Tang B, Xie G, Hu X, Zhang X, Hu S, Hu J, Hu B, Li L, Wang J. A comparative proteomic study of high and low semen quality seminal plasma in drakes.
Poult Sci 2022;
101:102130. [PMID:
36088822 PMCID:
PMC9471460 DOI:
10.1016/j.psj.2022.102130]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Semen quality is the most important indicator in evaluating drake fecundity. At present, the low semen quality has become a major factor restricting the development of artificial insemination (AI) technology in ducks. Numerous studies have indicated that seminal plasma proteins play a crucial role in semen quality, but the mechanism of seminal plasma proteins regulating semen quality of drakes remains unclear. Thus, the objective of this study was to identify seminal plasma proteins associated with semen quality by comparing the seminal plasma proteomic profile of drakes with high-quality semen (HQS) and low-quality semen (LQS). Using a label-free MS-based method, a total of 745 seminal plasma proteins were identified. Of these, 55 differentially expressed proteins (DEPs) were identified (40 up-regulated and 15 down-regulated). Gene Ontology (GO) analysis showed that the DEPs were mainly enriched in transmembrane transport, extracellular matrix structural constituent, transferase activity, transferring acyl groups other than amino-acyl groups, transmembrane transporter activity, and integral component of membrane (P < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis indicated that the DEPs were significantly enriched in apoptosis, tyrosine metabolism, glycerophospholipid metabolism, and sulfur metabolism pathways (P < 0.05). Moreover, through protein-protein interaction (PPI) network analysis, eight potential candidate proteins were identified, including P19140 (Alpha-enolase), R0KUV7 (Calreticulin), R0K3X3 (Solute carrier family 2, facilitated glucose transporter member 5), R0L6V0 (Proteasome subunit beta), R0JKW0 (Cytochrome c), R0JMC5 (Tubulin alpha chain), R0LCK1 (Cathepsin C), and R0JUP6 (Cathepsin D), which could play crucial roles in semen quality. Notably, further analysis demonstrated that key protein P19140 (Alpha-enolase) might can control the semen quality of drakes by regulating the expression of proteins related to apoptosis pathway. This study is the first systematically comparing the seminal plasma proteome of drakes exhibiting high and low semen quality. These results provide novel insights into the mechanisms regulating semen quality of drakes.
Collapse