1
|
Corre PHC, Mainwaring JM, Peralta KKZ, Lokman PM, Porteous R, Wibowo E. Low dose of propyl-pyrazole-triol, an agonist of estrogen receptor alpha, administration stimulates the Coolidge effect in fadrozole-treated male rats. Horm Behav 2024; 161:105520. [PMID: 38447331 DOI: 10.1016/j.yhbeh.2024.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Estrogen receptor (ER) α is involved in male sexual function. Here, we aim to investigate how ERα activation influences sexual satiety and the Coolidge effect (i.e., when a rat, that has reached sexual satiety, experiences an increased arousal after exposure to a novel sexual partner) in estrogen-deprived male rats. Male rats (8 per group) were treated daily for 29 days with either saline (Control group) or fadrozole dissolved in saline (1 mg/kg/day) 1 h before mating. On Days 13 and 29, rats treated with fadrozole received either no additional treatment (fadrozole group) or a single injection of propyl-pyrazole-triol (ERα-agonist group, dissolved in sesame oil, 1 mg/kg). Rats mated until reaching sexual satiety on Days 13 and 29. In these sessions, the Control group displayed higher frequency of intromission and ejaculation than the other groups. The ERα-agonist group mounted more frequently but reached sexual satiety sooner than the Control group. On Day 29, when exposed to a new sexual partner, the fadrozole-treated rats were less likely to display intromission than the other groups, or ejaculation than the Control group, or mounting than the ERα-agonist group. The Control group showed more ejaculatory behavior and shorter ejaculation latency than the other groups. Body weights, testosterone levels, estradiol levels, and ERα-immunoreactive cell counts in brain regions for sexual behavior were comparable between groups after 29 days of treatments. Our data suggest that estrogen helps regulate sexual satiety and the Coolidge effect in male rats.
Collapse
Affiliation(s)
- P Hanna C Corre
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand.
| | | | - K Kenn Z Peralta
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand.
| | - P Mark Lokman
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand.
| | - Robert Porteous
- Otago Micro and Nanoscale Imaging, University of Otago, Dunedin 9016, New Zealand.
| | - Erik Wibowo
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
2
|
Yazawa T, Imamichi Y, Sato T, Ida T, Umezawa A, Kitano T. Diversity of Androgens; Comparison of Their Significance and Characteristics in Vertebrate Species. Zoolog Sci 2024; 41:77-86. [PMID: 38587520 DOI: 10.2108/zs230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/31/2023] [Indexed: 04/09/2024]
Abstract
Androgen(s) is one of the sex steroids that are involved in many physiological phenomena of vertebrate species. Although androgens were originally identified as male sex hormones, it is well known now that they are also essential in females. As in the case of other steroid hormones, androgen is produced from cholesterol through serial enzymatic reactions. Although testis is a major tissue to produce androgens in all species, androgens are also produced in ovary and adrenal (interrenal tissue). Testosterone is the most common and famous androgen. It represents a major androgen both in males and females of almost vertebrate species. In addition, testosterone is a precursor for producing significant androgens such as11-ketotestosterone, 5α-dihydrotestosterone, 11-ketodihydrotestosterones and 15α-hydroxytestosterone in a species- or sex-dependent manner for their homeostasis. In this article, we will review the significance and characteristics of these androgens, following a description of the history of testosterone discovery and its synthetic pathways.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan,
| | - Yoshitaka Imamichi
- Faculty of Marine Science and Technology, Fukui Prefectural University, Fukui 917-0003, Japan,
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka 830-0011, Japan
| | - Takanori Ida
- Center for Animal Disease Control, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Akihiro Umezawa
- National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
3
|
Ganguly S, Adhikari A, Sadhukhan D, Raut SS, Kumar VS, Nag SK, Das BK. Endocrine disruptive toxicity of cypermethrin in Labeo catla: Involvement of genes and proteins related to the HPG axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165958. [PMID: 37541521 DOI: 10.1016/j.scitotenv.2023.165958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Cypermethrin (CYP) is a synthetic pyrethroid abundantly used in agriculture and aquaculture. It is an established potent endocrine disruptor to fish, yet the molecular mechanism behind its reproductive toxicity remains unclear. In this study, fish Labeo catla (Catla) was exposed to environmentally relevant concentration of CYP (0.7 μg/L) and 0.14 μg/L for 30 days. The changes in circulating sex steroids, genes, and hormones linked to the hypothalamic-pituitary-gonadal (HPG) axis, stress response and associated histological alterations were studied. Significant decline (P < 0.05) in serum 17 beta (β) estradiol (E2), 11 ketotestosterone (11-KT), and brain (FSH and GnRH) were observed in 0.7 μg/L dose of CYP. These effects may be due to the down-regulated expression of the upstream genes of the HPG axis i.e. Kiss 1 and Kiss 2, which further downregulates the expression of the GnRH gene. The decreased level of E2 and 11-KT also affects the vitellogenin (Vtg) gene expression, reducing the production of Vtg, a crucial protein for ovarian development. Principal component analysis (PCA) revealed the relationship between CYP and the biosynthesis of sex steroids. The toxic effect of CYP was also visible in antioxidant enzyme assay and related histological alterations. Overall, the study elucidated that long-term exposure to CYP, even at an environmentally relevant dose, may affect reproductive potential and fish recruitment. The study provides important insights into molecular mechanisms underlying CYP-induced endocrine disruption in fish, and it also raises questions about CYP's potential toxicity at environmentally relevant concentration in terms of understanding ecological risk.
Collapse
Affiliation(s)
- Satabdi Ganguly
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Anupam Adhikari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Debalina Sadhukhan
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | | | - V Santhana Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Subir Kumar Nag
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| |
Collapse
|
4
|
Guedegba NL, Ben Ammar I, Houndji A, Toko II, Van De Merckt L, Agbohessi PT, Mandiki SNM, Scippo ML, Kestemont P. Integrated biomarker response to assess the effects of pesticide residues on Nile Tilapia in aquatic ecosystems contaminated by cotton-field effluents. CHEMOSPHERE 2022; 305:135407. [PMID: 35732206 DOI: 10.1016/j.chemosphere.2022.135407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
An in-situ study combined with an integrated biomarker response was used to evaluate the impact of agricultural effluents in the physiological responses of Nile tilapia reared in cages and enclosures of water reservoirs in North Benin. Fish were distributed in fish farming systems at two sites: Songhai located outside the cotton basin and Batran located in the most productive commune. They were sampled for blood and organs before (BST), during (DST) and after (AST) pesticide treatment. Pesticide residues were analysed in water, sediments and fish muscles. Several biomarkers were investigated related to the immune (peroxidase, lysozyme and complement activities, superoxide anion production) and reproductive (sex steroids and vitellogenin levels) responses as well as neurotoxicity (cholinesterase activity) and tissue alterations. Biomarkers were assessed and analysed via the integrated biomarker response (IBR). The results showed that Batran water reservoir was a more harmful ecosystem for fish than Songhai one, especially by depressing some immune and reproductive functions in relation to a higher-level of pesticide contamination. They also demonstrated that the contact of fish to sediments in enclosures aggravated the pesticide burden on fish. Therefore, using males as bioindicators would improve the sensitivity of the used biomarkers since males seemed more affected than females especially due to pesticide estrogenic induction impacting their reproductive system.
Collapse
Affiliation(s)
- Nicresse Léa Guedegba
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium; Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Imen Ben Ammar
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Alexis Houndji
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium; Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Ibrahim Imorou Toko
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Lara Van De Merckt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Prudencio Tachégnon Agbohessi
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology (LaRAEAq), University of Parakou, Faculty of Agronomy, 03 BP 61 Parakou-University, Benin
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Fundamental and Applied Research for Animals & Health (FARAH), Veterinary Public Health, University of Liège, bât. B43bis, 10 Avenue de Cureghem, Sart-Tilman, B-4000, Liège, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
5
|
Palstra AP, Bouwman LJ, Jéhannet P, Kruijt L, Schipper H, Blokland MH, Swinkels W, Heinsbroek LTN, Lokman PM. Steroid implants for the induction of vitellogenesis in feminized European silver eels (Anguilla anguilla L.). Front Genet 2022; 13:969202. [PMID: 36061169 PMCID: PMC9428156 DOI: 10.3389/fgene.2022.969202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Assisted propagation of the European eel will lead to a closed production cycle supplying the aquaculture industry with juvenile glass eels. Females require long-term weekly treatment with pituitary extract (PE), which is stressful and causes abnormalities in oogenesis. We tested the effects of 17α-methyltestosterone (17 MT), as potent androgen activating the androgen receptor, and 17β-estradiol (E2), as an inducer of vitellogenesis, to shorten the duration of PE treatment.Four groups of feminized eels were subjected to a simulated migration and subsequent injection with implants containing 17 MT (17 MT-group), E2 (E2-group) or 17 MT plus E2 (17 MT + E2-group) to test for synergistic effects, or without any steroids as controls (C-group). The effects of a 2-months treatment were investigated by determining the eye index (EI), hepatosomatic and gonadosomatic index (HSI and GSI, respectively), plasma steroid concentrations by liquid chromatography mass spectrometry (LCMS), gonadal histology, expression of androgen receptors a and b (ara, arb); estrogen receptor 1 (esr1); FSH receptor (fshr); vitellogenin receptor (vtgr) and aromatase (cyp19), and the required number of weekly PE injections to fully mature. For many parameters, both the 17 MT and E2 groups showed an increase vs. controls, with the 17 MT + E2 group showing a synergistic effect, as seen for EI, GSI (3.4 for 17 MT and for E2, 6.6 for 17 MT + E2), oocyte diameter and ara, arb and esr1 expression. Concentrations of almost all focal steroids decreased with simulated migration and steroid treatment. Only eels of the 17 MT-group showed increased expression of cyp19 and of fshr, while fshr expression increased 44-fold in the 17 MT + E2 group, highlighting that co-implantation is most effective in raising fshr mRNA levels. Specific for eels of the E2 groups were vitellogenesis-associated changes such as an increase of HSI, plasma E2, and presence of yolk in the oocytes. Steroid treatments reduced the duration of PE treatment, again synergistically for co-implantation. In conclusion, E2 is necessary to start vitellogenesis, but 17 MT has specific effects on cyp19 and fshr expression. The combination is necessary for synergistic effects and as such, steroid implants could be applied in assisted reproduction protocols for European eel to improve oocyte quality leading to the production of more vital larvae.
Collapse
Affiliation(s)
- Arjan P. Palstra
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Arjan P. Palstra,
| | - Lotte J. Bouwman
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Pauline Jéhannet
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Leo Kruijt
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Henk Schipper
- Experimental Zoology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Marco H. Blokland
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Leon T. N. Heinsbroek
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
- Wageningen Eel Reproduction Experts B.V, Wageningen, Netherlands
| | - P. Mark Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Honji RM, Araújo BC, Caneppele D, Nostro FLL, Moreira RG. Dynamics of ovarian maturation during the annual reproductive cycle of the endangered fish Steindachneridion parahybae (Siluriformes: Pimelodidae) in captivity. JOURNAL OF FISH BIOLOGY 2022; 101:55-68. [PMID: 35460078 DOI: 10.1111/jfb.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
To characterize the female reproductive biology of the endangered species Steindachneridion parahybae in captivity, the authors used the concentration of gonadal steroids and the oocyte development during the annual reproductive cycle (RC) and after artificial induced spawning (AIS) until 48 h. Three stages of gonadal maturation were identified, based on morphological and physiological features: early maturation or previtellogenic (PRV) oocyte, advanced maturation or vitellogenic (VTG) oocyte and regression (REG) or follicular atresia. They identified and characterized the following stages of germ cells: oogonia, perinucleolar and cortical alveoli, and VTG and atretic oocytes during RC. The oestradiol levels were higher in PRV than those in VTG and REG during the RC, whereas androgens showed higher levels of oestradiol in VTG than those in PRV and REG. The progestogen levels remained unchanged during the whole RC. The final oocyte maturation (FOM) was achieved after AIS and postovulatory follicles (POF) were identified. Plasma concentration of progestogens (17α,20β-dihydroxy-pregnen-3-one and 17α-hydroxyprogesterone) increased considerably after AIS, remaining high up to 6 h after AIS, and progressively decreased over time after AIS. During RC, the lack of FOM and POFs reveals that captivity negatively impacts S. parahybae reproduction. Nonetheless, the VTG stage of oocytes, reached during RC, is suitable for ovulation induction with artificial hormone manipulation, enabling the reproduction of this species in captivity and being essential for the success of fish farming and/or fish conservation programmes (conservationist aquaculture).
Collapse
Affiliation(s)
- Renato Massaaki Honji
- Centro de Biologia Marinha, Universidade de São Paulo (CEBIMar), Rodovia Manoel Hipólito do Rego, São Sebastião, Brazil
| | | | | | - Fabiana Laura Lo Nostro
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Galligan TM, Helm RF, Case BF, Bodinof Jachowski CM, Frazier CL, Alaasam V, Hopkins WA. Pre-breeding androgen and glucocorticoid profiles in the eastern hellbender salamander (Cryptobranchus alleganiensis alleganiensis). Gen Comp Endocrinol 2021; 313:113899. [PMID: 34499909 DOI: 10.1016/j.ygcen.2021.113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
Seasonally breeding species exhibit cyclical changes in circulating steroid hormone profiles that correspond with changes to their reproductive behavior and ecology. Such information is critical to the conservation of imperiled and data-deficient species, such as the eastern hellbender salamander (Cryptobranchus alleganiensis alleganiensis). We determined changes in plasma testosterone (T), dihydrotestosterone (DHT), 11-ketotestosterone (11-KT), 11-ketoandrostenedione (11-KA), dehydroepiandrosterone (DHEA), cortisol, corticosterone, and progesterone (P4) during a four-month period preceding breeding in adult male and female eastern hellbenders. This pre-breeding period is characterized by increased diel movement and aggression by both sexes, follicular development and yolk production in females, and sperm production, territoriality, and nest site establishment in males. In both males and females, we observed a progressive increase in circulating T and DHT during the pre-reproductive season, both peaking in August (17 days before breeding), but concentrations of both hormones were higher in males. Conversely, 11-KT was higher in females, but did not vary significantly by date. These results suggest that T and DHT are the predominant androgens in eastern hellbenders and are likely important regulators of reproductive processes in both males and females. The detection of significant quantities of DHT and 11-KT in females is particularly interesting, considering that unlike T, neither of these androgens can be converted to estrogens. Therefore, it seems possible that aggression or some aspect of reproduction in the female eastern hellbender may be directly mediated by androgen signaling. Baseline cortisol did not vary throughout the pre-breeding period but was higher in females than males, and also became highly variable in females leading up to breeding. Progesterone, 11-KA, DHEA, and corticosterone were rarely or never detected, and thus, do not appear to be important during the pre-reproductive season. This study provides a physiological framework for future studies of hellbender reproductive biology, which could ultimately be important for their conservation.
Collapse
Affiliation(s)
- Thomas M Galligan
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA USA 24060, USA; Environmental Working Group, 1436 U St. NW #100, Washington, DC 20009, USA.
| | - Richard F Helm
- Virginia Tech, Department of Biochemistry, Blacksburg, VA USA 24060, USA
| | - Brian F Case
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA USA 24060, USA
| | - Catherine M Bodinof Jachowski
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA USA 24060, USA; Forestry and Environmental Conservation Department, Clemson University, Clemson, SC 29634, USA
| | - Clara L Frazier
- Virginia Tech, Department of Biochemistry, Blacksburg, VA USA 24060, USA
| | - Valentina Alaasam
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA USA 24060, USA; Ecology, Evolution, and Conservation Biology, University Nevada-Reno, Reno, NV 89557, USA
| | - William A Hopkins
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA USA 24060, USA
| |
Collapse
|
8
|
Jéhannet P, Palstra AP, Heinsbroek LTN, Kruijt L, Dirks RP, Swinkels W, Komen H. What Goes Wrong during Early Development of Artificially Reproduced European Eel Anguilla anguilla? Clues from the Larval Transcriptome and Gene Expression Patterns. Animals (Basel) 2021; 11:ani11061710. [PMID: 34201077 PMCID: PMC8227761 DOI: 10.3390/ani11061710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/23/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Closing the life cycle of the European eel in captivity is urgently needed to gain perspective for the commercial production of juvenile glass eels. Larvae are produced weekly at our facilities, but large variations in larval mortality are observed during the first week after hatching. Although much effort has been devoted to investigating ways to prevent early larval mortality, it remains unclear what the causes are. The aim of this study was to perform a transcriptomic study on European eel larvae in order to identify genes and physiological pathways that are differentially regulated in the comparison of larvae from batches that did not survive for longer than three days vs. larvae from batches that survived for at least a week up to 22 days after hatching (non-viable vs. viable larvae). In contrast to earlier published studies on European eel, we conclude that larvae exhibit immune competency. Non-viable larvae initiated an inflammatory and host protection immune response and tried to maintain osmoregulatory homeostasis. As a perspective, microbial control and salinity reduction might benefit eel larvae in terms of lower mortality and improved development by lowering the costs of immune functioning and osmoregulation. Abstract In eels, large variations in larval mortality exist, which would impede the viable production of juvenile glass eels in captivity. The transcriptome of European eel larvae was investigated to identify physiological pathways and genes that show differential regulation between non-viable vs. viable larvae. Expression of genes involved in inflammation and host protection was higher, suggesting that non-viable larvae suffered from microbial infection. Expression of genes involved in osmoregulation was also higher, implying that non-viable larvae tried to maintain homeostasis by strong osmoregulatory adaptation. Expression of genes involved in myogenesis, neural, and sensory development was reduced in the non-viable larvae. Expression of the major histocompatibility complex class-I (mhc1) gene, M-protein (myom2), the dopamine 2B receptor (d2br), the melatonin receptor (mtr1), and heat-shock protein beta-1 (hspb1) showed strong differential regulation and was therefore studied in 1, 8, and 15 days post-hatch (dph) larvae by RT-PCR to comprehend the roles of these genes during ontogeny. Expression patterning of these genes indicated the start of active swimming (8 dph) and feed searching behavior (15 dph) and confirmed immunocompetence immediately after hatching. This study revealed useful insights for improving larval survival by microbial control and salinity reduction.
Collapse
Affiliation(s)
- Pauline Jéhannet
- Animal Breeding and Genomics, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (P.J.); (L.K.); (H.K.)
| | - Arjan P. Palstra
- Animal Breeding and Genomics, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (P.J.); (L.K.); (H.K.)
- Correspondence:
| | | | - Leo Kruijt
- Animal Breeding and Genomics, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (P.J.); (L.K.); (H.K.)
| | - Ron P. Dirks
- Future Genomics Technologies B.V., 2333 BE Leiden, The Netherlands;
| | | | - Hans Komen
- Animal Breeding and Genomics, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (P.J.); (L.K.); (H.K.)
| |
Collapse
|
9
|
Damsteegt EL, Thomson-Laing G, Wylie MJ, Lokman PM. Effects of estradiol and 11-ketotestosterone pre-treatment on artificial induction of maturation in silver female shortfinned eels (Anguilla australis). PLoS One 2020; 15:e0229391. [PMID: 32092110 PMCID: PMC7039463 DOI: 10.1371/journal.pone.0229391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/05/2020] [Indexed: 11/29/2022] Open
Abstract
Our previous work documented significant advancements in steroid-induced progression of oogenesis, demonstrating that co-treatment of female eels with 11-ketotestosterone (11KT) and estradiol-17β (E2) successfully induced uptake of vitellogenin by oocytes. Here we evaluate the effects of this steroid co-treatment on subsequent time to ovulation and egg quality in shortfinned eels artificially matured by hypophysation. Co-treatment with 11KT (1 mg) and E2 (0.2 or 2 mg) significantly reduced time to ovulation and therefore, the amount of pituitary homogenate required, without any detrimental effects on gonadosomatic index, oocyte diameter or the total weight of stripped eggs. E2 treatment resulted in promising increases in fertilization rates. These indicators suggest that co-treatment with 11KT and E2 holds promise for future artificial maturation practices in terms of minimising fish handling and stress, and of reducing the need for expensive pituitary preparations.
Collapse
Affiliation(s)
- Erin L. Damsteegt
- Department of Zoology, University of Otago, Dunedin, New Zealand
- * E-mail:
| | | | - Matthew J. Wylie
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - P. Mark Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
First Observation of a Spontaneously Matured Female European Eel (Anguilla anguilla). Sci Rep 2020; 10:2339. [PMID: 32047193 PMCID: PMC7012921 DOI: 10.1038/s41598-020-59331-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
This study reports on the first observation of a spontaneously matured female European eel. The 43-year-old eel, together with eleven other females, resided at an aquarium house since their capture in 2002 and stocking as glass eels in 1978. In June 2019, the girth of the belly of the female increased as a sign of oocyte maturation. The specimen had an estimated gonadosomatic index (GSI) of 47, only half of the oocytes were hydrated and matured, indicating that European eels are polycyclic batch spawners. The live eels of the cohort were still in the previtellogenic phase but their eye sizes were close to that of the matured eel. We hypothesize that substances released by other maturing and spawning fishes may have triggered puberty of the eel. This first observation, and the possibility of more eels maturing in the near future, provides a natural reference for the sexual maturation of the European eel.
Collapse
|