factors. Fetal sex also influences placental function. Knowledge of gene expression changes and epigenetic factors contributing to placental dysfunction in FGR pregnancies will help identify biomarkers and help target interventions. This study tested the hypothesis that FGR pregnancies are associated with disruptions in miRNA - an epigenetic factor and mRNAs involving key mediators of angiogenesis and microvessel development. Changes in expression of key genes/proteins involved in placental dysfunction by RT-PCR and immunohistochemistry and miRNA changes by RNA sequencing were undertaken with term placenta from 12 control and 20 FGR pregnancies. Findings showed changes in expression of genes involved in steroidogenesis, steroid action, IGF family members, inflammatory cytokines and angiogenic factors in FGR pregnancies. In addition, upregulation of MIR451A and downregulation of MIR543 in placentas from FGR group with female newborns and upregulation of MIR520G in placentas from FGR group with male newborns were also noted. MIR451A and MIR543 have been implicated in angiogenesis. Consistent with gene changes, CD34, the microvessel angiogenesis marker, also showed reduced staining only in female FGR group. These findings provide evidence that epigentically regulated gene expression changes in angiogenesis and capillary development influence placental impairment in FGR pregnancies. Our preliminary observations also support for these changes to be driven in a sex-specific manner.
Collapse
Affiliation(s)
- Wenhui Song
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, PR China
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Qing Guo
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, PR China
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei, PR China
| | | | | | - Jianping Wang
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Fang Li
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Fangfang Liu
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Xuejie Bi
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Haiying Li
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Guangping Fu
- Hebei Key Laboratory of Forensic Medicine, College for Forensic Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | | | - XiaoHua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, PR China
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
3
|
Kim S, Kim M, Oh MY, Seo Y, Yum SK. Impact of increased paternal age on neonatal outcomes in very-low-birth-weight infants. J Matern Fetal Neonatal Med 2023; 36:2257836. [PMID: 37710984 DOI: 10.1080/14767058.2023.2257836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Despite the trend of increasing paternal age, its impact on neonatal outcomes, particularly in preterm infants, has not been thoroughly investigated. We aimed to evaluate the perinatal characteristics and neonatal outcomes associated with paternal age. METHODS Electronic medical records of very low-birthweight infants admitted to our unit from July 2013 to March 2022 were reviewed. Infants grouped according to paternal age (<35 years, 35-39 years, and ≥40 years) were analyzed for differences in perinatal findings and neonatal outcomes. RESULTS A total of 637 infants were included (194, 294, and 149 in the <35, 35-39, and ≥40 years groups, respectively). The increase in paternal age paralleled the increase in maternal age. The Z-score of head circumference at birth was significantly different between the groups, showing the lowest median value in the ≥40 years group. Small-for-gestational age (Odds ratio 71.074, p < .001, 95% confidence interval 19.337 - 261.236) and male sex (Odds ratio 3.309, p < .034, 95% confidence interval 1.089 - 8.425), but not paternal or maternal age groups were significant factors associated with head circumference Z-scores less than -2 standard deviation based on the multivariable logistic regression analysis. Infants affected by chromosomal or genetic anomaly were more frequently identified (3.4 vs 0.0 vs 0.5%) in the ≥40 years group than in the other two groups. When infants with anomalies or critical illnesses were excluded, overall neonatal outcomes did not statistically differ according to paternal age. CONCLUSION Although increased paternal age ≥40 years may be associated with relatively smaller head circumferences, the impact on fetal head growth does not imply a definite risk for microcephaly. Nonetheless, based on the possible negative impact on chromosomal/genetic anomaly, increased paternal age warrants attention, even though neonatal outcomes concerning prematurity were not significantly affected. A large-scale longitudinal study is needed to further elucidate the impact of advanced paternal age in preterm infants and provide guidelines for appropriate antenatal counseling and surveillance.
Collapse
Affiliation(s)
- Sol Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Minsoo Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Moon-Yeon Oh
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yumi Seo
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Kyung Yum
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Flowers AE, Gonzalez TL, Joshi NV, Eisman LE, Clark EL, Buttle RA, Sauro E, DiPentino R, Lin Y, Wu D, Wang Y, Santiskulvong C, Tang J, Lee B, Sun T, Chan JL, Wang ET, Jefferies C, Lawrenson K, Zhu Y, Afshar Y, Tseng HR, Williams J, Pisarska MD. Sex differences in microRNA expression in first and third trimester human placenta†. Biol Reprod 2021; 106:551-567. [PMID: 35040930 DOI: 10.1093/biolre/ioab221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/09/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal and fetal pregnancy outcomes related to placental function vary based on fetal sex, which may be due to sexually dimorphic epigenetic regulation of RNA expression. We identified sexually dimorphic miRNA expression throughout gestation in human placentae. Next-generation sequencing identified miRNA expression profiles in first and third trimester uncomplicated pregnancies using tissue obtained at chorionic villous sampling (n = 113) and parturition (n = 47). Sequencing analysis identified 986 expressed mature miRNAs from female and male placentae at first and third trimester (baseMean>10). Of these, 11 sexually dimorphic (FDR < 0.05) miRNAs were identified in the first and 4 in the third trimester, all upregulated in females, including miR-361-5p, significant in both trimesters. Sex-specific analyses across gestation identified 677 differentially expressed (DE) miRNAs at FDR < 0.05 and baseMean>10, with 508 DE miRNAs in common between female-specific and male-specific analysis (269 upregulated in first trimester, 239 upregulated in third trimester). Of those, miR-4483 had the highest fold changes across gestation. There were 62.5% more female exclusive differences with fold change>2 across gestation than male exclusive (52 miRNAs vs 32 miRNAs), indicating miRNA expression across human gestation is sexually dimorphic. Pathway enrichment analysis identified significant pathways that were differentially regulated in first and third trimester as well as across gestation. This work provides the normative sex dimorphic miRNA atlas in first and third trimester, as well as the sex-independent and sex-specific placenta miRNA atlas across gestation, which may be used to identify biomarkers of placental function and direct functional studies investigating placental sex differences.
Collapse
Affiliation(s)
- Amy E Flowers
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tania L Gonzalez
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nikhil V Joshi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Laura E Eisman
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ekaterina L Clark
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rae A Buttle
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica Sauro
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosemarie DiPentino
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yayu Lin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bora Lee
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tianyanxin Sun
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica L Chan
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Caroline Jefferies
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - John Williams
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|