1
|
Singh V, Schimenti JC. Relevance, strategies, and added value of mouse models in androgenetics. Andrology 2024. [PMID: 39300831 DOI: 10.1111/andr.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Male Infertility is a prevalent condition worldwide, and a substantial fraction of cases are thought to have a genetic basis. Investigations into the responsible genes is limited experimentally, so mice have been used extensively to identify genes required for fertility and to understand their functions. OBJECTIVES To review the progress made in reproductive genetics based on experiments in mice, the impact upon clinical fertility genetics, and discuss how evolving technologies will continue to advance our understanding of human infertility genes. RESULTS AND DISCUSSION Gene knockout studies in mice have shown that several hundreds of genes are required for normal fertility and that this number is much higher in males than in females. In addition to gene discovery, the mouse is a powerful platform for functionally dissecting genetic pathways, modeling putative human infertility variants, identifying contraceptive targets, and developing in vitro gametogenesis. CONCLUSION These ongoing studies in mice have made an enormous contribution to our understanding of the genetics of human reproduction in the sense that the "parts list" of genes for mammalian gametogenesis is being elucidated. This would have been impossible to do in humans, and in vitro systems are not yet adequate to associate genes with andrological phenotypes, especially in the germline.
Collapse
Affiliation(s)
- Vertika Singh
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Clark AC, Edison R, Esvelt K, Kamau S, Dutoit L, Champer J, Champer SE, Messer PW, Alexander A, Gemmell NJ. A framework for identifying fertility gene targets for mammalian pest control. Mol Ecol Resour 2024; 24:e13901. [PMID: 38009398 DOI: 10.1111/1755-0998.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit. This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression and results from mouse knockout models. This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals. In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.
Collapse
Affiliation(s)
- Anna C Clark
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Rey Edison
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sebastian Kamau
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Alana Alexander
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Ding X, Singh P, Schimenti K, Tran TN, Fragoza R, Hardy J, Orwig KE, Olszewska M, Kurpisz MK, Yatsenko AN, Conrad DF, Yu H, Schimenti JC. In vivo versus in silico assessment of potentially pathogenic missense variants in human reproductive genes. Proc Natl Acad Sci U S A 2023; 120:e2219925120. [PMID: 37459509 PMCID: PMC10372637 DOI: 10.1073/pnas.2219925120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.
Collapse
Affiliation(s)
- Xinbao Ding
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Priti Singh
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Kerry Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Tina N. Tran
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Jimmaline Hardy
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Kyle E. Orwig
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Alexander N. Yatsenko
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Donald F. Conrad
- Oregon Health & Science University, Division of Genetics, Oregon National Primate Research Center, Beaverton, OR97006
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - John C. Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| |
Collapse
|
4
|
Clark AC, Alexander A, Edison R, Esvelt K, Kamau S, Dutoit L, Champer J, Champer SE, Messer PW, Gemmell NJ. A framework for identifying fertility gene targets for mammalian pest control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542751. [PMID: 37398071 PMCID: PMC10312551 DOI: 10.1101/2023.05.30.542751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Fertility-targeted gene drives have been proposed as an ethical genetic approach for managing wild populations of vertebrate pests for public health and conservation benefit.This manuscript introduces a framework to identify and evaluate target gene suitability based on biological gene function, gene expression, and results from mouse knockout models.This framework identified 16 genes essential for male fertility and 12 genes important for female fertility that may be feasible targets for mammalian gene drives and other non-drive genetic pest control technology. Further, a comparative genomics analysis demonstrates the conservation of the identified genes across several globally significant invasive mammals.In addition to providing important considerations for identifying candidate genes, our framework and the genes identified in this study may have utility in developing additional pest control tools such as wildlife contraceptives.
Collapse
Affiliation(s)
- Anna C Clark
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Alana Alexander
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
| | - Rey Edison
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Kevin Esvelt
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Sebastian Kamau
- Media Laboratory, Massachusetts Institute of Technology, 75 Amherst St, Cambridge, United States
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, 102 Tower Rd, Ithaca, NY 14853, United States
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Central Dunedin, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Johnston DS, Kopf GS. The urgent need for innovation in contraception. Biol Reprod 2023; 108:519-521. [PMID: 36780138 PMCID: PMC10399112 DOI: 10.1093/biolre/ioad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/14/2023] Open
Abstract
Despite advancements in medicine over the past decades, there exists a significant unmet global need for new and improved contraceptive methods for men and women. The development of innovative contraceptives will be facilitated via advancements in biomedical science, biomedical engineering, and drug development technologies. This article describes the need for new methods, opportunities afforded by advancements in biomedical science, strategies being employed to advance innovative novel methods, value of drug development accelerators and the need for industry involvement to provide men and women worldwide greater reproductive autonomy.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Fertility and Infertility Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Gynecologic Health and Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gregory S Kopf
- Product Development and Introduction, Global Health and Population, FHI 360, Durham, NC, USA
- SACYL Pharmaceuticals, Inc, Wilmington, DE, USA
| |
Collapse
|
6
|
Garretson A, Dumont BL, Handel MA. Reproductive genomics of the mouse: implications for human fertility and infertility. Development 2023; 150:dev201313. [PMID: 36779988 PMCID: PMC10836652 DOI: 10.1242/dev.201313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Genetic analyses of mammalian gametogenesis and fertility have the potential to inform about two important and interrelated clinical areas: infertility and contraception. Here, we address the genetics and genomics underlying gamete formation, productivity and function in the context of reproductive success in mammalian systems, primarily mouse and human. Although much is known about the specific genes and proteins required for meiotic processes and sperm function, we know relatively little about other gametic determinants of overall fertility, such as regulation of gamete numbers, duration of gamete production, and gamete selection and function in fertilization. As fertility is not a binary trait, attention is now appropriately focused on the oligogenic, quantitative aspects of reproduction. Multiparent mouse populations, created by complex crossing strategies, exhibit genetic diversity similar to human populations and will be valuable resources for genetic discovery, helping to overcome current limitations to our knowledge of mammalian reproductive genetics. Finally, we discuss how what we know about the genomics of reproduction can ultimately be brought to the clinic, informing our concepts of human fertility and infertility, and improving assisted reproductive technologies.
Collapse
Affiliation(s)
- Alexis Garretson
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Beth L. Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University, Graduate School of Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
7
|
R-Loop Formation in Meiosis: Roles in Meiotic Transcription-Associated DNA Damage. EPIGENOMES 2022; 6:epigenomes6030026. [PMID: 36135313 PMCID: PMC9498298 DOI: 10.3390/epigenomes6030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Meiosis is specialized cell division during gametogenesis that produces genetically unique gametes via homologous recombination. Meiotic homologous recombination entails repairing programmed 200–300 DNA double-strand breaks generated during the early prophase. To avoid interference between meiotic gene transcription and homologous recombination, mammalian meiosis is thought to employ a strategy of exclusively transcribing meiotic or post-meiotic genes before their use. Recent studies have shown that R-loops, three-stranded DNA/RNA hybrid nucleotide structures formed during transcription, play a crucial role in transcription and genome integrity. Although our knowledge about the function of R-loops during meiosis is limited, recent findings in mouse models have suggested that they play crucial roles in meiosis. Given that defective formation of an R-loop can cause abnormal transcription and transcription-coupled DNA damage, the precise regulatory network of R-loops may be essential in vivo for the faithful progression of mammalian meiosis and gametogenesis.
Collapse
|
8
|
Johnston DS, Goldberg E. Preclinical contraceptive development for men and women. Biol Reprod 2021; 103:147-156. [PMID: 32561907 DOI: 10.1093/biolre/ioaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
This manuscript endeavors to present research considerations for the preclinical development of non-hormonal contraceptives. Topics include (1) how advances in genomics and bioinformatics impact the identification of novel targets for non-hormonal contraception, (2) the importance of target validation prior to investment in a contraceptive development campaign, (3) considerations on targeting gametogenesis vs gamete maturation/function, (4) how targets from the male reproductive system are expanding women's options for 'on demand' contraception, and (5) some emerging non-hormonal methods that are not based on a specific molecular target. Also presented are ideas for developing a pipeline of non-hypothalamic-pituitary-gonadal-acting contraceptives for men and women while balancing risk and innovation, and our perspective on the pros and cons of industry and academic environments on contraceptive development. Three product development programs are highlighted that are biologically interesting, innovative, and likely to influence the field of contraceptive development in years to come.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
Verrilli L, Johnstone E, Allen-Brady K, Welt C. Shared genetics between nonobstructive azoospermia and primary ovarian insufficiency. F&S REVIEWS 2021; 2:204-213. [PMID: 36177363 PMCID: PMC9518791 DOI: 10.1016/j.xfnr.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Primary ovarian insufficiency (POI) and Non-obstructive azoospermia (NOA) both represent disease states of early, and often complete, failure of gametogenesis. Because oogenesis and spermatogenesis share the same conserved steps in meiosis I, it is possible that inherited defects in meiosis I could lead to shared causes of both POI and NOA. Currently, known genes that contribute to both POI and NOA are limited. In this review article, we provide a systematic review of genetic mutations in which both POI and NOA phenotypes exist. EVIDENCE REVIEW A PubMed literature review was conducted from January 1, 2000 through October 2020. We included all studies that demonstrated human cases of POI or NOA due to a specific genetic mutation either within the same family or in separate families. RESULTS We identified 33 papers that encompassed 10 genes of interest with mutations implicated in both NOA and POI. The genes were all involved in processes of meiosis I. CONCLUSION Mutations in genes involved in processes of meiosis I may cause both NOA and POI. Identifying these unique phenotypes among shared genotypes leads to biologic plausibility that the key error occurs early in gametogenesis with an etiology shared among both male and female offspring. From a clinical standpoint, this shared relationship may help us better understand and identify individuals at high risk for gonadal failure within families and suggests that clinicians obtain history for opposite sex family members when approaching a new diagnosis of POI or NOA.
Collapse
Affiliation(s)
- Lauren Verrilli
- University of Utah School of Medicine, Department of Obstetrics and Gynecology, 30 N 1900 E #2B200, Salt Lake City, UT 84132
| | - Erica Johnstone
- University of Utah School of Medicine, Department of Obstetrics and Gynecology, 30 N 1900 E #2B200, Salt Lake City, UT 84132
| | - Kristina Allen-Brady
- University of Utah School of Medicine, Division of Epidemiology, Department of Internal Medicine, 296 Chipeta Way, Salt Lake City, UT 84108
| | - Corrine Welt
- University of Utah School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Salt Lake City, UT 84132
| |
Collapse
|
10
|
Ding X, Schimenti JC. Strategies to Identify Genetic Variants Causing Infertility. Trends Mol Med 2021; 27:792-806. [PMID: 33431240 DOI: 10.1016/j.molmed.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Genetic causes are thought to underlie about half of infertility cases, but understanding the genetic bases has been a major challenge. Modern genomics tools allow more sophisticated exploration of genetic causes of infertility through population, family-based, and individual studies. Nevertheless, potential therapies based on genetic diagnostics will be limited until there is certainty regarding the causality of genetic variants identified in an individual. Genome modulation and editing technologies have revolutionized our ability to functionally test such variants, and also provide a potential means for clinical correction of infertility variants. This review addresses strategies being used to identify causative variants of infertility.
Collapse
Affiliation(s)
- Xinbao Ding
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Schimenti JC. Conditional surrender in one generation: determining the reproductive roles of mouse embryo lethal genes by embryo complementation. Biol Reprod 2020; 104:8-10. [PMID: 33057575 DOI: 10.1093/biolre/ioaa193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/20/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
The laboratory mouse is the most widely used animal model for studying the genetics and biology of mammalian development and reproduction. Embryonic stem cell (ESC) gene targeting technology, and the sophisticated genomic manipulations it allowed, was unique to this organism for a long period of time; this was a major factor in the mouse's rise to pre-eminence as a model system over the past three decades or so. The recent advent of CRISPR/Cas9 technology has democratized the application of genome editing to essentially all organisms. Nevertheless, the scientific infrastructure behind the mouse still makes it the organism of choice for studying molecular mechanisms of mammalian development, and for modeling human development and disease.
Collapse
Affiliation(s)
- John C Schimenti
- Dept. of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Felipe-Medina N, Caburet S, Sánchez-Sáez F, Condezo YB, de Rooij DG, Gómez-H L, Garcia-Valiente R, Todeschini AL, Duque P, Sánchez-Martin MA, Shalev SA, Llano E, Veitia RA, Pendás AM. A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. eLife 2020; 9:e56996. [PMID: 32845237 PMCID: PMC7498267 DOI: 10.7554/elife.56996] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with three cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse showed that it behaves as a hypomorphic allele compared to a new loss-of-function (knock-out) mouse model. Hsf2bpS167L/S167L females show reduced fertility with smaller litter sizes. To obtain mechanistic insights, we identified C19ORF57/BRME1 as a strong interactor and stabilizer of HSF2BP and showed that the BRME1/HSF2BP protein complex co-immunoprecipitates with BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L variant showed a strongly decreased staining of both HSF2BP and BRME1 at the recombination nodules and a reduced number of the foci formed by the recombinases RAD51/DMC1, thus leading to a lower frequency of crossovers. Our results provide insights into the molecular mechanism of HSF2BP-S167L in human ovarian insufficiency and sub(in)fertility.
Collapse
Affiliation(s)
- Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Sandrine Caburet
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Rodrigo Garcia-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Anne Laure Todeschini
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Paloma Duque
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Manuel Adolfo Sánchez-Martin
- Transgenic Facility, Nucleus platform, Universidad de SalamancaSalamancaSpain
- Departamento de Medicina, Universidad de SalamancaSalamancaSpain
| | - Stavit A Shalev
- The Genetic Institute, "Emek" Medical CenterAfulaIsrael
- Bruce and Ruth Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
- Departamento de Fisiología y Farmacología, Universidad de SalamancaSalamancaSpain
| | - Reiner A Veitia
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
- Université Paris-Saclay, Institut de Biologie F. Jacob, Commissariat à l’Energie AtomiqueFontenay aux RosesFrance
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| |
Collapse
|
13
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
14
|
Kasak L, Laan M. Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives. Hum Genet 2020; 140:135-154. [DOI: 10.1007/s00439-020-02112-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
|
15
|
Hu J, Lessard C, Longstaff C, O'Brien M, Palmer K, Reinholdt L, Eppig J, Schimenti J, Handel MA. ENU-induced mutant allele of Dnah1, ferf1, causes abnormal sperm behavior and fertilization failure in mice. Mol Reprod Dev 2019; 86:416-425. [PMID: 30734403 DOI: 10.1002/mrd.23120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022]
Abstract
Given attention to both contraception and treatment of infertility, there is a need to identify genes and sequence variants required for mammalian fertility. Recent unbiased mutagenesis strategies have expanded horizons of genetic control of reproduction. Here we show that male mice homozygous for the ethyl-nitroso-urea-induced ferf1 (fertilization failure 1) mutation are infertile, producing apparently normal sperm that does not fertilize oocytes in standard fertilization in vitro fertilization assays. The ferf1 mutation is a single-base change in the Dnah1 gene, encoding an axoneme-associated dynein heavy chain, and previously associated with male infertility in both mice and humans. This missense mutation causes a single-amino-acid change in the DNAH1 protein in ferf1 mutant mice that leads to abnormal sperm clumping, aberrant sperm motility, and the inability of sperm to penetrate the oocyte's zona pellucida; however, the ferf1 mutant sperm is competent to fertilize zona-free oocytes. Taken together, the various mutations affecting the DNAH1 protein in both mouse and human produce a diversity of phenotypes with both subtle and considerable differences. Thus, future identification of the interacting partners of DNAH1 might lead to understanding its unique function among the sperm dyneins.
Collapse
Affiliation(s)
- Jianjun Hu
- The Jackson Laboratory, Bar Harbor, Maine
| | - Carl Lessard
- The Jackson Laboratory, Bar Harbor, Maine.,Agriculture and Agri-Food Canada, Saskatoon Research Development Centre, Saskatchewan, Canada
| | | | | | | | | | - John Eppig
- The Jackson Laboratory, Bar Harbor, Maine
| | - John Schimenti
- The Jackson Laboratory, Bar Harbor, Maine.,College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | |
Collapse
|
16
|
Reproductive Science as an Essential Component of Conservation Biology: New Edition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:1-10. [PMID: 31471792 DOI: 10.1007/978-3-030-23633-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The previous edition of this book mainly provided a snapshot of the state of the art in terms of species-specific reproductive biology and emerging technologies. The influence of environmental changes on reproductive fitness was introduced but not fully explored. The objectives of this second edition were to (1) emphasize the need for holistic and global efforts to understand and sustain reproduction in a constantly changing environment and (2) provide more knowledge in the reproductive physiology of different taxa. The first section of the book is dedicated to survival and adaptation of species in a changing environment (including chapters on environmental impacts in different taxa, as well as the role of microbiomes). The second section focuses on progress in understanding, assisting or even suppressing reproduction in wild species, keeping in mind the influence of environmental factors as well. It contains chapters from the previous edition that were updated (reproduction in elephants, koalas, marsupials, amphibians, and corals), new chapters on species such as sharks and rays, and contributions about the increasing role of reproductive manipulations, such as assisted reproduction and contraception. While the present book emphasizes the overarching issue of environmental impacts on reproduction (resulting in infertility, subfecundity, or fitness), it also highlights the challenges of maintaining wild species in captivity, including those associated with ensuring good welfare. Captive environments can influence reproduction in a multitude of ways, some unexpected, such as the selection of unwanted genetic traits, an essential dimension to be considered to ensure the success of conservation breeding programs. Lastly, new approaches, such as the use of allostatic load indexes and reproductive microbiome analyses also will be closely examined for the first time in rare and endangered species to address conservation issues.
Collapse
|