1
|
Jonkman AH, Warnaar RSP, Baccinelli W, Carbon NM, D'Cruz RF, Doorduin J, van Doorn JLM, Elshof J, Estrada-Petrocelli L, Graßhoff J, Heunks LMA, Koopman AA, Langer D, Moore CM, Nunez Silveira JM, Petersen E, Poddighe D, Ramsay M, Rodrigues A, Roesthuis LH, Rossel A, Torres A, Duiverman ML, Oppersma E. Analysis and applications of respiratory surface EMG: report of a round table meeting. Crit Care 2024; 28:2. [PMID: 38166968 PMCID: PMC10759550 DOI: 10.1186/s13054-023-04779-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.
Collapse
Affiliation(s)
- A H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R S P Warnaar
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - W Baccinelli
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - N M Carbon
- Department of Anesthesiology, Friedrich Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Erlangen, Germany
| | - R F D'Cruz
- Lane Fox Clinical Respiratory Physiology Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J L M van Doorn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Elshof
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - L Estrada-Petrocelli
- Facultad de Ingeniería and Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) - Sistema Nacional de Investigación (SNI), Universidad Latina de Panamá (ULATINA), Panama, Panama
| | - J Graßhoff
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - L M A Heunks
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A A Koopman
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - D Langer
- Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium
| | - C M Moore
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - J M Nunez Silveira
- Hospital Italiano de Buenos Aires, Unidad de Terapia Intensiva, Ciudad de Buenos Aires, Argentina
| | - E Petersen
- Technical University of Denmark (DTU), DTU Compute, 2800, Kgs. Lyngby, Denmark
| | - D Poddighe
- Research Group for Rehabilitation in Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000, Leuven, Belgium
| | - M Ramsay
- Lane Fox Clinical Respiratory Physiology Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
| | - L H Roesthuis
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Rossel
- Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - A Torres
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST) and Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain
| | - M L Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E Oppersma
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
2
|
Aljohani H, Russell D, Kim YI, Bassler J, Lowman J. The Neuromechanics of Inspiratory Muscles in Mechanical Ventilation Liberation Success and Failure. Cureus 2024; 16:e51570. [PMID: 38313921 PMCID: PMC10835747 DOI: 10.7759/cureus.51570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Assessing the neuromechanical coupling of inspiratory muscles during mechanical ventilation (MV) could reveal the physiological mechanism of MV failure. This study examined the respiratory neuromechanical characteristics between MV liberation success and failure. METHODS This is an observational prospective study that included patients during their ventilator liberation process. Assessment of surface electromyography (sEMG) of inspiratory muscles, including the diaphragm and extra-diaphragmatic (scalene, sternocleidomastoid, and parasternal) muscles, was performed 15 minutes after the initiation of spontaneous breathing trials. Neuromechanical efficiency of the diaphragm (NMEDia) and extra-diaphragmatic muscles (NMEExtra) were compared in patients who were successfully liberated from MV with those who failed MV liberation within 72 hours after extubation. RESULTS A total of 45 patients were enrolled and 28 were female (67%). The sample median age was 63 (IQR 47, 69) years old. One-third of patients failed MV liberation within 72 hours of their spontaneous breathing trials (SBTs). NMEDia was significantly lower in patients who failed MV liberation with a root mean square of (M 0.27), (IQR 0.21, 0.37) compared with (M 0.371), (IQR 0.3, 0.631) for the success group (p=0.0222). The area under the curve for NMEDia was lower in the failure group (M 0.270), (IQR 0.160, 0.370) and (M 0.485), (IQR 0.280, 0.683) for the success group (p=0.024). However, NMEExtra was not statistically different between the two groups. CONCLUSION Reduced NMEDia is a predictor of MV liberation failure. NMEExtra was not a major contributor to MV liberation outcomes. Further studies should assess the performance of inspiratory muscles NME indices to predict MV liberation outcomes.
Collapse
Affiliation(s)
- Hassan Aljohani
- Respiratory Therapy Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Derek Russell
- Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Young-Il Kim
- Preventive Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - John Bassler
- Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - John Lowman
- Physical Therapy, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
3
|
Roesthuis LH, van der Hoeven JG, van Hees HWH, Schellekens WJM, Doorduin J, Heunks LMA. Recruitment pattern of the diaphragm and extradiaphragmatic inspiratory muscles in response to different levels of pressure support. Ann Intensive Care 2020; 10:67. [PMID: 32472272 PMCID: PMC7256918 DOI: 10.1186/s13613-020-00684-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/16/2020] [Indexed: 01/16/2023] Open
Abstract
Background Inappropriate ventilator assist plays an important role in the development of diaphragm dysfunction. Ventilator under-assist may lead to muscle injury, while over-assist may result in muscle atrophy. This provides a good rationale to monitor respiratory drive in ventilated patients. Respiratory drive can be monitored by a nasogastric catheter, either with esophageal balloon to determine muscular pressure (gold standard) or with electrodes to measure electrical activity of the diaphragm. A disadvantage is that both techniques are invasive. Therefore, it is interesting to investigate the role of surrogate markers for respiratory dive, such as extradiaphragmatic inspiratory muscle activity. The aim of the current study was to investigate the effect of different inspiratory support levels on the recruitment pattern of extradiaphragmatic inspiratory muscles with respect to the diaphragm and to evaluate agreement between activity of extradiaphragmatic inspiratory muscles and the diaphragm. Methods Activity from the alae nasi, genioglossus, scalene, sternocleidomastoid and parasternal intercostals was recorded using surface electrodes. Electrical activity of the diaphragm was measured using a multi-electrode nasogastric catheter. Pressure support (PS) levels were reduced from 15 to 3 cmH2O every 5 min with steps of 3 cmH2O. The magnitude and timing of respiratory muscle activity were assessed. Results We included 17 ventilated patients. Diaphragm and extradiaphragmatic inspiratory muscle activity increased in response to lower PS levels (36 ± 6% increase for the diaphragm, 30 ± 6% parasternal intercostals, 41 ± 6% scalene, 40 ± 8% sternocleidomastoid, 43 ± 6% alae nasi and 30 ± 6% genioglossus). Changes in diaphragm activity correlated best with changes in alae nasi activity (r2 = 0.49; P < 0.001), while there was no correlation between diaphragm and sternocleidomastoid activity. The agreement between diaphragm and extradiaphragmatic inspiratory muscle activity was low due to a high individual variability. Onset of alae nasi activity preceded the onset of all other muscles. Conclusions Extradiaphragmatic inspiratory muscle activity increases in response to lower inspiratory support levels. However, there is a poor correlation and agreement with the change in diaphragm activity, limiting the use of surface electromyography (EMG) recordings of extradiaphragmatic inspiratory muscles as a surrogate for electrical activity of the diaphragm.
Collapse
Affiliation(s)
- L H Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H W H van Hees
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - J Doorduin
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L M A Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Postbox 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Laveneziana P, Albuquerque A, Aliverti A, Babb T, Barreiro E, Dres M, Dubé BP, Fauroux B, Gea J, Guenette JA, Hudson AL, Kabitz HJ, Laghi F, Langer D, Luo YM, Neder JA, O'Donnell D, Polkey MI, Rabinovich R, Rossi A, Series F, Similowski T, Spengler C, Vogiatzis I, Verges S. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J 2019; 53:13993003.01214-2018. [DOI: 10.1183/13993003.01214-2018] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
Assessing respiratory mechanics and muscle function is critical for both clinical practice and research purposes. Several methodological developments over the past two decades have enhanced our understanding of respiratory muscle function and responses to interventions across the spectrum of health and disease. They are especially useful in diagnosing, phenotyping and assessing treatment efficacy in patients with respiratory symptoms and neuromuscular diseases. Considerable research has been undertaken over the past 17 years, since the publication of the previous American Thoracic Society (ATS)/European Respiratory Society (ERS) statement on respiratory muscle testing in 2002. Key advances have been made in the field of mechanics of breathing, respiratory muscle neurophysiology (electromyography, electroencephalography and transcranial magnetic stimulation) and on respiratory muscle imaging (ultrasound, optoelectronic plethysmography and structured light plethysmography). Accordingly, this ERS task force reviewed the field of respiratory muscle testing in health and disease, with particular reference to data obtained since the previous ATS/ERS statement. It summarises the most recent scientific and methodological developments regarding respiratory mechanics and respiratory muscle assessment by addressing the validity, precision, reproducibility, prognostic value and responsiveness to interventions of various methods. A particular emphasis is placed on assessment during exercise, which is a useful condition to stress the respiratory system.
Collapse
|
5
|
Sekiguchi H, Tamaki Y, Kondo Y, Nakamura H, Hanashiro K, Yonemoto K, Moritani T, Kukita I. Surface electromyographic evaluation of the neuromuscular activation of the inspiratory muscles during progressively increased inspiratory flow under inspiratory-resistive loading. Physiol Int 2018; 105:86-99. [PMID: 29602291 DOI: 10.1556/2060.105.2018.1.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to evaluate neuromuscular activation in the scalene and sternocleidomastoid muscles using surface electromyography (EMG) during progressively increased inspiratory flow, produced by increasing the respiratory rate under inspiratory-resistive loading using a mask ventilator. Moreover, we attempted to identify the EMG inflection point (EMGIP) on the graph, at which the root mean square (RMS) of the EMG signal values of the inspiratory muscles against the inspiratory flow velocity acceleration abruptly increases, similarly to the EMG anaerobic threshold (EMGAT) reported during incremental-resistive loading in other skeletal muscles. We measured neuromuscular activation of healthy male subjects and found that the inspiratory flow velocity increased by approximately 1.6-fold. We successfully observed an increase in RMS that corresponded to inspiratory flow acceleration with ρ ≥ 0.7 (Spearman's rank correlation) in 17 of 27 subjects who completed the experimental protocol. To identify EMGIP, we analyzed the fitting to either a straight or non-straight line related to the increasing inspiratory flow and RMS using piecewise linear spline functions. As a result, EMGIP was identified in the scalene and sternocleidomastoid muscles of 17 subjects. We believe that the identification of EMGIP in this study infers the existence of EMGAT in inspiratory muscles. Application of surface EMG, followed by identification of EMGIP, for evaluating the neuromuscular activation of respiratory muscles may be allowed to estimate the signs of the respiratory failure, including labored respiration, objectively and non-invasively accompanied using accessory muscles in clinical respiratory care.
Collapse
Affiliation(s)
- H Sekiguchi
- 1 Department of Intensive Care, Tomishiro Central Hospital , Okinawa, Japan.,2 Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa, Japan
| | - Y Tamaki
- 2 Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa, Japan
| | - Y Kondo
- 2 Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa, Japan
| | - H Nakamura
- 3 Faculty of Biomedical Engineering, Department of Health-Promotion and Sports Science, Osaka Electro-Communication University , Osaka, Japan
| | - K Hanashiro
- 4 Department of Public Health and Hygiene, Graduate School of Medicine, University of the Ryukyus , Okinawa, Japan
| | - K Yonemoto
- 5 Faculty of Medicine, Advanced Medical Research Center, University of the Ryukyus , Okinawa, Japan
| | - T Moritani
- 6 Department of Applied Physiology, Institute for the Promotion of Common Education, Kyoto Sangyo University , Kyoto, Japan
| | - I Kukita
- 2 Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa, Japan
| |
Collapse
|
6
|
Oppersma E, Doorduin J, van der Heijden EHFM, van der Hoeven JG, Heunks LMA. Noninvasive ventilation and the upper airway: should we pay more attention? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:245. [PMID: 24314000 PMCID: PMC4059377 DOI: 10.1186/cc13141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In an effort to reduce the complications related to invasive ventilation, the use of noninvasive ventilation (NIV) has increased over the last years in patients with acute respiratory failure. However, failure rates for NIV remain high in specific patient categories. Several studies have identified factors that contribute to NIV failure, including low experience of the medical team and patient–ventilator asynchrony. An important difference between invasive ventilation and NIV is the role of the upper airway. During invasive ventilation the endotracheal tube bypasses the upper airway, but during NIV upper airway patency may play a role in the successful application of NIV. In response to positive pressure, upper airway patency may decrease and therefore impair minute ventilation. This paper aims to discuss the effect of positive pressure ventilation on upper airway patency and its possible clinical implications, and to stimulate research in this field.
Collapse
|
7
|
Schmidt M, Banzett RB, Raux M, Morélot-Panzini C, Dangers L, Similowski T, Demoule A. Unrecognized suffering in the ICU: addressing dyspnea in mechanically ventilated patients. Intensive Care Med 2013; 40:1-10. [PMID: 24132382 DOI: 10.1007/s00134-013-3117-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/15/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intensive care unit (ICU) patients are exposed to many sources of discomfort. Although increasing attention is being given to the detection and treatment of pain, very little is given to the detection and treatment of dyspnea (defined as "breathing discomfort"). METHODS Published information on the prevalence, mechanisms, and potential negative impacts of dyspnea in mechanically ventilated patients are reviewed. The most appropriate tools to detect and quantify dyspnea in ICU patients are also assessed. RESULTS/CONCLUSIONS Growing evidence suggests that dyspnea is a frequent issue in mechanically ventilated ICU patients, is highly associated with anxiety and pain, and is improved in many patients by altering the ventilator settings. CONCLUSIONS Future studies are needed to better delineate the impact of dyspnea in the ICU and to define diagnostic, monitoring and therapeutic protocols.
Collapse
|
8
|
Schmidt M, Kindler F, Gottfried SB, Raux M, Hug F, Similowski T, Demoule A. Dyspnea and surface inspiratory electromyograms in mechanically ventilated patients. Intensive Care Med 2013; 39:1368-76. [DOI: 10.1007/s00134-013-2910-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
9
|
Schmidt M, Raux M, Morelot-Panzini C, Similowski T, Demoule A. Dyspnée au cours de l’assistance ventilatoire mécanique. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-012-0534-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Doorduin J, van Hees HWH, van der Hoeven JG, Heunks LMA. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med 2012; 187:20-7. [PMID: 23103733 DOI: 10.1164/rccm.201206-1117cp] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Evidence has accumulated that respiratory muscle dysfunction develops in critically ill patients and contributes to prolonged weaning from mechanical ventilation. Accordingly, it seems highly appropriate to monitor the respiratory muscles in these patients. Today, we are only at the beginning of routinely monitoring respiratory muscle function. Indeed, most clinicians do not evaluate respiratory muscle function in critically ill patients at all. In our opinion, however, practical issues and the absence of sound scientific data for clinical benefit should not discourage clinicians from having a closer look at respiratory muscle function in critically ill patients. This perspective discusses the latest developments in the field of respiratory muscle monitoring and possible implications of monitoring respiratory muscle function in critically ill patients.
Collapse
Affiliation(s)
- Jonne Doorduin
- Department of Critical Care Medicine, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | |
Collapse
|