1
|
Wiltbank MC, Monteiro PLJ, Domingues RR, Andrade JPN, Mezera MA. Review: Maintenance of the ruminant corpus luteum during pregnancy: interferon-tau and beyond. Animal 2023; 17 Suppl 1:100827. [PMID: 37567676 DOI: 10.1016/j.animal.2023.100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
This manuscript reviews the mechanisms that maintain the corpus luteum (CL) of pregnancy in ruminants. In mammals, ovulation and luteinization of the remaining cells in the CL are due to a surge in Luteinizing Hormone (LH). In cattle, continued secretion of pulses of LH is essential for full development and function of the CL during the estrous cycle (LH pulses), however, the few studies on the CL after d20 of pregnancy do not indicate that LH is essential for maintaining the CL of pregnancy. The first essential step in maintaining the CL of pregnancy in ruminants is overcoming the mechanisms that cause regression of the CL in non-pregnant ruminants (d18-25 in cattle; d13-21 in sheep). These mechanisms have a uterine component involving oxytocin-induced prostaglandin F2α (PGF2A) pulses and a luteal component involving decreased progesterone production and luteal cell death. There is a critical role for embryonic interferon-tau (IFNT) in suppressing the uterine secretion of PGF2A during early pregnancy (d13-21 in sheep; d16-25 in cattle) and preventing luteolysis. There are also effects of IFNT on the expression of interferon-stimulated genes in other tissues including the CL but the physiologic role of these interferon-stimulated genes is not yet clear. After the IFNT period, there is another mechanism that maintains the CL of pregnancy in ruminants since embryonic IFNT is inhibited as attachment occurs and trophoblastic binucleate/giant cells begin secretion of pregnancy-associated glycoproteins. The second mechanism for luteal maintenance has not yet been defined but acts in a local manner (ipsilateral to pregnancy), and remains functional from d25 until just before parturition. The most likely mechanisms mediating later maintenance of the CL of pregnancy are increased uterine blood flow or decreased prostaglandin transporter expression in the utero-ovarian vasculature, preventing PGF2A reaching the CL. Finally, implications of these ideas on pregnancy loss in cattle are explored, highlighting the importance of inappropriate regression of the CL of pregnancy as a mechanism for pregnancy loss in cattle.
Collapse
Affiliation(s)
- Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Pedro L J Monteiro
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - João Paulo N Andrade
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Megan A Mezera
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Bishop CV, Selvaraj V, Townson DH, Pate JL, Wiltbank MC. History, insights, and future perspectives on studies into luteal function in cattle. J Anim Sci 2022; 100:skac143. [PMID: 35772753 PMCID: PMC9246667 DOI: 10.1093/jas/skac143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
The corpus luteum (CL) forms following ovulation from the remnant of the Graafian follicle. This transient tissue produces critical hormones to maintain pregnancy, including the steroid progesterone. In cattle and other ruminants, the presence of an embryo determines if the lifespan of the CL will be prolonged to ensure successful implantation and gestation, or if the tissue will undergo destruction in the process known as luteolysis. Infertility and subfertility in dairy and beef cattle results in substantial economic loss to producers each year. In addition, this has the potential to exacerbate climate change because more animals are needed to produce high-quality protein to feed the growing world population. Successful pregnancies require coordinated regulation of uterine and ovarian function by the developing embryo. These processes are often collectively termed "maternal recognition of pregnancy." Research into the formation, function, and destruction of the bovine CL by the Northeast Multistate Project, one of the oldest continuously funded Hatch projects by the USDA, has produced a large body of evidence increasing our knowledge of the contribution of ovarian processes to fertility in ruminants. This review presents some of the seminal research into the regulation of the ruminant CL, as well as identifying mechanisms that remain to be completely validated in the bovine CL. This review also contains a broad discussion of the roles of prostaglandins, immune cells, as well as mechanisms contributing to steroidogenesis in the ruminant CL. A triadic model of luteolysis is discussed wherein the interactions among immune cells, endothelial cells, and luteal cells dictate the ability of the ruminant CL to respond to a luteolytic stimulus, along with other novel hypotheses for future research.
Collapse
Affiliation(s)
- Cecily V Bishop
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, State College, PA 16802, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Hughes CHK, Mezera MA, Wiltbank MC, Pate JL. Insights from two independent transcriptomic studies of the bovine corpus luteum during pregnancy. J Anim Sci 2022; 100:skac115. [PMID: 35772758 PMCID: PMC9246655 DOI: 10.1093/jas/skac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
Several recent studies have used transcriptomics to investigate luteal changes during the maternal recognition of the pregnancy period in ruminants. Although these studies have contributed to our understanding of luteal function during early pregnancy, few attempts have been made to integrate information across these studies and distinguish key luteal transcripts or functions that are repeatably identified across multiple studies. Therefore, in this study, two independent studies of the luteal transcriptome during early pregnancy were combined and compared. In the first study, corpora lutea (CL) from day 20 of pregnancy were compared with CL collected on day 14 of pregnancy, prior to embryonic signaling. The cattle were nonlactating. In the second study, CL from day 20 of pregnancy were compared with CL collected from day 20 cyclic cattle that had been confirmed as not yet undergoing luteal regression. These were lactating cattle. Three methods were used to compare these two datasets, to identify key luteal regulators. In the first method, all transcripts with Benjamini-Hochberg-adjusted P-value (Q value) < 0.05 in both datasets were considered. This yielded 22 transcripts, including several classical interferon-stimulated genes, as well as regulators of transforming growth factor-beta (TGFB) and latent TGFB-binding proteins (LTBP)1 and 2. In the second, less conservative method, all transcripts with P < 0.01 and changed in the same direction in both datasets were considered. This yielded an additional 20 transcripts that were not identified in the first analysis, for a total of 42 common transcripts. These transcripts were regulators of functions such as inflammatory balance and matrix remodeling. In the third method, transcripts with Q < 0.10 were subject to pathway analysis, and common pathways were identified. Retinoic acid signaling and classical interferon signaling pathways were identified with this method. Finally, regulation by interferon tau (IFNT) was investigated. Among the 42 transcripts identified, 32 were regulated by IFNT in cultured luteal cells (Q < 0.05). Among those not regulated by IFNT were LTBP1 and 2, which are TGFB-binding proteins. In summary, common transcripts from two studies of the luteal transcriptome during early pregnancy were combined and shared changes were identified. This not only generated a list of potential key luteal regulators, which were mostly IFNT regulated, but also included transcripts not regulated by IFNT, including LTBP1 and 2.
Collapse
Affiliation(s)
- Camilla H K Hughes
- Center for Reproductive Biology and Health, Department of Animal Science, Penn State University, University Park, PA 16802, USA
| | - Megan A Mezera
- Endocrinology and Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Milo C Wiltbank
- Endocrinology and Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joy L Pate
- Center for Reproductive Biology and Health, Department of Animal Science, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Atli MO, Mehta V, Vezina CM, Wiltbank MC. Expression patterns of chemokine (C-C motif) ligand 2, prostaglandin F2A receptor and immediate early genes at mRNA level in the bovine corpus luteum after intrauterine treatment with a low dose of prostaglandin F2A. Theriogenology 2022; 189:70-76. [PMID: 35732098 DOI: 10.1016/j.theriogenology.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The present study evaluated expression patterns of chemokine (C-C motif) ligand 2 gene/Monocyte chemoattractant protein-1 gene (CCL2/MCP-1), prostaglandin F2 alpha receptor gene (PTGFR) and immediate early genes including nuclear receptor subfamily 4, group A, member 1 (NR4A1), early growth response 1 (EGR1) and FBJ murine osteosarcoma viral oncogene homolog (FOS) in cells of the bovine corpus luteum after intrauterine infusion of a low dose of prostaglandin F2α (PGF2A) aimed at enhancing our understanding of the mechanisms of luteolysis. Holstein dairy cows were superovulated (>6 corpora lutea [CL]) and on day 9 of the estrous cycle were infused with a low dose of PGF2A (0.5 mg PGF2A in 0.25 ml phosphate buffered saline) into the greater curvature of the uterine horn ipsilateral to the CL. Ultrasound-guided biopsy samples of different CL were collected at 0 min, 15 min, 30 min, 1h, 2h and 6h after PGF2A infusion. Expression profiles and localization of mRNA for PTGFR, CCL2/MCP-1, and immediate early genes (NR4A1, EGR1 and FOS), were investigated by using qPCR and in situ hybridization. The concentrations of early response genes including FOS, NR4A1, and EGR1 exhibited the greatest increase at 30 min after PGF2A, compared to other time points. Expression profile of CCL2 mRNA increased gradually after intrauterine infusion of PGF2A with maximal up-regulation for CCL2 at 6h. Abundance of PTGFR mRNA only increased at 15 min and significantly decreased at 6h, compared to 0 min. Cellular localizations of all studied genes except CCL2 (primarily localized to apparent immune cells) were predominantly visualized in large luteal cells. Interestingly, early response genes demonstrated a changing profile in cellular localization with initial responses appearing to be in both large luteal cells and endothelial cells, although no staining for PTGFR mRNA was observed in endothelial cells. Later, sustained responses, were only observed in large luteal cells, although PTGFR mRNA was decreasing in large luteal cells over time after PGF2A. The involvement of the immune system was also highlighted by the immediate increases in CCL2 mRNA that became much greater over time as there was an apparent influx of CCL2-positive immune cells. Thus, the temporal and cell-specific localization patterns for the studied mRNA demonstrate the complex pathways that are responsible for initiation of luteolysis in the bovine CL.
Collapse
Affiliation(s)
- Mehmet O Atli
- Endocrinology-Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Wisconsin, USA; Department of Reproduction, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Vatsal Mehta
- Department of Comparative Biosciences, UW-Madison, Madison, WI, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, UW-Madison, Madison, WI, USA
| | - Milo C Wiltbank
- Endocrinology-Reproductive Physiology Program and Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Domingues RR, Ginther OJ, Gomez-Leon V, Castro T, Wiltbank MC. Endometrial and luteal responses to a prostaglandin F2alpha pulse: A comparison between heifers and mares. Biol Reprod 2022; 106:979-991. [DOI: 10.1093/biolre/ioac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
In heifers and mares, multiple pulses of prostaglandin F2alpha (PGF) are generally associated with complete luteal regression. Although PGF pulses occur before and during luteolysis, little is known about the role of minor PGF pulses during preluteolysis on subsequent luteal and endometrial PGF production that may initiate luteolysis. Heifers (n = 7/group) and mares (n = 6/group) were treated with a single minor dose of PGF (3.0 and 0.5 mg, respectively) during mid-luteal phase (12 and 10 days postovulation in heifers and mares, respectively). After treatment, a transient decrease in progesterone (P4) concentrations occurred in heifers between Hours 0–2 but at Hour 4 P4 was not different from pre-treatment. In mares, P4 was unaltered between Hours 0 and 4. Concentrations of P4 decreased in both species by Hour 24 and complete luteolysis occurred in mares by Hour 48. Luteal and endometrial gene expression were evaluated 4 hours post-treatment. In heifers, luteal mRNA abundance of PGF receptor and PGF dehydrogenase were decreased while PTGS2, PGF transporter, and oxytocin receptor were increased. In the heifer endometrium, receptors for oxytocin, P4, and estradiol were upregulated. In mares, luteal expression of PGF receptor was decreased while PGF transporter and oxytocin receptor were increased. The decrease in P4 between Hours 4 and 24 and changes in gene expression were consistent with upregulation of endogenous synthesis of PGF. The hypotheses were supported that a single minor PGF treatment upregulates endogenous machinery for PGF synthesis in heifers and mares stimulating endogenous PGF synthesis through distinct regulatory mechanisms in heifers and mares.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
- Eutheria Foundation, Cross Plains, WI, USA
| | - O J Ginther
- Eutheria Foundation, Cross Plains, WI, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Victor Gomez-Leon
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Eutheria Foundation, Cross Plains, WI, USA
| | - Thadeu Castro
- Eutheria Foundation, Cross Plains, WI, USA
- Department of Veterinary Medicine, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|