1
|
Su Y, Wu Y, Ye M, Zhao C, Li L, Cai J, Chakraborty T, Yang L, Wang D, Zhou L. Star1 gene mutation reveals the essentiality of 11-ketotestosterone and glucocorticoids for male fertility in Nile Tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110985. [PMID: 38729293 DOI: 10.1016/j.cbpb.2024.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Steroidogenic acute regulatory protein (Star) plays an essential role in the biosynthesis of corticosteroids and sex steroids by mediating the transport of cholesterol from the outer to the inner membrane of mitochondria. Two duplicated Star genes, namely star1 and star2, have been identified in non-mammalian vertebrates. To investigate the roles of star genes in fish steriodogenesis, we generated two mutation lines of star1-/- and star1-/-/star2-/- in Nile tilapia (Oreochromis niloticus). Previous studies revealed that deficiency of star2 gene caused delayed spermatogenesis, sperm apoptosis and sterility in male tilapia. Our present data revealed that mutation of star genes impaired male fertility. Disordered seminiferous lobules and spermatic duct obstruction were found in the testis of both types of mutants. Moreover, significant decline in semen volume, sperm abnormality and impaired fertility were also detected in star1-/- and star1-/-/star2-/- males. In star1-/- male fish, lipid accumulation, up-regulation of steroidogenic enzymes, and significant decline of androgens were found. Additionally, hyperplasic interrenal cells, elevated steroidogenic gene expression level and decline of serum glucocorticoids were detected in star1 mutants. Intriguingly, either 11-KT or cortisol supplementation successfully rescued the impaired fertility of the star1-/- mutants. Taken together, these results further indicate that Star1 might play critical roles in the production of both 11-KT and glucocorticoids, which are indispensable for the maintenance of male fertility in fish.
Collapse
Affiliation(s)
- Yun Su
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chenhua Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | | | - Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China.
| |
Collapse
|
2
|
Biswas C, Adhikari M, Pramanick K. Toxicological effects of nodularin on the reproductive endocrine system of female zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107000. [PMID: 38875953 DOI: 10.1016/j.aquatox.2024.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Nodularin is a potent cyanotoxin that has been detected in aquatic environments as well as in the body of aquatic organisms throughout the world, but its effects on the reproductive system are yet to be explored. The present study investigated the toxic effects of environmentally relevant concentrations of nodularin on the reproductive endocrine system of female zebrafish (Danio rerio). After exposure to nodularin for 14 days, decreased gonadosomatic Index (GSI), germinal vesicle breakdown (GVBD), and decreased level of follicle-stimulating hormone (FSH), luteinizing hormone (LH), 17β-estradiol (E2) level and increased testosterone (T) content in female zebrafish suggested that nodularin may disrupt both oocyte growth and maturation. In support of this data, alteration in different marker gene expression on the hypothalamic-pituitary-gonadal-liver (HPGL) axis was observed. Transcriptional levels of genes related to steroidogenesis including cytochrome P450 aromatase (cyp19a1a) in the ovary and primary vitellogenin genes (vtg1, vtg2, and vtg3) in the liver were down-regulated and marker genes for oxidative stress (sod, cat, and gpx) were up-regulated on HPGL axis. These findings revealed for the first time that nodularin is a potent endocrine-disrupting compound posing oxidative stress and causes reproductive endocrine toxicity in female zebrafish, emphasizing the importance of assessing its environmental risks.
Collapse
Affiliation(s)
- Chayan Biswas
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
3
|
Jia J, Shi S, Liu C, Shu T, Li T, Lou Q, Jin X, He J, Du Z, Zhai G, Yin Z. Use of All-Male cyp17a1-Deficient Zebrafish (Danio rerio) for Evaluation of Environmental Estrogens. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1062-1074. [PMID: 38477699 DOI: 10.1002/etc.5839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 μg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 μg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.
Collapse
Affiliation(s)
- Jingyi Jia
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Shengchi Shi
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Congying Liu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Shu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianhui Li
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhenyu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Sun B, Li J, Bai Y, Zhou X, Lam PKS, Chen L. Hypoxic and temporal variation in the endocrine disrupting toxicity of perfluorobutanesulfonate in marine medaka (Oryzias melastigma). J Environ Sci (China) 2024; 136:279-291. [PMID: 37923438 DOI: 10.1016/j.jes.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts. However, the hypoxic and temporal variation in PFBS endocrine disrupting toxicity remain largely unknown. In the present study, adult marine medaka were exposed to environmentally realistic concentrations of PFBS (0 and 10 µg/L) under normoxia or hypoxia conditions for 7 days, aiming to explore the interactive behavior between PFBS and hypoxia. In addition, PFBS singular exposure was extended till 21 days under normoxia to elucidate the time-course progression in PFBS toxicity. The results showed that hypoxia inhibited the growth and caused the suspension of egg spawn regardless of PFBS exposure. With regard to the sex endocrine system, 7-day PFBS exposure led to an acute stimulation of transcriptional profiles in females, which, subsequently, recovered after the 21-day exposure. The potency of hypoxia to disturb the sex hormones was much stronger than PFBS. A remarkable increase in estradiol concentration was noted in medaka blood after hypoxia exposure. Changes in sex endocrinology of coexposed fish were largely determined by hypoxia, which drove the formation of an estrogenic environment. PFBS further enhanced the endocrine disrupting effects of hypoxia. However, the hepatic synthesis of vitellogenin and choriogenin, two commonly used sensitive biomarkers of estrogenic activity, failed to initiate in response to the estrogen stimulus. Compared to sex endocrine system, disturbances in thyroidal axis by PFBS or hypoxia were relatively mild. Overall, the present findings will advance our toxicological understanding about PFBS pollutant under the interference of hypoxia.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Yamamoto Y, Hishikawa D, Ono F. Trpv4-mediated apoptosis of Leydig cells induced by high temperature regulates sperm development and motility in zebrafish. Commun Biol 2024; 7:96. [PMID: 38218950 PMCID: PMC10787748 DOI: 10.1038/s42003-023-05740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024] Open
Abstract
Exposure of testes to high-temperature environment results in defective spermatogenesis. Zebrafish exposed to high temperature exhibited apoptosis not only in germ cells but also in Leydig cells, as expected from studies using mice or salmon. However, the role of testicular somatic cells in spermatogenesis defects remains unclear. We found that in Leydig cells the Trpv4 gene encoding the temperature sensitive ion channel was specifically upregulated in high temperature. High temperature also reduced hormone synthesis in Leydig cells and led to a prompt downregulation of sperm motility. In the Trpv4 null mutant, neither Leydig cell-specific apoptosis nor decreased sperm motility was observed under high temperature. These results indicate that Leydig cell specific-apoptosis is induced via Trpv4 by high temperature. Notably this Trpv4-dependent mechanism was specific to Leydig cells and did not operate in germ cells. Because sperm exposed to high temperature exhibited compromised genome stability, we propose that temperature sensing leading to apoptosis in Leydig cells evolved to actively suppress generation of offspring with unstable genome.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Department of Physiology, Osaka Medical and Pharmaceutical University 2-7, Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Daisuke Hishikawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University 2-7, Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| |
Collapse
|
6
|
Dong M, Tang M, Li W, Li S, Yi M, Liu W. Morphological and transcriptional analysis of sexual differentiation and gonadal development in a burrowing fish, the four-eyed sleeper (Bostrychus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101148. [PMID: 37865042 DOI: 10.1016/j.cbd.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Four-eyed sleeper (Bostrychus sinensis) is a commercially important sea water fish, and the male individuals exhibit significant advantages in somatic growth and stress resistance, so developing sex control strategy to create all-male progeny will produce higher economic value. However, little is known about the genetic background associated with sex differentiation in this species. In this study, we investigated gonadal development and uncovered critical window stages of sexual differentiation (about 2 mph), transition from proliferation to differentiation in female germ stem cells (GSCs) (2-3 mph) and male GSCs (3-4 mph). De novo transcriptome analysis revealed candidate genes and signaling pathways associated with sexual differentiation and gonadal development in four-eyed sleeper. The results showed that sox9 and zglp1 were the earliest sex-biased transcription factors during sex differentiation. Down-regulation of chemokine, cytokines-cytokine receptors and up-regulation of cellular senescence pathway might be involved in GSC differentiation. Weighted gene correlation network analysis showed that metabolic pathway and occludin were the hub signaling and gene in ovarian development, meanwhile the MAPK signaling pathways, cellular senescence pathway and ash1l (histone H3-lysine4 N-trimethyltransferase) were the hub pathways and gene in testicular development. The present work elucidated the developmental processes of sexual differentiation and gonadal development and revealed their associated revealed genes and signaling pathways in four-eyed sleeper, providing theoretical basis for developing sex-control techniques.
Collapse
Affiliation(s)
- Mengdan Dong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Mingyue Tang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
| |
Collapse
|
7
|
Eldem V, Zararsız G, Erkan M. Global expression pattern of genes containing positively selected sites in European anchovy (Engraulis encrasicolus L.) may shed light on teleost reproduction. PLoS One 2023; 18:e0289940. [PMID: 37566603 PMCID: PMC10420382 DOI: 10.1371/journal.pone.0289940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
European anchovy is a multiple-spawning and highly fecundate pelagic fish with high economic and ecological significance. Although fecundity is influenced by nutrition, temperature and weight of spawners, high reproductive capacity is related to molecular processes in the ovary. The ovary is an essential and complex reproductive organ composed of various somatic and germ cells, which interact to facilitate the development of the ovary and functional oocytes. Revealing the ovarian transcriptome profile of highly fecundate fishes provides insights into oocyte production in teleosts. Here we use a comprehensive tissue-specific RNA sequencing which yielded 102.3 billion clean bases to analyze the transcriptional profiles of the ovary compared with other organs (liver, kidney, ovary, testis, fin, cauda and gill) and juvenile tissues of European anchovy. We conducted a comparative transcriptome and positive selection analysis of seven teleost species with varying fecundity rates to identify genes potentially involved in oogenesis and oocyte development. Of the 2,272 single copies of orthologous genes found, up to 535 genes were under positive selection in European anchovy and these genes are associated with a wide spectrum of cellular and molecular functions, with enrichments such as RNA methylation and modification, ribosome biogenesis, DNA repair, cell cycle processing and peptide/amide biosynthesis. Of the 535 positively selected genes, 55 were upregulated, and 45 were downregulated in the ovary, most of which were related to RNA and DNA transferase, developmental transcription factors, protein kinases and replication factors. Overall, our analysis of the transcriptome level in the ovarian tissue of a teleost will provide further insights into molecular processes and deepen our genetic understanding of egg production in highly fecund fish.
Collapse
Affiliation(s)
- Vahap Eldem
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
| | - Melike Erkan
- Faculty of Sciences, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Liu S, Lian Y, Song Y, Chen Q, Huang J. De Novo Assembly, Characterization and Comparative Transcriptome Analysis of the Gonads of Jade Perch ( Scortum barcoo). Animals (Basel) 2023; 13:2254. [PMID: 37508032 PMCID: PMC10376888 DOI: 10.3390/ani13142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high meat yield and rich nutritional content, jade perch (Scortum barcoo) has become an important commercial aquaculture species in China. Jade perch has a slow growth rate, taking 3-4 years to reach sexual maturity, and has almost no difference in body size between males and females. However, the study of its gonad development and reproduction regulation is still blank, which limited the yield increase. Herein, the gonad transcriptomes of juvenile males and females of S. barcoo were identified for the first time. A total of 107,060 unigenes were successfully annotated. By comparing male and female gonad transcriptomes, a total of 23,849 differentially expressed genes (DEGs) were identified, of which 9517 were downregulated, and 14,332 were upregulated in the testis. In addition, a large number of DEGs involved in sex differentiation, gonadal development and differentiation and gametogenesis were identified, and the differential expression patterns of some genes were further verified using real-time fluorescence quantitative PCR. The results of this study will provide a valuable resource for further studies on sex determination and gonadal development of S. barcoo.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingying Lian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yikun Song
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qinghua Chen
- South China Institute of Environmental Science, MEE, Guangzhou 510610, China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
10
|
Hu C, Bai Y, Li J, Sun B, Chen L. Endocrine disruption and reproductive impairment of methylparaben in adult zebrafish. Food Chem Toxicol 2022; 171:113545. [PMID: 36470324 DOI: 10.1016/j.fct.2022.113545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Methylparaben (MeP) is one of the most frequently used preservatives in our daily products. However, it is becoming an aquatic pollutant of emerging concern. To reveal the endocrine disruption mechanism and reproductive impairment of MeP, the present study exposed adult zebrafish to 0, 1, 3, and 10 μg/L (0, 6.6, 19.7, and 65.7 nM) of MeP for 28 days. The results showed that subchronic exposure to 10 μg/L of MeP significantly increased the gonadosomatic index in zebrafish. Spermatogenesis and oogenesis were blocked by MeP at concentrations as low as 1 μg/L. Furthermore, parental exposure to MeP induced developmental deficits in offspring larvae, by increasing mortality, stimulating precocious hatching, and elevating heart rate. Blood concentrations of estradiol, testosterone, and 11-keto-testosterone were consistently lowered in MeP exposure groups. Transcriptional results evidenced that the disturbance in steroidogenesis and feedback regulation mechanisms along the hypothalamic-pituitary-gonadal axis underlay the imbalance of sex hormones. In line with the low estradiol level, hepatic production of vitellogenin (VTG) was significantly down-regulated, subsequently leading to a deficiency of VTG supply during oogenesis. To our knowledge, this is the first study to provide systemic insight about the antiestrogenic activity and reproductive toxicity of MeP.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Liu Y, Kossack ME, McFaul ME, Christensen LN, Siebert S, Wyatt SR, Kamei CN, Horst S, Arroyo N, Drummond IA, Juliano CE, Draper BW. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 2022; 11:e76014. [PMID: 35588359 PMCID: PMC9191896 DOI: 10.7554/elife.76014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Michelle E Kossack
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Matthew E McFaul
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Lana N Christensen
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Sydney R Wyatt
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Caramai N Kamei
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Samuel Horst
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nayeli Arroyo
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Iain A Drummond
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
12
|
Tsakoumis E, Ahi EP, Schmitz M. Impaired leptin signaling causes subfertility in female zebrafish. Mol Cell Endocrinol 2022; 546:111595. [PMID: 35139421 DOI: 10.1016/j.mce.2022.111595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Reproduction is an energetically costly event across vertebrates and tightly linked to nutritional status and energy reserves. In mammals, the hormone leptin is considered as a link between energy homeostasis and reproduction. However, its role in fish reproduction is still unclear. In this study, we investigated the possible role of leptin in the regulation of reproduction in zebrafish, using a loss of function leptin receptor (lepr) strain. Impaired leptin signaling resulted in severe reproductive deficiencies in female zebrafish. lepr mutant females laid significantly fewer eggs, with low fertilization rates compared to wild-type females. Folliculogenesis was not affected, but oocyte maturation and ovulation were disrupted in lepr mutants. Interestingly, the expression of luteinizing hormone beta (lhb) in the pituitary was significantly lower in mutant females. Analysis of candidate genes in the ovaries and isolated fully grown follicles revealed differential expression of genes involved in steroidogenesis, oocyte maturation and ovulation in the mutants, which are known to be regulated by LH signaling. Moreover, subfertility in lepr mutants could be partially restored by administration of human chorionic gonadotropin. In conclusion, our results show that leptin deficiency does not affect early stages of follicular development, but leptin might be essential in later steps, such as in oocyte maturation and ovulation. To our knowledge, this is the first time that leptin is associated to reproductive deficiencies in zebrafish.
Collapse
Affiliation(s)
- Emmanouil Tsakoumis
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland.
| | - Monika Schmitz
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Tao CY, Harley JZ, Spencer SL, Cohen RE. Characterizing seasonal transitions: Breeding-like morphology and behavior during the late non-breeding season in green anole lizards. Horm Behav 2022; 139:105106. [PMID: 34995849 DOI: 10.1016/j.yhbeh.2021.105106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Seasonally breeding animals, such as green anole lizards (Anolis carolinensis), allow for the examination of the control of reproduction during different reproductive states. During the breeding season, the gonads are large and reproductively active. Following the breeding season, gonads regress and become less active, and the lizards enter a refractory period where breeding is inhibited. After this stage, a post-refractory period occurs during which the lizards are still in a non-breeding state, but environmental changes can trigger the onset of breeding. However, it is unclear what causes these changes in reproductive state and we hypothesized that this may be due to alterations in gonadotropin-releasing hormone (GnRH) signaling. The present study aimed to identify morphological and behavioral differences in GnRH- and saline-injected refractory and post-refractory male anoles when housed under the same non-breeding environmental conditions. We found that post-refractory anoles had increased testicular weight, recrudescence, sperm presence, and reproductive behavior, with no impact of GnRH injection. Renal sex segment size and steroidogenic acute regulatory protein (StAR) mRNA levels did not differ among groups, indicating that testosterone levels likely had not increased in post-refractory lizards. Post-refractory anoles in this study were beginning to transition towards a breeding state without exposure to changing environmental conditions, and GnRH was not necessary for these changes. These data reveal a complex interaction between the activation of breeding, changing environmental conditions, and the underlying physiology regulating reproduction in seasonally breeding lizards. Future studies are needed to further elucidate the mechanisms that regulate this relationship.
Collapse
Affiliation(s)
- Cai Y Tao
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Jada Z Harley
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Savannah L Spencer
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|
14
|
Shi S, Shu T, Li X, Lou Q, Jin X, He J, Yin Z, Zhai G. Characterization of the Interrenal Gland and Sexual Traits Development in cyp17a2-Deficient Zebrafish. Front Endocrinol (Lausanne) 2022; 13:910639. [PMID: 35733778 PMCID: PMC9207535 DOI: 10.3389/fendo.2022.910639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike the Cytochrome P450, family 17, subfamily A, member 1 (Cyp17a1), which possesses both 17α-hydroxylase and 17,20-lyase activities involved in the steroidogenic pathway that produces androgens and estrogens, Cytochrome P450, family 17, subfamily A, polypeptide 2 (Cyp17a2) possesses only 17α-hydroxylase activity and is known essential for the synthesis of cortisol. Besides with expressed in testes and ovaries, where the cyp17a1 is mainly expressed, cyp17a2 is also expressed in the interrenal gland in fish. Until now, the roles of cyp17a2 in fish, especially in sexual traits development and hypothalamic-pituitary-interrenal (HPI) axis, are poorly studied. To investigate the roles of Cyp17a2 in teleosts, the cyp17a2-null zebrafish was generated and analyzed by us. The significantly decreased cortisol concentration was observed both in the cyp17a2-deficient males and females at adult stage. The interrenal gland enlargement, increased pituitary proopiomelanocortin a (pomca) expression, decreased locomotion activity and response to light-stimulated stress were observed in cyp17a2-deficient fish. Intriguingly, the cyp17a2-deficient males were fertile and with normal breeding tubercles on the pectoral fin, but females were infertile, deficient in genital papilla and with decreased gonadosomatic index (GSI). The increased progesterone (P4), 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and 11-ketotestosterone (11-KT) in the cyp17a2-deficient males and females were observed. The increased concentration of testosterone (T) and estradiol (E2) was observed in cyp17a2-/- females and cyp17a2-/- males, respectively. By examining the ovaries development of cyp17a2-deficient fish at 3 months postfertilization (mpf), we observed that the oocytes were over-activated. Taken together, our findings demonstrate that Cyp17a2 is indispensable for production and physiology of cortisol, and cyp17a2-deficiency resulted in diminished cortisol but accumulated P4 and DHP, which may result in the over-activated oocytes in cyp17a2-deficient females.
Collapse
Affiliation(s)
- Shengchi Shi
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Shu
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
| | - Xi Li
- Center of Clinical Research, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Gang Zhai,
| |
Collapse
|
15
|
Trudeau VL. Neuroendocrine Control of Reproduction in Teleost Fish: Concepts and Controversies. Annu Rev Anim Biosci 2021; 10:107-130. [PMID: 34788545 DOI: 10.1146/annurev-animal-020420-042015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the teleost radiation, extensive development of the direct innervation mode of hypothalamo-pituitary communication was accompanied by loss of the median eminence typical of mammals. Cells secreting follicle-stimulating hormone and luteinizing hormone cells are directly innervated, distinct populations in the anterior pituitary. So far, ∼20 stimulatory and ∼10 inhibitory neuropeptides, 3 amines, and 3 amino acid neurotransmitters are implicated in the control of reproduction. Positive and negative sex steroid feedback loops operate in both sexes. Gene mutation models in zebrafish and medaka now challenge our general understanding of vertebrate neuropeptidergic control. New reproductive neuropeptides are emerging. These include but are not limited to nesfatin 1, neurokinin B, and the secretoneurins. A generalized model for the neuroendocrine control of reproduction is proposed. Hopefully, this will serve as a research framework on diverse species to help explain the evolution of neuroendocrine control and lead to the discovery of new hormones with novel applications. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; ,
| |
Collapse
|
16
|
Li L, Wu Y, Zhao C, Miao Y, Cai J, Song L, Wei J, Chakraborty T, Wu L, Wang D, Zhou L. The role of StAR2 gene in testicular differentiation and spermatogenesis in Nile tilapia (Oreochromis niloticus). J Steroid Biochem Mol Biol 2021; 214:105974. [PMID: 34425195 DOI: 10.1016/j.jsbmb.2021.105974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022]
Abstract
Sex steroids play critical roles in sex differentiation and gonadal development in teleosts. Steroidogenic acute regulatory protein (StAR), transporting cholesterol (the substrate for steroidogenesis) from the outer mitochondrial membrane to the inner membrane, is the first rate-limiting factor of steroidogenesis. Interestingly, two StAR genes (named as StAR1 and StAR2) have been isolated from non-mammalian vertebrates. To characterize the functions of the novel StAR2 gene in the gonadal differentiation and fertility, we generated a StAR2 homozygous mutant line in Nile tilapia (Oreochromis niloticus). StAR2 gene knockout in male tilapia impeded meiotic initiation, associate with the down-regulation of meiosis related gene expressions of vasa, sycp3 and dazl at 90 days after hatching (dah). Meanwhile, cyp11b2 expression and serum 11-KT production significantly declined in StAR2-/- XY fish at 90 dah. From 120-300 dah, spermatogenesis gradually recovered, and so did the expressions of vasa, sycp3 and dazl in StAR2-/- XY fish testes. However, seminiferous lobules arranged disorderly in StAR2-/- XY fish testes at 300 dah. The number of Leydig cells and expressions of downstream steroidogenesis enzymes including cyp11a1, 3β-HSD-I, 3β-HSD-II, cyp17a1 and cyp17a2 decreased in StAR2-/- XY fish testes at 300 dah. Serum testosterone and 11-KT levels were significantly lower in StAR2-/- XY fish than that of their control counterparts. Furthermore, significantly elevated ar, fsh and lh expressions in StAR2-deficient XY fish testes and pituitaries were found when compared with the control XY fish. Testes degeneration and spermatogenic cell apoptosis were observed, while no sperm were squeezed out in StAR2-/- XY fish testes at 540 dah. Taken together, our results suggest that StAR2 has a role in testicular development, spermatogenesis and spermiation by regulating androgen production in tilapia, but may not be essential and could be compensated.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Chenhua Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Yiyang Miao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Lingyun Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China
| | | | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China.
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
17
|
Zhou L, Li M, Wang D. Role of sex steroids in fish sex determination and differentiation as revealed by gene editing. Gen Comp Endocrinol 2021; 313:113893. [PMID: 34454946 DOI: 10.1016/j.ygcen.2021.113893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The involvement of sex steroids in sex determination and differentiation is relatively conserved among non-mammalian vertebrates, especially in fish. Thanks to the advances in genome sequencing and genome editing, significant progresses have been made in the understanding of steroidogenic pathway and hormonal regulation of sex determination and differentiation in fish. It seems that loss of function study of single gene challenges the traditional views that estrogen is required for ovarian differentiation and androgen is needed for testicular development, but it is not so in essence. Steroidogenic enzymes can be classified into two categories based on expression and enzyme activities in fish. One type, encoded by star2, cyp17a1 and cyp19a1a, is involved in estrogen production and exclusively expressed in the gonads. Mutation of these genes results in the up-regulation of male pathway genes and sex reversal from genetic female to male. The other type, encoded by the duplicated paralogs of the above genes, including star1, cyp11a1, cyp17a2 and cyp19a1b, as well as cyp11c1 gene, is dominantly expressed both in gonads and extra-gonadal tissues. Mutation of these genes alters the steroids (androgen, DHP and cortisol) production and spermatogenesis, fertility, secondary sexual characteristics and sexual behavior, but usually does not affect the sex differentiation. For the estrogen receptors (esr1, esr2a and esr2b), single mutation failed to, but double and triple mutation leads to sex reversal from female to male, indicating that at least Esr2a and Esr2b are required to mediate the role of estrogen in sex determination proved by gene editing experiments. Taken together, results from gene editing enrich our understanding of steroid synthesis pathways and further confirm the critical role of estrogen in female sex determination by antagonizing the male pathway in fish.
Collapse
Affiliation(s)
- Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Zhou J, Wang W, Li Z, Zhang C, Wan Z, Sun S, Zeng B, Li M, Sun G. Metabolome and Transcriptome Analysis of Liver and Oocytes of Schizothorax o'connori Raised in Captivity. Front Genet 2021; 12:677066. [PMID: 34691140 PMCID: PMC8531413 DOI: 10.3389/fgene.2021.677066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Schizothorax o’connori (S. o’connori) is a representative tetraploid species in the subfamily Schizothoracinae and an important endemic fish in the Qinghai-Tibet Plateau. However, the domestication of S. o’connori remains challenging due to the lack of basic research. Here, we investigated the effects of artificial feeding on the oocytes and liver of S. o’connori by comparing the histological, metabolomic, and transcriptomic data. Histological results showed that the oocytes and liver of captive-reared S. o’connori had abnormal cell morphology. After comparison with the self-built database, a total of 233 metabolites were annotated. In oocytes, a total of 37 differentially accumulated metabolites (DAMs) were detected and two pathways were significantly enriched. There were obvious differences in the metabolites related to ovarian development, including pregnenolone and arachidonic acid. In liver, a total of 70 DAMs were detected and five pathways were significantly enriched. Based on the transcriptomic data, a total of 159 differentially expressed genes (DEGs) were significantly related with cell growth and death pathway in oocytes, while a total of 2841 DEGs were significantly related with 102 pathways in liver. Comparing the metabolomic and transcriptomic data showed that there were three common significant enrichment pathways in liver, including biosynthesis of unsaturated fatty acids, starch and sucrose metabolism, and fatty acid biosynthesis. These results showed that special attention should be given to the composition and intake of fatty acids during the artificial breeding of S. o’connori. In addition, many of metabolite-gene pairs were related to adenosine 5′-diphosphate, adenosine monophosphate, and pregnenolone. In summary, these data provide an overview of global metabolic and transcriptomic resources and broaden our understanding of captive-reared S. o’connori.
Collapse
Affiliation(s)
- Jianshe Zhou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Wanliang Wang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhiyi Wan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaijie Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Benhe Zeng
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Bacila I, Cunliffe VT, Krone NP. Interrenal development and function in zebrafish. Mol Cell Endocrinol 2021; 535:111372. [PMID: 34175410 DOI: 10.1016/j.mce.2021.111372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In this article we aim to provide an overview of the zebrafish interrenal development and function, as well as a review of its contribution to basic and translational research. A search of the PubMed database identified 41 relevant papers published over the last 20 years. Based on the common themes identified, we discuss the organogenesis of the interrenal gland and its functional development and we review what is known about the genes involved in zebrafish steroidogenesis. We also outline the consequences of specific defects in steroid biosynthesis, as revealed by evidence from genetically engineered zebrafish models, including cyp11a2, cyp21a2, hsd3b1, cyp11c1 and fdx1b deficiency. Finally, we summarise the impact of different chemicals and environmental factors on steroidogenesis. Our review highlights the utility of zebrafish as a research model for exploring important areas of basic science and human disease, especially in the current context of rapid technological progress in the field of Molecular Biology.
Collapse
Affiliation(s)
- Irina Bacila
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Vincent T Cunliffe
- The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Biomedical Science, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Nils P Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; The Bateson Centre, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Biswas S, Maitra S. Altered redox homeostasis in steroid-depleted follicles attenuates hCG regulation of follicular events: Cross-talk between endocrine and IGF axis in maturing oocytes. Free Radic Biol Med 2021; 172:675-687. [PMID: 34289395 DOI: 10.1016/j.freeradbiomed.2021.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/11/2023]
Abstract
Steroids and insulin-like growth factors (Igfs) are indispensable for folliculogenesis and reproductive fitness in the vertebrate ovary. The intrafollicular redox balance is also of immense importance for ovarian follicles wherein low levels of ROS are being utilized for cell signalling and regulation of gene expression; its excess may interfere with normal physiological processes leading to ovotoxicity. However, the functional relevance of ovarian steroidogenesis in maintaining the follicular microenvironment with coordinated redox homeostasis and intra-ovarian growth factors axis is relatively less understood. Using zebrafish full-grown (FG) ovarian follicles in vitro, our study shows that blocking steroid biosynthesis with anti-steroidal drugs, DL-aminoglutethimide (AG) or Trilostane (Trilo), prevents hCG (LH analogue)-induced StAR expression concomitant with a robust increase in intrafollicular ROS levels. Congruent with heightened intracellular levels of superoxide anions (O2•-) and hydrogen peroxide (H2O2), priming with AG or Trilo abrogates the transcript abundance of major antioxidant enzyme genes (SOD1, SOD2, and CAT) in hCG-stimulated follicles. Significantly, blocking steroidogenesis attenuates transcript abundance of HSP70 but elevates NOX4 expression potentially through ERα-mediated pathway. Importantly, disrupted redox balance in AG/Trilo pre-incubated FG follicles negatively impacts hCG-mediated activation of PKA/CREB signaling and transcriptional activation of igf ligands. Elevated ROS attenuation of antioxidant defense parameters and impaired endocrine and autocrine/paracrine homeostasis converge upon reduced p34cdc2 (Thr-161) phosphorylation, a reliable marker for MPF activation, and resumption of meiotic G2-M1 transition in hCG-treated follicles. Collectively, altered redox homeostasis in steroid-depleted follicles has a significant negative influence on GTH (LH) regulation of follicular events, specifically Igf synthesis, meiotic maturational competence and ovarian fitness.
Collapse
Affiliation(s)
- Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
21
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Wang Y, Liu X, Li W, Zhao J, Liu H, Yu L, Zhu X. Reproductive performance is associated with seasonal plasma reproductive hormone levels, steroidogenic enzymes and sex hormone receptor expression levels in cultured Asian yellow pond turtles (Mauremys mutica). Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110566. [PMID: 33515788 DOI: 10.1016/j.cbpb.2021.110566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
In order to understand the endocrine mechanism associated with fecundity of seasonally breeding animals, we investigated the plasma reproductive hormones levels and detected the differences in steroidogenic enzymes and sex hormone receptor mRNA levels in female Mauremys mutica. These turtles were divided into higher fecundity (HF) group than those in lower fecundity (LF) group based on paternity identification in our previous research. The plasma estrogen (E2), testosterone (T) and progesterone (P4) levels were significantly higher in pre-breeding season (PBS) than those in non-breeding season (NBS) and were markedly higher in the HF group than those in LF group. In the hypothalamus, there was significantly higher mRNA abundance of P450-cholesterol side-chain cleavage enzyme (P450Scc) encoded by Cyp11α1, aromatase (Cyp19α1) and 5-reductase (5α-R), but significantly lower mRNA levels of follicular stimulating hormone receptor (FSHR) and progesterone receptor (PR) detected in PBS than those in NBS. The pituitary steroidogenic acute regulatory protein (StAR), cytochrome P450-17alpha-hydroxylase (Cyp17α1), 3-hydroxy-steroid dehydrogenase (3βHSD), 17-hydroxy-steroid dehydrogenase 3 (17βHSD3), Cyp19α1, 5α-R, FSHR, estrogen receptor 1 (ESR1), androgen receptor (AR) and PR transcriptional levels in HF group were up-regulated significantly compared with the LF group. In the ovary, Cyp17α1 and 17βHSD3 transcriptional levels were markedly higher in PBS than those in NBS. We detected significantly increased expression levels of all steroidogenic enzymes, but notably lower mRNA levels of FSHR and PR in uterus during the PBS, and the HF group has significantly higher expression levels of StAR, Cyp17α1, 5α-R and AR than LF group. Our work reveals seasonal variations in hormone regulation as well as gene regulation in turtles, providing reliable information to understand the mechanisms underlying the different reproductive capacity of reptiles.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Jian Zhao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Haiyang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China.
| |
Collapse
|
23
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|