1
|
Miyata H, Shimada K, Kaneda Y, Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis. Development 2024; 151:dev202838. [PMID: 39036999 DOI: 10.1242/dev.202838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Long X, Chen L, Xiao X, Min X, Wu Y, Yang Z, Wen X. Structure, function, and research progress of primary cilia in reproductive physiology and reproductive diseases. Front Cell Dev Biol 2024; 12:1418928. [PMID: 38887518 PMCID: PMC11180893 DOI: 10.3389/fcell.2024.1418928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Primary cilia, serving as the central hub for cellular signal transduction, possess the remarkable ability to translate diverse extracellular signals, both chemical and mechanical, into intracellular responses. Their ubiquitous presence in the reproductive system underscores their pivotal roles in various cellular processes including development, differentiation, and migration. Emerging evidence suggests primary cilia as key players in reproductive physiology and associated pathologies. Notably, primary cilia have been identified in granulosa cells within mouse ovaries and uterine stromal cells, and perturbations in their structure and function have been implicated in a spectrum of reproductive dysfunctions and ciliary-related diseases. Furthermore, disruptions in primary cilia-mediated signal transduction pathways under pathological conditions exacerbate the onset and progression of reproductive disorders. This review provides a comprehensive overview of current research progress on primary cilia and their associated signaling pathways in reproductive physiology and diseases, with the aim of furnishing theoretical groundwork for the prevention and management of primary cilia-related structural and functional abnormalities contributing to reproductive system pathologies.
Collapse
Affiliation(s)
- Xiaochuan Long
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Li Chen
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Xinyao Xiao
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Xiayu Min
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Yao Wu
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| | - Zengming Yang
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
- Basic Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
| | - Xin Wen
- Clinical Veterinary Laboratory, College of Animal Science, Guizhou University, Guizhou, China
- Key Laboratory of Animal Genetic, Breeding and Reproduction in the plateau Mountainous Region, Ministry of Education, Guizhou University, Guizhou, China
| |
Collapse
|
3
|
Huang Q, Man Y, Li W, Zhou Q, Yuan S, Yap YT, Nayak N, Zhang L, Song S, Dunbar J, Leff T, Yang X, Zhang Z. Inactivation of Cops5 in Smooth Muscle Cells Causes Abnormal Reproductive Hormone Homeostasis and Development in Mice. Endocrinology 2023; 164:bqad062. [PMID: 37067025 PMCID: PMC10164660 DOI: 10.1210/endocr/bqad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
COP9 constitutive photomorphogenic homolog subunit 5 (COPS5), also known as Jab1 or CSN5, has been implicated in a wide variety of cellular and developmental processes. By analyzing male germ cell-specific COPS5-deficient mice, we have demonstrated previously that COPS5 is essential to maintain male germ survival and acrosome biogenesis. To further determine the role of Cops5 in peritubular myoid cells, a smooth muscle lineage surrounding seminiferous tubules, we herein derived mice conditionally deficient for the Cops5 gene in smooth muscle cells using transgenic Myh11-Cre mice. Although these conditional Cops5-deficient mice were born at the expected Mendelian ratio and appeared to be normal within the first week after birth, the homozygous mice started to show growth retardation after 1 week. These mice also exhibited a variety of developmental and reproductive disorders, including failure of development of reproductive organs in both males and females, spermatogenesis defects, and impaired skeletal development and immune functions. Furthermore, conditional Cops5-deficient mice revealed dramatic impairment of the endocrine system associated with testicular functions, including a marked reduction in serum levels of gonadotropins (follicle-stimulating hormone, luteinizing hormone), testosterone, insulin-like growth factor 1, and glucose, but not vasopressin. All homozygous mice died before age 67 days in the study. Collectively, our results provide novel evidence that Cops5 in smooth muscle lineage plays an essential role in postnatal development and reproductive functions.
Collapse
Affiliation(s)
- Qian Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Yonghong Man
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Qi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Shuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Neha Nayak
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Shizheng Song
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Joseph Dunbar
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, MI 48210, USA
| | - Xu Yang
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY 10021, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48210, USA
| |
Collapse
|
4
|
An interview with Dr. Peter Sutovsky. Biol Reprod 2022; 106:823-825. [DOI: 10.1093/biolre/ioac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
5
|
Kiyozumi D, Ikawa M. Proteolysis in Reproduction: Lessons From Gene-Modified Organism Studies. Front Endocrinol (Lausanne) 2022; 13:876370. [PMID: 35600599 PMCID: PMC9114714 DOI: 10.3389/fendo.2022.876370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
The physiological roles of proteolysis are not limited to degrading unnecessary proteins. Proteolysis plays pivotal roles in various biological processes through cleaving peptide bonds to activate and inactivate proteins including enzymes, transcription factors, and receptors. As a wide range of cellular processes is regulated by proteolysis, abnormalities or dysregulation of such proteolytic processes therefore often cause diseases. Recent genetic studies have clarified the inclusion of proteases and protease inhibitors in various reproductive processes such as development of gonads, generation and activation of gametes, and physical interaction between gametes in various species including yeast, animals, and plants. Such studies not only clarify proteolysis-related factors but the biological processes regulated by proteolysis for successful reproduction. Here the physiological roles of proteases and proteolysis in reproduction will be reviewed based on findings using gene-modified organisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
6
|
Israel S, Drexler HCA, Fuellen G, Boiani M. The COP9 signalosome subunit 3 is necessary for early embryo survival by way of a stable protein deposit in mouse oocytes. Mol Hum Reprod 2021; 27:gaab048. [PMID: 34264319 DOI: 10.1093/molehr/gaab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Investigations of genes required in early mammalian development are complicated by protein deposits of maternal products, which continue to operate after the gene locus has been disrupted. This leads to delayed phenotypic manifestations and underestimation of the number of genes known to be needed during the embryonic phase of cellular totipotency. Here we expose a critical role of the gene Cops3 by showing that it protects genome integrity during the 2-cell stage of mouse development, in contrast to the previous functional assignment at postimplantation. This new role is mediated by a substantial deposit of protein (94th percentile of the proteome), divided between an exceptionally stable cortical rim, which is prevalent in oocytes, and an ancillary deposit in the embryonic nuclei. Since protein abundance and stability defeat prospects of DNA- or RNA-based gene inactivation in oocytes, we harnessed a classical method next to an emerging method for protein inactivation: antigen masking (for functional inhibition) versus TRIM21-mediated proteasomal degradation, also known as 'Trim away' (for physical removal). Both resulted in 2-cell embryo lethality, unlike the embryos receiving anti-green fluorescent protein. Comparisons between COPS3 protein-targeted and non-targeted embryos revealed large-scale transcriptome differences, which were most evident for genes associated with biological functions critical for RNA metabolism and for the preservation of genome integrity. The gene expression abnormalities associated with COPS3 inactivation were confirmed in situ by the occurrence of DNA endoreduplication and DNA strand breaks in 2-cell embryos. These results recruit Cops3 to the small family of genes that are necessary for early embryo survival. Overall, assigning genes with roles in embryogenesis may be less safe than assumed, if the protein products of these genes accumulate in oocytes: the inactivation of a gene at the protein level can expose an earlier phenotype than that identified by genetic techniques such as conventional gene silencing.
Collapse
Affiliation(s)
- Steffen Israel
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Hannes C A Drexler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany
| | - Michele Boiani
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| |
Collapse
|
7
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Xia M, Xia J, Niu C, Zhong Y, Ge T, Ding Y, Zheng Y. Testis-expressed protein 33 is not essential for spermiogenesis and fertility in mice. Mol Med Rep 2021; 23:317. [PMID: 33760102 PMCID: PMC7974414 DOI: 10.3892/mmr.2021.11956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/11/2020] [Indexed: 11/06/2022] Open
Abstract
Gene expression analyses have revealed that there are >2,300 testis-enriched genes in mice, and gene knockout models have shown that a number of them are responsible for male fertility. However, the functions of numerous genes have yet to be clarified. The aim of the present study was to identify the expression pattern of testis-expressed protein 33 (TEX33) in mice and explore the role of TEX33 in male reproduction. Reverse transcription-polymerase chain reaction and western blot assays were used to investigate the mRNA and protein levels of TEX33 in mouse testes during the first wave of spermatogenesis. Immunofluorescence analysis was also performed to identify the cellular and structural localization of TEX33 protein in the testes. Tex33 knockout mice were generated by CRISPR/Cas9 gene-editing. Histological analysis with hematoxylin and eosin or periodic acid-Schiff (PAS) staining, computer-assisted sperm analysis (CASA) and fertility testing, were also carried out to evaluate the effect of TEX33 on mouse spermiogenesis and male reproduction. The results showed that Tex33 mRNA and protein were exclusively expressed in mouse testes and were first detected on postnatal days 21–28 (spermiogenesis phase); their expression then remained into adulthood. Immunofluorescence analysis revealed that TEX33 protein was located in the spermatids and sperm within the seminiferous tubules of the mouse testes, and exhibited specific localization to the acrosome, flagellum and manchette during spermiogenesis. These results suggested that TEX33 may play a role in mouse spermiogenesis. However, Tex33 knockout mice presented no detectable difference in testis-to-body weight ratios when compared with wild-type mice. PAS staining and CASA revealed that spermatogenesis and sperm quality were normal in mice lacking Tex33. In addition, fertility testing suggested that the Tex33 knockout mice had normal reproductive functions. In summary, the findings of the present study indicate that TEX33 is associated with spermiogenesis but is not essential for sperm development and male fertility.
Collapse
Affiliation(s)
- Mengmeng Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Xia
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Changmin Niu
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yanan Zhong
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Tingting Ge
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yue Ding
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
9
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
10
|
Zhao ZQ, Liu WL, Guo SB, Bai R, Yan JL. Mechanism of Methylprednisolone-Induced Primary Cilia Formation Disorder and Autophagy in Osteoblasts. Orthop Surg 2020; 12:645-652. [PMID: 32064763 PMCID: PMC7189053 DOI: 10.1111/os.12630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Objective To study the role of primary cilia formation disorder and osteoblasts autophagy in the pathogenesis of steroid‐induced avascular necrosis of the femoral head (SANFH). Methods Osteoblasts were isolated from rabbit bones and treated with 1 μM Methylprednisolone for 0, 12, 24, 48, and 72 h. The Beclin1, MAP1LC3, Atg‐5, Atg‐12, IFT20 and OFD1 mRNAs and proteins were detected by PCR and Western blotting, and their correlation was statistically analyzed. The lengths of osteoblast cilia were measured under a laser confocal microscope, and the autophagy flux was tracked by transfecting the osteoblasts with GFP‐RFP‐LC3 lentivirus. Results Methylprednisolone significantly upregulated Beclin1, MAP1LC3, Atg‐5, Atg‐12 and OFD1 mRNAs and proteins in a time‐dependent manner, and decreased that of IFT20 (P < 0.05). In addition, the autophagy flux in the osteoblasts also increased and the ciliary length decreased in a time‐dependent manner after Methylprednisolone treatment. The length of the cilia were 5.46 ± 0.11 um at 0 h, 4.08 ± 0.09 um at 12 h, 3.07 ± 0.07 um at 24 h, 2.31 ± 0.10 um at 48 h, and finally 1.15 ± 0.04 um at 72 h. Methylprednisolone treatment also affects primary cilium numbers in cultures, for 0 to 72 h. The autophagy regulatory genes, Beclin1, MAP1LC3, Atg‐5 and Atg‐12, were found to be negatively correlated with IFT20, with an average correlation coefficient of −0.81. A negative correlation was also found between OFD1 and IFT20, with an average correlation coefficient of −0.53. Conclusion Methylprednisolone inhibits primary cilia formation and promotes autophagy, which could be the pathological basis of SANFH. The exact regulatory mechanism needs to be further studied in vivo.
Collapse
Affiliation(s)
- Zhen-Qun Zhao
- Orthopedics Department, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Pediatric Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Wan-Lin Liu
- Pediatric Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Shi-Bing Guo
- Bone Tumor Department, Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Rui Bai
- Pediatric Orthopedics Department, Second Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Jing-Long Yan
- Orthopedics Department, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Zhang L, Zhen J, Huang Q, Liu H, Li W, Zhang S, Min J, Li Y, Shi L, Woods J, Chen X, Shi Y, Liu Y, Hess RA, Song S, Zhang Z. Mouse spermatogenesis-associated protein 1 (SPATA1), an IFT20 binding partner, is an acrosomal protein. Dev Dyn 2020; 249:543-555. [PMID: 31816150 DOI: 10.1002/dvdy.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Intraflagellar transport is a motor-driven trafficking system that is required for the formation of cilia. Intraflagellar transport protein 20 (IFT20) is a master regulator for the control of spermatogenesis and male fertility in mice. However, the mechanism of how IFT20 regulates spermatogenesis is unknown. RESULTS Spermatogenesis associated 1 (SPATA1) was identified to be a major potential binding partner of IFT20 by a yeast two-hybrid screening. The interaction between SPATA1 and IFT20 was examined by direct yeast two-hybrid, co-localization, and co-immunoprecipitation assays. SPATA1 is highly abundant in the mouse testis, and is also expressed in the heart and kidney. During the first wave of spermatogenesis, SPATA1 is detectable at postnatal day 24 and its expression is increased at day 30 and 35. Immunofluorescence staining of mouse testis sections and epididymal sperm demonstrated that SPATA1 is localized mainly in the acrosome of developing spermatids but not in epididymal sperm. IFT20 is also present in the acrosome area of round spermatids. In conditional Ift20 knockout mice, testicular expression level and acrosomal localization of SPATA1 are not changed. CONCLUSIONS SPATA1 is an IFT20 binding protein and may provide a docking site for IFT20 complex binding to the acrosome area.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jingkai Zhen
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qian Huang
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Hong Liu
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shiyang Zhang
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Jie Min
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yuhong Li
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - James Woods
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Xuequn Chen
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yuqin Shi
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yunhao Liu
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Shizhen Song
- Department of Occupational and Environmental Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|