1
|
Zhao L, Lv S, Xiao Q, Zhang Y, Yi W, Bai Y, Lu K, Bermea KC, Semel J, Yang X, Wu J. Effects of positive end-expiratory pressure on regional cerebral oxygen saturation in elderly patients undergoing thoracic surgery during one-lung ventilation: a randomized crossover-controlled trial. BMC Pulm Med 2024; 24:120. [PMID: 38448844 PMCID: PMC10919006 DOI: 10.1186/s12890-024-02931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND A significant reduction in regional cerebral oxygen saturation (rSO2) is commonly observed during one-lung ventilation (OLV), while positive end-expiratory pressure (PEEP) can improve oxygenation. We compared the effects of three different PEEP levels on rSO2, pulmonary oxygenation, and hemodynamics during OLV. METHODS Forty-three elderly patients who underwent thoracoscopic lobectomy were randomly assigned to one of six PEEP combinations which used a crossover design of 3 levels of PEEP-0 cmH2O, 5 cmH2O, and 10 cmH2O. The primary endpoint was rSO2 in patients receiving OLV 20 min after adjusting the PEEP. The secondary outcomes included hemodynamic and respiratory variables. RESULTS After exclusion, thirty-six patients (36.11% female; age range: 60-76 year) were assigned to six groups (n = 6 in each group). The rSO2 was highest at OLV(0) than at OLV(10) (difference, 2.889%; [95% CI, 0.573 to 5.204%]; p = 0.008). Arterial oxygen partial pressure (PaO2) was lowest at OLV(0) compared with OLV(5) (difference, -62.639 mmHg; [95% CI, -106.170 to -19.108 mmHg]; p = 0.005) or OLV(10) (difference, -73.389 mmHg; [95% CI, -117.852 to -28.925 mmHg]; p = 0.001), while peak airway pressure (Ppeak) was lower at OLV(0) (difference, -4.222 mmHg; [95% CI, -5.140 to -3.304 mmHg]; p < 0.001) and OLV(5) (difference, -3.139 mmHg; [95% CI, -4.110 to -2.167 mmHg]; p < 0.001) than at OLV(10). CONCLUSIONS PEEP with 10 cmH2O makes rSO2 decrease compared with 0 cmH2O. Applying PEEP with 5 cmH2O during OLV in elderly patients can improve oxygenation and maintain high rSO2 levels, without significantly increasing peak airway pressure compared to not using PEEP. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2200060112 on 19 May 2022.
Collapse
Affiliation(s)
- Liying Zhao
- Department of Anesthesiology, Qilu Hospital of Shandong University, 107 #, Wenhua Xi Road, 250012, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Shuang Lv
- Department of Anesthesiology, Qilu Hospital of Shandong University, 107 #, Wenhua Xi Road, 250012, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Qian Xiao
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 445000, Enshi City, Hubei Province, China
| | - Yuan Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Wenbo Yi
- Department of Anesthesiology, Qilu Hospital of Shandong University, 107 #, Wenhua Xi Road, 250012, Jinan, Shandong, China
| | - Yu Bai
- School of Medicine, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Kangping Lu
- School of Medicine, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China
| | - Kevin C Bermea
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Jessica Semel
- Department of Biochemistry and Molecular Biology, Center for Research on Cardiac Intermediate Filaments, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, 107 #, Wenhua Xi Road, 250012, Jinan, Shandong, China.
- School of Medicine, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| | - Jianbo Wu
- School of Medicine, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
- Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 #, Jingshi Road, 250012, Jinan, Shandong, China.
| |
Collapse
|
2
|
Kobe J, Mishra N, Arya VK, Al-Moustadi W, Nates W, Kumar B. Cardiac output monitoring: Technology and choice. Ann Card Anaesth 2020; 22:6-17. [PMID: 30648673 PMCID: PMC6350438 DOI: 10.4103/aca.aca_41_18] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The accurate quantification of cardiac output (CO) is given vital importance in modern medical practice, especially in high-risk surgical and critically ill patients. CO monitoring together with perioperative protocols to guide intravenous fluid therapy and inotropic support with the aim of improving CO and oxygen delivery has shown to improve perioperative outcomes in high-risk surgical patients. Understanding of the underlying principles of CO measuring devices helps in knowing the limitations of their use and allows more effective and safer utilization. At present, no single CO monitoring device can meet all the clinical requirements considering the limitations of diverse CO monitoring techniques. The evidence for the minimally invasive CO monitoring is conflicting; however, different CO monitoring devices may be used during the clinical course of patients as an integrated approach based on their invasiveness and the need for additional hemodynamic data. These devices add numerical trend information for anesthesiologists and intensivists to use in determining the most appropriate management of their patients and at present, do not completely prohibit but do increasingly limit the use of the pulmonary artery catheter.
Collapse
Affiliation(s)
- Jeff Kobe
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Nitasha Mishra
- Department of Anesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra K Arya
- Department of Anesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Waiel Al-Moustadi
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Wayne Nates
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Bhupesh Kumar
- Department of Anesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Lema Tome M, De la Gala FA, Piñeiro P, Olmedilla L, Garutti I. Behavior of stroke volume variation in hemodynamic stable patients during thoracic surgery with one-lung ventilation periods. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2018. [PMID: 29477233 PMCID: PMC9391809 DOI: 10.1016/j.bjane.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction In last few years, emphasis was placed in goal-directed therapy in order to optimize patient's hemodynamic status and improve their prognosis. Parameters based on the interaction between heart and lungs have been questioned in situations like low tidal volume and open chest surgery. The goal of the study was to analyze the changes that one-lung ventilation can produce over stroke volume variation and to assess the possible impact of airway pressures and lung compliance over stroke volume variation. Methods Prospective observational study, 112 patients undergoing lung resection surgery with one-lung ventilation periods were included. Intravenous fluid therapy with crystalloids was set at 2 mL.g−1. Hypotension episodes were treated with vasoconstrictive drugs. Two-lung Ventilation was implemented with a TV of 8 mL.g−1 and one-lung ventilation was managed with a TV of 6 mL.g−1. Invasive blood pressure was monitored. We recorded the following cardiorespiratory values: heart rate, mean arterial pressure, cardiac index, stroke volume index, airway peak pressure, airway plateau pressure and static lung compliance at 3 different times during surgery: immediately after lung collapse, 30 min after initiating one-lung ventilation and after restoration of two-lung ventilation. Results Stroke volume variation values were influenced by lung collapse (before lung collapse 14.6 (DS) vs. OLV 9.9% (DS), p < 0.0001); or after restoring two-lung ventilation (11.01 (DS), p < 0.0001). During two-lung Ventilation there was a significant correlation between airway pressures and stroke volume variation, however this correlation lacks during one-lung ventilation. Conclusion The decrease of stroke volume variation values during one-lung ventilation with protective ventilatory strategies advices not to use the same threshold values to determine fluid responsiveness.
Collapse
|
5
|
Lambertz R, Drinhaus H, Schedler D, Bludau M, Schröder W, Annecke T. [Perioperative management of transthoracic oesophagectomies : Fundamentals of interdisciplinary care and new approaches to accelerated recovery after surgery]. Anaesthesist 2017; 65:458-66. [PMID: 27245922 DOI: 10.1007/s00101-016-0179-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Locally advanced carcinomas of the oesophagus require multimodal treatment. The core element of curative therapy is transthoracic en bloc oesophagectomy, which is the standard procedure carried out in most specialized centres. Reconstruction of intestinal continuity is usually achieved with a gastric sleeve, which is anastomosed either intrathoracically or cervically to the remaining oesophagus. This thoraco-abdominal operation is associated with significant postoperative morbidity, not least because of a vast array of pre-existing illnesses in the surgical patient. For an optimal outcome, the careful interdisciplinary selection of patients, preoperative risk evaluation and conditioning are essential. The caseload of the centres correlates inversely with the complication rate. The leading surgical complication is anastomotic leakage, which is diagnosed endoscopically and usually treated with the aid of endoscopic procedures. Pulmonary infections are the most frequent non-surgical complication. Thoracic epidural anaesthesia and perfusion-orientated fluid management can reduce the rate of pulmonary complications. Patients are ventilated protecting the lungs and are extubated as early as possible. Oesophagectomies should only be performed in high-volume centres with the close cooperation of surgeons and anaesthesia/intensive care specialists. Programmes of enhanced recovery after surgery (ERAS) hold further potential for the patient's quicker postoperative recovery. In this review article the fundamental aspects of the interdisciplinary perioperative management of transthoracic oesophagectomy are described.
Collapse
Affiliation(s)
- R Lambertz
- Klinik für Allgemein-, Viszeral- und Tumorchirurgie, Uniklinik Köln, Köln, Deutschland
| | - H Drinhaus
- Klinik für Anästhesiologie und Operative Intensivmedizin, Uniklinik Köln, Kerpenerstr. 62, 50937, Köln, Deutschland
| | - D Schedler
- Klinik für Anästhesiologie und Operative Intensivmedizin, Uniklinik Köln, Kerpenerstr. 62, 50937, Köln, Deutschland
| | - M Bludau
- Klinik für Allgemein-, Viszeral- und Tumorchirurgie, Uniklinik Köln, Köln, Deutschland
| | - W Schröder
- Klinik für Allgemein-, Viszeral- und Tumorchirurgie, Uniklinik Köln, Köln, Deutschland
| | - T Annecke
- Klinik für Anästhesiologie und Operative Intensivmedizin, Uniklinik Köln, Kerpenerstr. 62, 50937, Köln, Deutschland.
| |
Collapse
|
8
|
Haas SA, Trepte CJC, Nitzschke R, Jürgens TP, Goepfert MS, Goetz AE, Reuter DA. An assessment of global end-diastolic volume and extravascular lung water index during one-lung ventilation: is transpulmonary thermodilution usable? Anesth Analg 2013; 117:83-90. [PMID: 23592603 DOI: 10.1213/ane.0b013e31828f2c39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The thermodilution curve assessed by transpulmonary thermodilution is the basis for calculation of global end-diastolic volume index (GEDI) and extravascular lung water index (EVLWI). Until now, it was unclear whether the method is affected by 1-lung ventilation. Therefore, aim of our study was to evaluate the impact of 1-lung ventilation on the thermodilution curve and assessment of GEDI and EVLWI. METHODS In 23 pigs, mean transit time, down slope time, and difference in blood temperature (ΔTb) were assessed by transpulmonary thermodilution. "Gold standard" cardiac output was measured by pulmonary artery flowprobe (PAFP) and used for GEDIPAFP and EVLWIPAFP calculations. Measurements were performed during normovolemia during double-lung ventilation (M1), 15 minutes after 1-lung ventilation (M2) and during hypovolemia (blood withdrawal 20 mL/kg) during double-lung ventilation (M3) and again 15 minutes after 1-lung ventilation (M4). RESULTS Configuration of the thermodilution curve was significantly affected by 1-lung ventilation demonstrated by an increase in ΔTb and a decrease in mean transit time and down slope time (all P < 0.04) during normovolemia and hypovolemia. GEDIPAFP was lower after 1-lung ventilation during normovolemia (M1: 459.9 ± 67.5 mL/m(2); M2: 397.0 ± 54.8 mL/m(2); P = 0.001) and hypovolemia (M3: 300.6 ± 40.9 mL/m(2); M4: 275.2 ± 37.6 mL/m(2); P = 0.03). EVLWIPAFP also decreased after 1-lung ventilation in normovolemia (M1: 9.0 [7.3, 10.1] mL/kg; M2: 7.4 [5.8, 8.3] mL/kg; P = 0.01) and hypovolemia (M3: 7.4 [6.3, 9.7] mL/kg; M4: 5.8 [5.2, 7.4]) mL/kg; P = 0.0009). CONCLUSION Configuration of the thermodilution curve and therefore assessment of GEDI and EVLWI are significantly affected by 1-lung ventilation.
Collapse
Affiliation(s)
- Sebastian A Haas
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|