1
|
Merlo B, Baldassarro VA, Flagelli A, Marcoccia R, Giraldi V, Focarete ML, Giacomini D, Iacono E. Peptide Mediated Adhesion to Beta-Lactam Ring of Equine Mesenchymal Stem Cells: A Pilot Study. Animals (Basel) 2022; 12:ani12060734. [PMID: 35327131 PMCID: PMC8944785 DOI: 10.3390/ani12060734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In recent years, stem cell therapy has emerged as a promising potential treatment for chronic wounds in both human and veterinary medicine. Particularly, mesenchymal stem cells (MSCs) may be an attractive therapeutic tool for regenerative medicine and tissue engineering because these cells play a critical role in wound repair and tissue regeneration due to their immunosuppressive properties and multipotency. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. This pilot study focuses on the adhesion ability of equine adult (adipose tissue) and fetal adnexa (Wharton’s jelly) derived MSCs mediated by GM18, an α4β1 integrin agonist, alone and combined with a biodegradable polymeric scaffold. Results show that a 24 h exposition to soluble GM18 affects equine MSCs adhesion ability with a donor-related variability and might suggest that WJ-MSCs more easily adhere to poly L-lactic acid (PLLA) nanofibers combined with GM18. These preliminary results need to be confirmed by further studies on the interactions between the different types of equine MSCs and GM18 incorporated PLLA scaffolds before drawing definitive conclusions on which cells and scaffolds could be successfully used for the treatment of decubitus ulcers. Abstract Regenerative medicine applied to skin lesions is a field in constant improvement. The use of biomaterials with integrin agonists could promote cell adhesion increasing tissue repair processes. The aim of this pilot study was to analyze the effect of an α4β1 integrin agonist on cell adhesion of equine adipose tissue (AT) and Wharton’s jelly (WJ) derived MSCs and to investigate their adhesion ability to GM18 incorporated poly L-lactic acid (PLLA) scaffolds. Adhesion assays were performed after culturing AT- and WJ-MSCs with GM18 coating or soluble GM18. Cell adhesion on GM18 containing PLLA scaffolds after 20 min co-incubation was assessed by HCS. Soluble GM18 affects the adhesion of equine AT- and WJ-MSCs, even if its effect is variable between donors. Adhesion to PLLA scaffolds containing GM18 is not significantly influenced by GM18 for AT-MSCs after 20 min or 24 h of culture and for WJ-MSCs after 20 min, but increased cell adhesion by 15% GM18 after 24 h. In conclusion, the α4β1 integrin agonist GM18 affects equine AT- and WJ-MSCs adhesion ability with a donor-related variability. These preliminary results represent a first step in the study of equine MSCs adhesion to PLLA scaffolds containing GM18, suggesting that WJ-MSCs might be more suitable than AT-MSCs. However, the results need to be confirmed by increasing the number of samples before drawing definite conclusions.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Correspondence:
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- IRET Foundation, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy
| | - Alessandra Flagelli
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| | - Romina Marcoccia
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| | - Valentina Giraldi
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Maria Letizia Focarete
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Daria Giacomini
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, BO, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy; (V.A.B.); (E.I.)
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra, 41/E, 40064 Ozzano Emilia, BO, Italy; (A.F.); (R.M.); (V.G.); (M.L.F.); (D.G.)
| |
Collapse
|
2
|
Klein C, Bruce P, Hammermueller J, Hayes T, Lillie B, Betteridge K. Transcriptional profiling of equine endometrium before, during and after capsule disintegration during normal pregnancy and after oxytocin-induced luteostasis in non-pregnant mares. PLoS One 2021; 16:e0257161. [PMID: 34614002 PMCID: PMC8494348 DOI: 10.1371/journal.pone.0257161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The current study used RNA sequencing to determine transcriptional profiles of equine endometrium collected 14, 22, and 28 days after ovulation from pregnant mares. In addition, the transcriptomes of endometrial samples obtained 20 days after ovulation from pregnant mares, and from non-pregnant mares which displayed and failed to display extended luteal function following the administration of oxytocin, were determined and compared in order to delineate genes whose expressions depend on the presence of the conceptus as opposed to elevated progesterone alone. A mere fifty-five transcripts were differentially expressed between samples collected from mares at Day 22 and Day 28 of pregnancy. This likely reflects the longer-term exposure to a relatively constant, progesterone-dominated environment with little change in factors secreted by the conceptus that would affect endometrial gene expression. The complement system was amongst the canonical pathways significantly enriched in transcripts differentially expressed between Day 14 and Day 22/28 of pregnancy. The expression of complement components 7 and 8 was confirmed using in situ hybridization. The expression of SERPING1, an inhibitor of the complement system, was confirmed by immunohistochemistry. In line with the resumed capacity of the endometrium to produce prostaglandin, prostaglandin G/H synthase 1 was expressed at higher levels at Days 22 and 28 than at Day 14 of pregnancy. Our data suggest that this up-regulation is enhanced by the presence of the conceptus; samples obtained from mares at Day 20 of pregnancy had significantly higher levels of prostaglandin G/H synthase 1 transcript than mares with extended luteal function.
Collapse
Affiliation(s)
- Claudia Klein
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Mariensee, Germany
| | - Phoebe Bruce
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jutta Hammermueller
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Tony Hayes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brandon Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Keith Betteridge
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Epigenetic Changes in Equine Embryos after Short-Term Storage at Different Temperatures. Animals (Basel) 2021; 11:ani11051325. [PMID: 34066466 PMCID: PMC8148113 DOI: 10.3390/ani11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In embryos subjected to assisted reproductive techniques, epigenetic modifications may occur that can influence embryonic development and establishment of pregnancy. In horses, the storage temperature during transport of fresh embryos before transfer is a major concern. The aim of this study was, therefore, to determine the effects of two storage temperatures (5 °C and 20 °C) on equine embryos, collected at day seven after ovulation and stored for 24 h, concerning morphological development, expression of candidate genes associated with embryo growth and development, maternal recognition of pregnancy, methylation, apoptosis and gene-specific and global DNA methylation. Temperature during storage did not affect embryo size. There were no changes in pH and lipid peroxidation of the medium irrespective of group. mRNA expression and gene-specific DNA methylation of genes related to growth and development, maternal recognition of pregnancy, DNA methylation and apoptosis in stored embryos (5 °C and 20 °C) were altered when compared to fresh embryos. Therefore, our study demonstrates for the first time the gene-specific and global DNA methylation status of fresh equine embryos collected on days seven and eight after ovulation. Short-term storage, regardless of temperature, may compromise embryo development after transfer. Abstract In embryos subjected to assisted reproductive techniques, epigenetic modifications may occur that can influence embryonic development and the establishment of pregnancy. In horses, the storage temperature during transport of fresh embryos before transfer is a major concern. The aim of this study was, therefore, to determine the effects of two storage temperatures (5 °C and 20 °C) on equine embryos, collected at day seven after ovulation and stored for 24 h, on: (i) morphological development; (ii) expression of candidate genes associated with embryo growth and development, maternal recognition of pregnancy, methylation and apoptosis, and (iii) gene-specific and global DNA methylation. Embryos (n = 80) were collected on day seven or day eight after ovulation and assigned to four groups: day seven control (E7F, fresh); day seven, stored for 24 h at 5 °C (E5C); day seven, stored for 24 h at 20 °C (E20C) and day eight control (E8F, fresh 24h time control). The embryos and the storage medium (EquiHold, holding medium, Minitube, Tiefenbach, Germany) from all treatment groups were analyzed for (i) medium temperature, pH, and lipid peroxidation (malondialdehyde; MDA) and (ii) embryo morphology, mRNA expression and DNA methylation (immunohistochemistry and gene-specific DNA methylation). The size of embryos stored at 5 °C was larger (p < 0.01), whereas embryos stored at 20 °C were smaller (p < 0.05) after 24 h. There were no changes in pH and MDA accumulation irrespective of the group. The mRNA expression of specific genes related to growth and development (POU5F1, SOX2, NANOG), maternal recognition of pregnancy (CYP19A1, PTGES2), DNA methylation (DNMT1, DNMT3A, DNMT3B) and apoptosis (BAX) in the E5C and E20C were either up or downregulated (p < 0.05) when compared to controls (E7F and E8F). The immune expression of 5mC and 5hmC was similar among treatment groups. Percentage of methylation in the CpG islands was lower in the specific genes ESR1, NANOG and DNMT1 (p < 0.001) in E20C embryos when compared to E8F (advanced embryo stage). Therefore, our study demonstrates for the first time the gene-specific and global DNA methylation status of fresh equine embryos collected on days seven and eight after ovulation. Although our results suggest some beneficial effects of storage at 20 °C in comparison to 5 °C, the short-term storage, regardless of temperature, modified gene expression and methylation of genes involved in embryo development and may compromise embryo viability and development after transfer.
Collapse
|