1
|
Calleros L, Barcellos M, Grecco S, Garzón JP, Lozano J, Urioste V, Gastal G. Longitudinal study of the bovine cervico-vaginal bacterial microbiota throughout pregnancy using 16S ribosomal RNA gene sequences. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 124:105657. [PMID: 39168274 DOI: 10.1016/j.meegid.2024.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The microbiota composition of the bovine female reproductive tract influences reproductive efficiency, susceptibility to genital pathogens, and the health of newborn calves. However, knowledge about cervico-vaginal microbiota during gestation is scarce. Therefore, the present study aimed to analyze the taxonomic profile of the cervico-vaginal bovine microbiota throughout pregnancy and after calving using high-throughput sequencing of a fragment of the 16S ribosomal RNA gene. Healthy nulliparous Holstein heifers (n = 13) with similar age and body conditional score were selected to collect samples from the cervico-vaginal area with a sterile swab at 5 timepoints. We sequenced the V1-V2 region of the 16S ribosomal RNA gene and analyzed data using the DADA2, phyloseq and vegan R Studio packages. No differences were observed in alpha and beta diversity across sampling points, accounting for the stability of the microbiota throughout pregnancy. The most abundant phyla are Firmicutes, Bacteroidota, Proteobacteria and Actinobacteria, and are present as the main taxa in all five sampling points. Also, several of the least abundant taxa can be observed to change with time. Our comprehensive study of the cervico-vaginal bacterial microbiota during the gestation period contributes to the knowledge of microbiota dynamics on the bovine reproductive tract during and after pregnancy and can serve as a baseline for future research and the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Maila Barcellos
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Sofía Grecco
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Juan Pablo Garzón
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Ruta 50 Km. 11, Colonia, Uruguay; Instituto Nacional de Investigaciones Agropecuarias - EEA, Azuay, Ecuador.
| | - Joaquín Lozano
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Victoria Urioste
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Ruta 50 Km. 11, Colonia, Uruguay.
| | - Gustavo Gastal
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Ruta 50 Km. 11, Colonia, Uruguay.
| |
Collapse
|
2
|
Núñez-Montero K, Leal K, Rojas-Villalta D, Castro M, Larronde C, Wagenknecht L, Contreras MJ. 16s gene metagenomic characterization in healthy stallion semen. Res Vet Sci 2024; 176:105354. [PMID: 38981836 DOI: 10.1016/j.rvsc.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Studies on the bacterial composition of seminal samples have primarily focused on species isolated from semen and their effects on fertility and reproductive health. Culture-independent techniques, such as 16S rRNA gene sequencing and shotgun metagenomics, have revolutionized our ability to identify unculturable bacteria, which comprise >90% of the microbiome. These techniques allow for comprehensive analysis of microbial communities in seminal samples, shedding light on their interactions and roles. In this study, we characterized the taxonomic diversity of seminal microbial communities in healthy stallions using 16S rRNA gene sequencing. Semen samples were collected from four stallions during the reproductive season, and DNA was extracted for sequencing. The results revealed a diverse array of bacterial taxa, with Firmicutes, Bacteroidota, and Proteobacteria being predominant phyla. At the family and genus levels, significant variations were observed among individuals, with individual variability in microbial richness and diversity standing out. Moreover, each stallion showed a distinct microbial fingerprint, indicating the presence of a characteristic microbial core for each stallion. These results underscore the importance of considering individual microbial profiles in understanding reproductive health and fertility outcomes.
Collapse
Affiliation(s)
- Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Karla Leal
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Macarena Castro
- Doctorado en Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Carolina Larronde
- Facultad de La Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | | | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile.
| |
Collapse
|
3
|
Kiefer ZE, Koester LR, Studer JM, Schmitz-Esser S, Ross JW. Evaluation of fecal microbiota of late gestation sows in relation to pelvic organ prolapse risk. Front Microbiol 2024; 15:1384583. [PMID: 39113840 PMCID: PMC11303877 DOI: 10.3389/fmicb.2024.1384583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Sow mortality in the U.S. swine industry has increased in recent years, for which pelvic organ prolapse (POP) is a major contributor, accounting for 21% of all sow mortality. Dysbiosis of microbial communities has been associated with disease and reproductive dysfunction in several species, and previous studies have shown changes in vaginal microbiota in sows with increased risk for POP during late gestation. However, there is insufficient knowledge surrounding the potential relationship between fecal microbiota and POP in sows. Therefore, the study objective was to identify differences in sow fecal microbiota and determine if fecal and vaginal microbial communities are correlated in relation to POP risk. Methods Sows were evaluated for POP risk using an established perineal scoring system, with a perineal score (PS) of 1 (PS1) presuming little to no risk of POP to a PS of 3 (PS3) presuming high risk of POP. In the current study, 2,864 sows were scored during gestation week 15, and 1.0%, 2.7%, and 23.4% of PS1, PS2, and PS3 sows, respectively, subsequently experienced POP. Fecal swabs (n = 215) were collected between gestation days 108-115, DNA was extracted, and 16S rRNA gene amplicon sequencing libraries were analyzed using mothur, phyloseq and SAS in reference to PS and POP outcome. Additionally, co-occurrence networks were constructed using CoNet to compare fecal and vaginal microbiota from the same cohort of sows and identify correlations between different taxa. Results Differences in fecal community composition (PERMANOVA; P < 0.05), structure (alpha diversity measurements; P < 0.05), and 13 individual operational taxonomic units (OTUs) were revealed between PS1 and PS3 assigned sows. No differences in fecal microbiota were detected as a result of POP outcome. However, the abundances of several taxa were correlated across sample collection sites, suggesting the fecal and vaginal microbial communities may be related to one another. Discussion Collectively, fewer differences in the fecal microbiota exist in sows with differing risk for POP compared to the vaginal microbiota, suggesting the vaginal microbiome may be more relevant in relation to POP outcome, although correlations between fecal and vaginal communities may provide insight for strategies to combat POP.
Collapse
Affiliation(s)
- Zoë E. Kiefer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Lucas R. Koester
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jamie M. Studer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Lallemant M, Kadiakhe T, Chambert J, Lejeune A, Ramanah R, Mottet N, Jacquet E. In vitro biomechanical properties of porcine perineal tissues to better understand human perineal tears during delivery. Acta Obstet Gynecol Scand 2024; 103:1386-1395. [PMID: 38553803 PMCID: PMC11168271 DOI: 10.1111/aogs.14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Data concerning the mechanical properties of the perineum during delivery are very limited. In vivo experiments raise ethical issues. The aim of the study was to describe some of the biomechanical properties of each perineal tissue layer collected from sows in order to better understand perineal tears during childbirth. MATERIAL AND METHODS Samples of each perineal tissue layer were obtained from the skin, the vagina, the external anal sphincter (EAS), the internal anal sphincter (IAS), and the anal mucosa of fresh dead sows. They were tested in quasi-static uniaxial tension using the testing machine Mach-1®. Tests were performed at a displacement velocity of 0.1 mm·s-1. Stress-strain curves of each perineal tissue layer before the first damage for each sow were obtained and modeled using a hyperelastic Yeoh model described by three coefficients: C1, C2, and C3. Pearson correlation coefficients were calculated to measure the correlation between the C1 hyperelastic coefficient and the duration between the first microfailure and the complete rupture for each perineal tissue layer. Pearson correlation was computed between C1 and the number of microfailures before complete rupture for each tissue. RESULTS Ten samples of each perineal tissue layer were analyzed. Mean values of C1 and corresponding standard deviations were 46 ± 15, 165 ± 60, 27 ± 10, 19 ± 13, 145 ± 28 kPa for the perineal skin, the vagina, the EAS, the IAS, and the anal mucosa, respectively. According to this same sample order, the first microfailure in the population of 10 sows appeared at an average of 54%, 27%, 70%, 131%, and 22% of strain. A correlation was found between C1 hyperelastic coefficient and the duration between the first microfailure and the complete rupture (r = 0.7, p = 0.02) or the number of microfailures before complete rupture only for the vagina (r = 0.7, p = 0.02). CONCLUSIONS In this population of fresh dead sow's perineum, the vagina and the anal mucosa were the stiffest tissues. The IAS and EAS were more extensible and less stiff. A significantly positive correlation was found between C1 and the duration between the first microfailure and the complete rupture of the vagina, and the duration between the first microfailure and the complete rupture of the vagina.
Collapse
Affiliation(s)
- Marine Lallemant
- Department of Gynecology and ObstetricsBesancon University Medical CenterBesançonFrance
- Department of Applied MechanicsFEMTO‐ST Institute, University of Franche‐Comte, UMR 6174 CNRSBesançonFrance
| | - Tiguida Kadiakhe
- Department of Applied MechanicsFEMTO‐ST Institute, University of Franche‐Comte, UMR 6174 CNRSBesançonFrance
| | - Jerôme Chambert
- Department of Applied MechanicsFEMTO‐ST Institute, University of Franche‐Comte, UMR 6174 CNRSBesançonFrance
| | - Arnaud Lejeune
- Department of Applied MechanicsFEMTO‐ST Institute, University of Franche‐Comte, UMR 6174 CNRSBesançonFrance
| | - Rajeev Ramanah
- Department of Gynecology and ObstetricsBesancon University Medical CenterBesançonFrance
- Nanomedicine Imaging and Therapeutics LaboratoryINSERM EA 4662, University of Franche‐ComteBesançonFrance
| | - Nicolas Mottet
- Department of Gynecology and ObstetricsBesancon University Medical CenterBesançonFrance
- Nanomedicine Imaging and Therapeutics LaboratoryINSERM EA 4662, University of Franche‐ComteBesançonFrance
| | - Emmanuelle Jacquet
- Department of Applied MechanicsFEMTO‐ST Institute, University of Franche‐Comte, UMR 6174 CNRSBesançonFrance
| |
Collapse
|
5
|
Fang F, Zhao Z, Xiao J, Wen J, Wu J, Miao Y. Current practice in animal models for pelvic floor dysfunction. Int Urogynecol J 2023; 34:797-808. [PMID: 36287229 DOI: 10.1007/s00192-022-05387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND HYPOTHESIS The objective was to explore the current practice of using animal models for female pelvic floor dysfunction (PFD). METHODS By applying PFD and animal models as the keywords, we made a computerized search using PubMed, Ovid-Medline and Ovid-Embase from 2000 to 2022. The publications on the construction and application of animal models for PFD were included, and the results are presented in narrative text. RESULTS Studies on PFD primarily use rodents, large quadrupeds, and nonhuman primates (NHPs). NHPs are closest to humans in anatomy and biomechanics of the pelvic floor, followed by large quadrupeds and rodents. Rodents are more suitable for studying molecular mechanism, histopathology of PFD, and mesh immune rejection. Large quadrupeds are adaptable to the study of pelvic floor biomechanics and the development of new surgical instruments for PFD. NHPs are suitable for studying the occurrence and pathogenesis of pelvic organ prolapse. Among modeling methods, violent destruction of pelvic floor muscles, regulation of hormone levels, and denervation were used to simulate the occurrence of PFD. Gene knockout can be used to study both the pathogenesis of PFD and the efficacy of treatments. Other methods such as abdominal wall defect, vaginal defect, and in vitro organ bath system are more frequently used to observe wound healing after surgery and to verify the efficacy of treatments. CONCLUSIONS The rat is currently the most applicable animal type for numerous modeling methods. Vaginal dilation is the most widely used modeling method for research on the pathogenesis, pathological changes, and treatment of PFD.
Collapse
Affiliation(s)
- Fei Fang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, West China Campus, Chengdu, 610041, Sichuan Province, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jingyue Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, West China Campus, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
6
|
Poole RK, Soffa DR, McAnally BE, Smith MS, Hickman-Brown KJ, Stockland EL. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals (Basel) 2023; 13:485. [PMID: 36766374 PMCID: PMC9913168 DOI: 10.3390/ani13030485] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Advancements in 16S rRNA gene amplicon community sequencing have vastly expanded our understanding of the reproductive microbiome and its role in fertility. In humans, Lactobacillus is the overwhelmingly dominant bacteria within reproductive tissues and is known to be commensal and an indicator of fertility in women and men. It is also known that Lactobacillus is not as largely abundant in the reproductive tissues of domestic livestock species. Thus, the objective of this review is to summarize the research to date on both female and male reproductive microbiomes in domestic livestock species (i.e., dairy cattle, beef cattle, swine, small ruminants, and horses). Having a comprehensive understanding of reproductive microbiota and its role in modulating physiological functions will aid in the development of management and therapeutic strategies to improve reproductive efficiency.
Collapse
Affiliation(s)
- Rebecca K. Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | | | | | | |
Collapse
|
7
|
Bhatia V, Stevens T, Derks MFL, Dunkelberger J, Knol EF, Ross JW, Dekkers JCM. Identification of the genetic basis of sow pelvic organ prolapse. Front Genet 2023; 14:1154713. [PMID: 37144137 PMCID: PMC10151575 DOI: 10.3389/fgene.2023.1154713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Pelvic organ prolapse (POP) is one contributor to recent increases in sow mortality that have been observed in some populations and environments, leading to financial losses and welfare concerns. Methods: With inconsistent previous reports, the objective here was to investigate the role of genetics on susceptibility to POP, using data on 30,429 purebred sows, of which 14,186 were genotyped (25K), collected from 2012 to 2022 in two US multiplier farms with a high POP incidence of 7.1% among culled and dead sows and ranging from 2% to 4% of all sows present by parity. Given the low incidence of POP for parities 1 and >6, only data from parities 2 to 6 were retained for analyses. Genetic analyses were conducted both across parities, using cull data (culled for POP versus another reason), and by parity, using farrowing data. (culled for POP versus culled for another reason or not culled). Results and Discussion: Estimates of heritability from univariate logit models on the underlying scale were 0.35 ± 0.02 for the across-parity analysis and ranged from 0.41 ± 0.03 in parity 2 to 0.15 ± 0.07 in parity 6 for the by-parity analyses. Estimates of genetic correlations of POP between parities based on bivariate linear models indicated a similar genetic basis of POP across parities but less similar with increasing distance between parities. Genome wide association analyses revealed six 1 Mb windows that explained more than 1% of the genetic variance in the across-parity data. Most regions were confirmed in several by-parity analyses. Functional analyses of the identified genomic regions showed a potential role of several genes on chromosomes 1, 3, 7, 10, 12, and 14 in susceptibility to POP, including the Estrogen Receptor gene. Gene set enrichment analyses showed that genomic regions that explained more variation for POP were enriched for several terms from custom transcriptome and gene ontology libraries. Conclusion: The influence of genetics on susceptibility to POP in this population and environment was confirmed and several candidate genes and biological processes were identified that can be targeted to better understand and mitigate the incidence of POP.
Collapse
Affiliation(s)
- Vishesh Bhatia
- Department of Animal Science, Iowa State University, Ames, IA, United States
- *Correspondence: Vishesh Bhatia,
| | - Tomas Stevens
- Topigs Norsvin Research Center, Beuningen, Netherlands
| | | | | | | | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Female reproduction and the microbiota in mammals: Where are we? Theriogenology 2022; 194:144-153. [DOI: 10.1016/j.theriogenology.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|