1
|
Cook LSJ, Briscoe AG, Fonseca VG, Boenigk J, Woodward G, Bass D. Microbial, holobiont, and Tree of Life eDNA/eRNA for enhanced ecological assessment. Trends Microbiol 2024:S0966-842X(24)00173-2. [PMID: 39164135 DOI: 10.1016/j.tim.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
Microbial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring. Incorporating holobiont and Tree of Life approaches into eNA analyses offers further holistic insight into the range of ecological interactions between microbes and other organisms, paving the way for advancing our understanding of, and ultimately manipulating ecosystem properties pertinent to environmental management, conservation, wildlife health, and food production.
Collapse
Affiliation(s)
- Lauren S J Cook
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Andrew G Briscoe
- Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; NatureMetrics, Surrey Research Park, Guildford GU2 7HJ, UK
| | - Vera G Fonseca
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, 45141 Essen, Universitätsstraße 5, Germany
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK; Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
2
|
Goray M, Taylor D, Bibbo E, Fantinato C, Fonneløp AE, Gill P, van Oorschot RAH. Emerging use of air eDNA and its application to forensic investigations - A review. Electrophoresis 2024; 45:916-932. [PMID: 38419135 DOI: 10.1002/elps.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Improvements in DNA technologies allow collection and profiling of trace samples, comprised of few cells, significantly expanding the types of exhibits targeted for DNA analysis to include touched surfaces. However, success rates from trace and touch DNA samples tend to be poorer compared to other biological materials such as blood. Simultaneously, there have been recent advances in the utility of environmental DNA collection (eDNA) in identification and tracking of different biological organisms and species from bacteria to naked mole rats in different environments, including, soil, ice, snow, air and aquatic. This paper examines the emerging methods and research into eDNA collection, with a special emphasis on the potential forensic applications of human DNA collection from air including challenges and further studies required to progress implementation.
Collapse
Affiliation(s)
- Mariya Goray
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Duncan Taylor
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Forensic Science SA, Adelaide, South Australia, Australia
| | - Emily Bibbo
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Chiara Fantinato
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane Elida Fonneløp
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Peter Gill
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Roland A H van Oorschot
- Victoria Police Forensic Services Department, Office of Chief Forensic Scientist, Macleod, Victoria, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
3
|
Morris R, Wang S. Building a pathway to One Health surveillance and response in Asian countries. SCIENCE IN ONE HEALTH 2024; 3:100067. [PMID: 39077383 PMCID: PMC11262298 DOI: 10.1016/j.soh.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 07/31/2024]
Abstract
To detect and respond to emerging diseases more effectively, an integrated surveillance strategy needs to be applied to both human and animal health. Current programs in Asian countries operate separately for the two sectors and are principally concerned with detection of events that represent a short-term disease threat. It is not realistic to either invest only in efforts to detect emerging diseases, or to rely solely on event-based surveillance. A comprehensive strategy is needed, concurrently investigating and managing endemic zoonoses, studying evolving diseases which change their character and importance due to influences such as demographic and climatic change, and enhancing understanding of factors which are likely to influence the emergence of new pathogens. This requires utilisation of additional investigation tools that have become available in recent years but are not yet being used to full effect. As yet there is no fully formed blueprint that can be applied in Asian countries. Hence a three-step pathway is proposed to move towards the goal of comprehensive One Health disease surveillance and response.
Collapse
Affiliation(s)
- Roger Morris
- Massey University EpiCentre and EpiSoft International Ltd, 76/100 Titoki Street, Masterton 5810, New Zealand
| | - Shiyong Wang
- Health, Nutrition and Population, World Bank Group, Washington, DC, USA
| |
Collapse
|
4
|
Scriver M, von Ammon U, Youngbull C, Pochon X, Stanton JAL, Gemmell NJ, Zaiko A. Drop it all: extraction-free detection of targeted marine species through optimized direct droplet digital PCR. PeerJ 2024; 12:e16969. [PMID: 38410796 PMCID: PMC10896080 DOI: 10.7717/peerj.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.
Collapse
Affiliation(s)
- Michelle Scriver
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Ulla von Ammon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
| | - Cody Youngbull
- Nucleic Sensing Systems, LCC, Saint Paul, Minnesota, United States
| | - Xavier Pochon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anastasija Zaiko
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Sequench Ltd, Nelson, New Zealand
| |
Collapse
|
5
|
McCauley M, Koda SA, Loesgen S, Duffy DJ. Multicellular species environmental DNA (eDNA) research constrained by overfocus on mitochondrial DNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169550. [PMID: 38142009 DOI: 10.1016/j.scitotenv.2023.169550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Environmental DNA (eDNA) is becoming an established tool across the biological and medical sciences. Despite the evident successes and wide adoption of eDNA approaches, some fundamental questions remain. For instance, there is almost a dogma in the field around the superiority of mitochondrial DNA for use in eDNA studies, however robust comparison with nuclear eDNA is widely lacking. The dominance of mitochondrial-based eDNA for animal and plant studies appears to be largely settled, despite a widespread lack of rigorous nuclear eDNA testing. Outside of the source organism the protections conferred on eDNA by the cell, mitochondrial and nuclear membranes are poorly understood, including the contribution of each to eDNA persistence and degradation. Utilizing shotgun sequencing to unbiasedly assess the level of nuclear and mitochondrial eDNA across samples, we reveal stark differences in nuclear versus mitochondrial eDNA persistence and abundance. By focusing too heavily on mitochondrial DNA alone the field is underutilizing eDNA's full potential.
Collapse
Affiliation(s)
- Mark McCauley
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Samantha A Koda
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA
| | - Sandra Loesgen
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Rishan ST, Kline RJ, Rahman MS. New prospects of environmental RNA metabarcoding research in biological diversity, ecotoxicological monitoring, and detection of COVID-19: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11406-11427. [PMID: 38183542 DOI: 10.1007/s11356-023-31776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Ecosystems are multifaceted and complex systems and understanding their composition is crucial for the implementation of efficient conservation and management. Conventional approaches to biodiversity surveys can have limitations in detecting the complete range of species present. In contrast, the study of environmental RNA (eRNA) offers a non-invasive and comprehensive method for monitoring and evaluating biodiversity across different ecosystems. Similar to eDNA, the examination of genetic material found in environmental samples can identify and measure many species, including ones that pose challenges to traditional methods. However, eRNA is degraded quickly and therefore shows promise in detection of living organisms closer to their actual location than eDNA methods. This method provides a comprehensive perspective on the well-being of ecosystems, facilitating the development of focused conservation approaches to save at-risk species and uphold ecological equilibrium. Furthermore, eRNA has been recognized as a valuable method for the identification of COVID-19 in the environment, besides its established uses in biodiversity protection. The SARS-CoV-2 virus, which is accountable for the worldwide epidemic, releases RNA particles into the surrounding environment via human waste, providing insights into the feasibility of detecting it in wastewater and other samples taken from the environment. In this article, we critically reviewed the recent research activities that use the eRNA method, including its utilization in biodiversity conservation, ecological surveillance, and ecotoxicological monitoring as well as its innovative potential in identifying COVID-19. Through this review, the reader can understand the recent developments, prospects, and challenges of eRNA research in ecosystem management and biodiversity conservation.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
7
|
Porco D, Purnomo CA, Glesener L, Proess R, Lippert S, Jans K, Colling G, Schneider S, Stassen R, Frantz AC. eDNA-based monitoring of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans with ddPCR in Luxembourg ponds: taking signals below the Limit of Detection (LOD) into account. BMC Ecol Evol 2024; 24:4. [PMID: 38178008 PMCID: PMC10768104 DOI: 10.1186/s12862-023-02189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are two pathogenic fungi that are a significant threat to amphibian communities worldwide. European populations are strongly impacted and the monitoring of the presence and spread of these pathogens is crucial for efficient decision-making in conservation management. RESULTS Here we proposed an environmental DNA (eDNA) monitoring of these two pathogenic agents through droplet digital PCR (ddPCR) based on water samples from 24 ponds in Luxembourg. In addition, amphibians were swabbed in eight of the targeted ponds in order to compare the two approaches at site-level detection. This study allowed the development of a new method taking below-Limit of Detection (LOD) results into account thanks to the statistical comparison of the frequencies of false positives in no template controls (NTC) and below-LOD results in technical replicates. In the eDNA-based approach, the use of this method led to an increase in Bd and Bsal detection of 28 and 50% respectively. In swabbing, this resulted in 8% more positive results for Bd. In some samples, the use of technical replicates allowed to recover above-LOD signals and increase Bd detection by 35 and 33% respectively for eDNA and swabbing, and Bsal detection by 25% for eDNA. CONCLUSIONS These results confirmed the usefulness of technical replicates to overcome high levels of stochasticity in very low concentration samples even for a highly sensitive technique such as ddPCR. In addition, it showed that below-LOD signals could be consistently recovered and the corresponding amplification events assigned either to positive or negative detection via the method developed here. This methodology might be particularly worth pursuing in pathogenic agents' detection as false negatives could have important adverse consequences. In total, 15 ponds were found positive for Bd and four for Bsal. This study reports the first record of Bsal in Luxembourg.
Collapse
Affiliation(s)
- David Porco
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg.
- Fondation Faune Flore, 24, rue Münster, Luxembourg, L-2160, Luxembourg.
| | - Chanistya Ayu Purnomo
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
| | - Liza Glesener
- Naturschutzsyndikat SICONA, 12, rue de Capellen, L-8393 Olm, Luxembourg, Luxembourg
| | - Roland Proess
- Umweltplanungsbüro Ecotop, 45, Schlassuecht, L-7435 Hollenfels, Luxembourg, Luxembourg
| | - Stéphanie Lippert
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
| | - Kevin Jans
- Natur&ëmwelt Fondation Hëllef fir d'Natur, 5, Route de Luxembourg, L-1899, Kockelscheuer, Luxembourg
| | - Guy Colling
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
- Fondation Faune Flore, 24, rue Münster, Luxembourg, L-2160, Luxembourg
| | - Simone Schneider
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
- Naturschutzsyndikat SICONA, 12, rue de Capellen, L-8393 Olm, Luxembourg, Luxembourg
| | - Raf Stassen
- Biota.lu, 9a, Rue Principale, L-6990, Hostert, Luxembourg
| | - Alain C Frantz
- Musée national d'histoire naturelle du Luxembourg, 25, rue Münster, Luxembourg, L-2160, Luxembourg
- Fondation Faune Flore, 24, rue Münster, Luxembourg, L-2160, Luxembourg
| |
Collapse
|
8
|
Jordan B. [DNA everywhere]. Med Sci (Paris) 2023; 39:777-779. [PMID: 37943139 DOI: 10.1051/medsci/2023111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Advanced analysis of environmental DNA for diversity monitoring using deep sequencing reveals the presence of human DNA in many samples connected to human activity.Moreover, this DNA is in relatively good condition and can be used for genetic survey of populations and even individuals. This opens many interesting scientific opportunities but also raises serious privacy issues.
Collapse
Affiliation(s)
- Bertrand Jordan
- Biologiste, généticien et immunologiste, Président d'Aprogène (Association pour la promotion de la Génomique), 13007 Marseille, France
| |
Collapse
|
9
|
Lo LSH, Liu X, Liu H, Shao M, Qian PY, Cheng J. Aquaculture bacterial pathogen database: Pathogen monitoring and screening in coastal waters using environmental DNA. WATER RESEARCH X 2023; 20:100194. [PMID: 37637860 PMCID: PMC10448209 DOI: 10.1016/j.wroa.2023.100194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Increasingly diverse pathogen occurrence in coastal and mariculture areas demands improved monitoring platforms to prevent economic and public health implications. Accessible databases with up-to-date knowledge and taxonomy are critical for detecting and screening environmental pathogens. Condensed from over 3000 relevant reports in peer reviewed articles, we constructed an aquaculture bacterial pathogen database that provides specialized curation of over 210 bacterial pathogenic species impacting aquaculture. Application of the aquaculture bacterial pathogen database to environmental DNA metabarcoding monitoring data in Hong Kong coastal and mariculture waters effectively characterized regional pathogen profiles over a one-year period and improved identification of new potential pathogen targets. The results highlighted the increase in potential pathogen abundance related to aquaculture activity and the associated inorganic nitrogen load, which was chiefly due to the enrichment of Vibrio during the atypical dry winter season. The value of the aquaculture bacterial pathogen database for empowering environmental DNA-based approaches in coastal marine pathogen surveillance benefits water resource management and aquaculture development on a global scale.
Collapse
Affiliation(s)
- Linus Shing Him Lo
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xuan Liu
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Minhua Shao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemical and Biological Engineering and Energy Institute, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Pei-Yuan Qian
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jinping Cheng
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
10
|
Streicher MB, Johnson SD, Willows‐Munro S. Effect of fuchsin fixation of pollen on DNA barcode recovery. Ecol Evol 2023; 13:e10475. [PMID: 37664513 PMCID: PMC10468989 DOI: 10.1002/ece3.10475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Pollen grains attached to insects are a valuable source of ecological information which can be used to reconstruct visitation networks. Morphological pollen identification relies on light microscopy with pollen usually stained and mounted in fuchsin jelly, which is also used to remove pollen from the bodies of insects. Pollen embedded in fuchsin jelly could potentially be used for DNA barcoding and metabarcoding (large-scale taxonomic identification of complex mixed samples) and thus provide additional information for pollination networks. In this study, we determine whether fuchsin-embedded pollen can be used for downstream molecular applications. We evaluate the quality of plant barcode (ITS) sequences amplified from DNA extracted from both fresh (untreated) pollen, and pollen which had been embedded in fuchsin jelly. We show that the addition of fuchsin to DNA extraction does not impact DNA barcode sequence quality during short-term storage. DNA extractions from both untreated and fuchsin-treated pollen produced reliable barcode sequences of high quality. Our findings suggest that pollen which has been collected, stained, and embedded in fuchsin jelly for preliminary microscopy work can be used within several days for downstream genetic analysis, though the quality of DNA from pollen stored in fuchsin jelly for extended periods is yet to be established.
Collapse
Affiliation(s)
- Melanie B. Streicher
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| | - Steven D. Johnson
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| | | |
Collapse
|
11
|
Whitmore L, McCauley M, Farrell JA, Stammnitz MR, Koda SA, Mashkour N, Summers V, Osborne T, Whilde J, Duffy DJ. Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA. Nat Ecol Evol 2023; 7:873-888. [PMID: 37188965 PMCID: PMC10250199 DOI: 10.1038/s41559-023-02056-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
The field of environmental DNA (eDNA) is advancing rapidly, yet human eDNA applications remain underutilized and underconsidered. Broader adoption of eDNA analysis will produce many well-recognized benefits for pathogen surveillance, biodiversity monitoring, endangered and invasive species detection, and population genetics. Here we show that deep-sequencing-based eDNA approaches capture genomic information from humans (Homo sapiens) just as readily as that from the intended target species. We term this phenomenon human genetic bycatch (HGB). Additionally, high-quality human eDNA could be intentionally recovered from environmental substrates (water, sand and air), holding promise for beneficial medical, forensic and environmental applications. However, this also raises ethical dilemmas, from consent, privacy and surveillance to data ownership, requiring further consideration and potentially novel regulation. We present evidence that human eDNA is readily detectable from 'wildlife' environmental samples as human genetic bycatch, demonstrate that identifiable human DNA can be intentionally recovered from human-focused environmental sampling and discuss the translational and ethical implications of such findings.
Collapse
Affiliation(s)
- Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Mark McCauley
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jessica A Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Maximilian R Stammnitz
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Samantha A Koda
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Narges Mashkour
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Victoria Summers
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Todd Osborne
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Jenny Whilde
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - David J Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA.
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Bass D, Christison KW, Stentiford GD, Cook LSJ, Hartikainen H. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends Parasitol 2023; 39:285-304. [PMID: 36759269 DOI: 10.1016/j.pt.2022.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023]
Abstract
Detection of pathogens, parasites, and other symbionts in environmental samples via eDNA/eRNA (collectively eNA) is an increasingly important source of information about their occurrence and activity. There is great potential for using such detections as a proxy for infection of host organisms in connected habitats, for pathogen monitoring and surveillance, and for early warning systems for disease. However, many factors require consideration, and appropriate methods developed and verified, in order that eNA detections can be reliably interpreted and adopted for surveillance and assessment of disease risk, and potentially inclusion in international standards, such as the World Organisation for Animal Health guidelines. Disease manifestation results from host-symbiont-environment interactions between hosts, demanding a multifactorial approach to interpretation of eNA signals.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
| | - Kevin W Christison
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa; Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012, South Africa
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
| | - Lauren S J Cook
- International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK; Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK
| | - Hanna Hartikainen
- University of Nottingham, School of Life Sciences, University Park, NG7 2RD, Nottingham, UK
| |
Collapse
|
13
|
Johnson MD, Freeland JR, Parducci L, Evans DM, Meyer RS, Molano-Flores B, Davis MA. Environmental DNA as an emerging tool in botanical research. AMERICAN JOURNAL OF BOTANY 2023; 110:e16120. [PMID: 36632660 DOI: 10.1002/ajb2.16120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Over the past quarter century, environmental DNA (eDNA) has been ascendant as a tool to detect, measure, and monitor biodiversity (species and communities), as a means of elucidating biological interaction networks, and as a window into understanding past patterns of biodiversity. However, only recently has the potential of eDNA been realized in the botanical world. Here we synthesize the state of eDNA applications in botanical systems with emphases on aquatic, ancient, contemporary sediment, and airborne systems, and focusing on both single-species approaches and multispecies community metabarcoding. Further, we describe how abiotic and biotic factors, taxonomic resolution, primer choice, spatiotemporal scales, and relative abundance influence the utilization and interpretation of airborne eDNA results. Lastly, we explore several areas and opportunities for further development of eDNA tools for plants, advancing our knowledge and understanding of the efficacy, utility, and cost-effectiveness, and ultimately facilitating increased adoption of eDNA analyses in botanical systems.
Collapse
Affiliation(s)
- Mark D Johnson
- Engineering Research and Development Center, Construction Engineering Research Laboratory (CERL), Champaign, IL, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Joanna R Freeland
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Laura Parducci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, SE-75236, Uppsala, Sweden
| | - Darren M Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Rachel S Meyer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Brenda Molano-Flores
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Mark A Davis
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
14
|
von Ammon U, Averink T, Kumanan K, Brosnahan CL, Pochon X, Hutson KS, Symonds JE. An Efficient Tetraplex Surveillance Tool for Salmonid Pathogens. Front Microbiol 2022; 13:885585. [PMID: 35531301 PMCID: PMC9069008 DOI: 10.3389/fmicb.2022.885585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Fish disease surveillance methods can be complicated and time consuming, which limits their value for timely intervention strategies on aquaculture farms. Novel molecular-based assays using droplet digital Polymerase Chain Reaction (ddPCR) can produce immediate results and enable high sample throughput with the ability to multiplex several targets using different fluorescent dyes. A ddPCR tetraplex assay was developed for priority salmon diseases for farmers in New Zealand including New Zealand Rickettsia-like organism 1 (NZ-RLO1), NZ-RLO2, Tenacibaculum maritimum, and Yersinia ruckeri. The limit of detection in singleplex and tetraplex assays was reached for most targets at 10−9 ng/μl with, respectively, NZ-RLO1 = 0.931 and 0.14 copies/μl, NZ-RLO2 = 0.162 and 0.21 copies/μl, T. maritimum = 0.345 and 0.93 copies/μl, while the limit of detection for Y. ruckeri was 10−8 with 1.0 copies/μl and 0.7 copies/μl. While specificity of primers was demonstrated in previous studies, we detected cross-reactivity of T. maritimum with some strains of Tenacibaculum dicentrarchi and Y. ruckeri with Serratia liquefaciens, respectively. The tetraplex assay was applied as part of a commercial fish disease surveillance program in New Zealand for 1 year to demonstrate the applicability of tetraplex tools for the salmonid aquaculture industry.
Collapse
Affiliation(s)
- Ulla von Ammon
- Aquaculture & Marine Biosecurity, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Ulla von Ammon,
| | - Tessa Averink
- Aquaculture & Marine Biosecurity, Cawthron Institute, Nelson, New Zealand
| | - Karthiga Kumanan
- Aquaculture & Marine Biosecurity, Cawthron Institute, Nelson, New Zealand
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Cara L. Brosnahan
- Institute of Marine Science, University of Auckland, Warkworth, New Zealand
| | - Xavier Pochon
- Aquaculture & Marine Biosecurity, Cawthron Institute, Nelson, New Zealand
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Kate S. Hutson
- Aquaculture & Marine Biosecurity, Cawthron Institute, Nelson, New Zealand
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jane E. Symonds
- Aquaculture & Marine Biosecurity, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
15
|
Farrell JA, Whitmore L, Mashkour N, Rollinson Ramia DR, Thomas RS, Eastman CB, Burkhalter B, Yetsko K, Mott C, Wood L, Zirkelbach B, Meers L, Kleinsasser P, Stock S, Libert E, Herren R, Eastman S, Crowder W, Bovery C, Anderson D, Godfrey D, Condron N, Duffy DJ. Detection and population genomics of sea turtle species via non-invasive environmental DNA analysis of nesting beach sand tracks and oceanic water. Mol Ecol Resour 2022; 22:2471-2493. [PMID: 35377560 DOI: 10.1111/1755-0998.13617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/12/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
Elusive aquatic wildlife, such as endangered sea turtles, are difficult to monitor and conserve. As novel molecular and genetic technologies develop, it is possible to adapt and optimize them for wildlife conservation. One such technology is environmental (e)DNA - the detection of DNA shed from organisms into their surrounding environments. We developed species-specific green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtle probe-based qPCR assays, which can detect and quantify sea turtle eDNA in controlled (captive tank water and sand samples) and free ranging (oceanic water samples and nesting beach sand) settings. eDNA detection complemented traditional in-water sea turtle monitoring by enabling detection even when turtles were not visually observed. Furthermore, we report that high throughput shotgun sequencing of eDNA sand samples enabled sea turtle population genetic studies and pathogen monitoring, demonstrating that non-invasive eDNA techniques are viable and efficient alternatives to biological sampling (e.g. biopsies and blood draws). Genetic information was obtained from sand many hours after nesting events, without having to observe or interact with the target individual. This greatly reduces the sampling stress experienced by nesting mothers and emerging hatchlings, and avoids sacrificing viable eggs for genetic analysis. The detection of pathogens from sand indicates significant potential for increased wildlife disease monitoring capacity and viral variant surveillance. Together, these results demonstrate the potential of eDNA approaches to ultimately help understand and conserve threatened species such as sea turtles.
Collapse
Affiliation(s)
- Jessica A Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Narges Mashkour
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Devon R Rollinson Ramia
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Rachel S Thomas
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine B Eastman
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Brooke Burkhalter
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,The Turtle Hospital, 2396 Overseas Highway, Marathon, FL, 33050, USA
| | - Kelsey Yetsko
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biological Sciences, Florida International University, Miami, FL, 33181, USA
| | - Cody Mott
- Inwater Research Group Inc, Jensen Beach, FL, 34957, USA
| | - Larry Wood
- Florida Hawksbill Project, National Save The Sea Turtle Foundation, Ft. Lauderdale, FL, 33308, USA
| | - Bette Zirkelbach
- The Turtle Hospital, 2396 Overseas Highway, Marathon, FL, 33050, USA
| | - Lucas Meers
- Mickler's Landing Turtle Patrol, Ponte Vedra Beach, FL, 32082, USA
| | - Pat Kleinsasser
- Crescent Beach Turtle Patrol, Crescent Beach, FL, 32080, USA
| | - Sharon Stock
- Flagler Turtle Patrol, Marineland Beach, FL, 32080, USA
| | | | | | - Scott Eastman
- Florida Department of Environmental Protection, St Augustine, FL, 32080, USA
| | | | | | | | - David Godfrey
- The Sea Turtle Conservancy, Gainesville, FL, 32609, USA
| | - Nancy Condron
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Mickler's Landing Turtle Patrol, Ponte Vedra Beach, FL, 32082, USA
| | - David J Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|