1
|
Yue L, Liu X, Wu C, Lai J, Wang J, Zhong H, Chen F. Toll-like receptor 4 promotes the inflammatory response in septic acute kidney injury by promoting p38 mitogen-activated protein kinase phosphorylation. J Bioenerg Biomembr 2023; 55:353-363. [PMID: 37605037 PMCID: PMC10556113 DOI: 10.1007/s10863-023-09972-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/16/2023] [Indexed: 08/23/2023]
Abstract
Septic acute kidney injury (AKI) contributes to the mortality and morbidity of sepsis patients. Toll-like Receptor 4 (TLR4) has prominent roles in septic AKI. This study investigated the functions of TLR4 in septic AKI. A septic AKI mouse model was established by cecal ligation and puncture surgery. Mouse kidney function and kidney tissue lesion were examined using corresponding kits and H&E staining. The in vitro cell model of septic AKI was established by lipopolysaccharide induction. Cell viability, inflammatory factor (TNF-α, IL-6, IL-4, IL-1β, IL-18) levels, pyroptotic cell number changes, lactate dehydrogenase (LDH) activity, myeloperoxidase (MOP) concentration, and levels of pyroptosis-associated protein and MyD88, TRIF and p38 MAPK phosphorylation were determined by MTT, ELISA, FAM-FLICA Caspase-1 Detection kit, other corresponding kits, and Western blot. TLR4 was highly expressed in septic AKI mouse kidney tissues and human septic AKI cells. TLR4 knockdown alleviated kidney injury, increased cell viability, and reduced LDH activity and MPO concentration. TLR4 knockdown reduced cell pyroptosis by repressing p38 MAPK phosphorylation through MyD88/TRIF, suppressed pro-inflammatory factor (TNF-α, IL-6, IL-4, IL-1β, IL-18) levels, promoted anti-inflammatory factor (IL-4) level, and reduced inflammatory response, thus playing a protective role in septic AKI. Briefly, TLR4 promoted the inflammatory response in septic AKI by promoting p38 MAPK phosphorylation through MyD88/TRIF.
Collapse
Affiliation(s)
- Linlin Yue
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Xin Liu
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Chaoyu Wu
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Jiying Lai
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Jie Wang
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Huifeng Zhong
- Department of Intensive care unit, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China
| | - Feng Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Gannan Medical University, 128 Jinling Avenue, Zhanggong District, Ganzhou, Jiangxi Province, 341000, China.
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of GanNan Medical University, Ganzhou, Jiangxi Province, 341000, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi Province, 341000, China.
| |
Collapse
|
2
|
Guo W, Gong Q, Zong X, Wu D, Li Y, Xiao H, Song J, Zhang S, Fu S, Feng Z, Zhuang L. GPR109A controls neutrophil extracellular traps formation and improve early sepsis by regulating ROS/PAD4/Cit-H3 signal axis. Exp Hematol Oncol 2023; 12:15. [PMID: 36721229 PMCID: PMC9887879 DOI: 10.1186/s40164-023-00376-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) is the key means for neutrophils to resist bacterial invasion. Sepsis is a systemic inflammatory response syndrome caused by infection. METHODS In our study, qRT-PCR was used to detect the gene expression in neutrophils, Western blot was used to detect the protein expression in mouse tissues and neutrophils, flow cytometry was used to detect the purity of neutrophils in the whole blood and immunofluorescence was used to detect the NETs formation. RESULTS In this study, we analyzed the NETs formation in the blood of patients with sepsis. The results showed that a large number of NETs appeared. And the expression of GPR109A in neutrophils of patients with sepsis was significantly up regulated. Then we collected neutrophils from WT mice and GPR109A-/- mice and found that GPR109A knockout could significantly inhibit the early NETs formation of neutrophils. The results also showed that knockout of GPR109A or inhibition of the NETs formation could increase the inflammatory response of liver, spleen, lung and kidney in mice, thus affecting the disease process of sepsis. Then we observed the death of mice in 16 days. The results showed that inhibiting the NETs formation could significantly affect the early mortality of mice, while knocking out GPR109A could directly affect the mortality of the whole period. CONCLUSIONS This study confirmed the regulatory effect of GPR109A on early NETs formation for the first time, and provided a new target for the treatment of sepsis.
Collapse
Affiliation(s)
- Wenjin Guo
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Qian Gong
- grid.13402.340000 0004 1759 700XCollege of Animal Sciences, Zhejiang University, Hangzhou, 310030 China
| | - Xiaofeng Zong
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Dianjun Wu
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Yuhang Li
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Huijie Xiao
- grid.415954.80000 0004 1771 3349Department of Gastrointestinal and Colorectal Surgery, China-Japan Union, Hospital of Jilin University, Changchun, 130033 China
| | - Jie Song
- grid.414252.40000 0004 1761 8894Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,grid.414252.40000 0004 1761 8894Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China ,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Sheng Zhang
- grid.414252.40000 0004 1761 8894Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,grid.414252.40000 0004 1761 8894Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China ,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Shoupeng Fu
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Zhichun Feng
- grid.414252.40000 0004 1761 8894Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,grid.414252.40000 0004 1761 8894Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China ,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Lu Zhuang
- grid.414252.40000 0004 1761 8894Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,grid.414252.40000 0004 1761 8894Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China ,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| |
Collapse
|
3
|
Wang X, Simayi A, Fu J, Zhao X, Xu G. Resveratrol mediates the miR-149/HMGB1 axis and regulates the ferroptosis pathway to protect myocardium in endotoxemia mice. Am J Physiol Endocrinol Metab 2022; 323:E21-E32. [PMID: 35532075 DOI: 10.1152/ajpendo.00227.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endotoxemia is a common complication often used to model the acute inflammatory response associated with endotoxemia. Resveratrol has been shown to exert a wide range of therapeutic effects due to its anti-inflammatory and antioxidant properties. This study explored the effect of resveratrol on endotoxemia. Lipopolysaccharide (LPS)-induced endotoxemia mouse model and endotoxemia myocardial injury cell model were established and treated with resveratrol. Cardiomyocyte activity, lactate dehydrogenase (LDH) content in cell supernatant, glutathione (GSH) consumption, lipid reactive oxygen species (ROS) production, and iron accumulation were detected. Cardiac function indexes [left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), ejection fraction (EF)%, and fractional shortening (FS)%] were measured using echocardiography. The creatine kinase muscle/brain isoenzyme (CK-MB) and CK levels in the serum were detected using an automatic biochemical analyzer. The downstream target of miR-149 was predicted, and the binding relationship between miR-149 and high mobility group box 1 (HMGB1) was verified using a dual-luciferase assay. miR-149 and HMGB1 expressions were detected using RT-qPCR and Western blot. After resveratrol treatment, cardiomyocyte viability and GSH were increased, and LDH secretion, lipid ROS production, lipid peroxidation, and iron accumulation were decreased, and cardiac function and cardiomyocyte injury were improved. Resveratrol improved LPS-induced endotoxemia cardiomyocyte injury by upregulating miR-149 and inhibiting ferroptosis. Resveratrol inhibited HMGB1 expression by upregulating miR-149. HMGB1 upregulation reversed the inhibitory effect of miR-149 on LPS-induced ferroptosis in cardiomyocytes. Resveratrol upregulated miR-149 and downregulated HMGB1 to inhibit ferroptosis and improve myocardial injury in mice with LPS-induced endotoxemia. Collectively, resveratrol upregulated miR-149, downregulated HMGB1, and inhibited the ferroptosis pathway, thus improving cardiomyocyte injury in LPS-induced endotoxemia.NEW & NOTEWORTHY Sepsis is an unusual systemic reaction. Resveratrol is involved in sepsis treatment. This study explored the mechanism of resveratrol in sepsis by regulating the miR-149/HMGB1 axis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Alimujiang Simayi
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Juan Fu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Xuan Zhao
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Guiping Xu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| |
Collapse
|
4
|
Changes in immune function and immunomodulatory treatments of septic patients. Clin Immunol 2022; 239:109040. [DOI: 10.1016/j.clim.2022.109040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 12/25/2022]
|
5
|
Belaunzaran M, Raslan S, Ali A, Newsome K, McKenney M, Elkbuli A. Utilization and Efficacy of Resuscitation Endpoints in Trauma and Burn Patients: A Review Article. Am Surg 2021; 88:10-19. [PMID: 34761698 DOI: 10.1177/00031348211060424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Shock is a sequelae in trauma and burn patients that substantially increases the risk for morbidity and mortality. The use of resuscitation endpoints allows for improved management of these patients, with the potential to prevent further morbidity/mortality. We conducted a review of the current literature on the efficacy of hemodynamic, metabolic, and regional resuscitation endpoints for use in trauma and burn patients. Hemodynamic endpoints included mean arterial pressure (MAP), heart rate (HR), urinary output (UO), compensatory reserve index (CRI), intrathoracic blood volume, and stroke volume variation (SVV). Metabolic endpoints measure cellular responses to decreased oxygen delivery and include serum lactic acid (LA), base deficit (BD), bicarbonate, anion gap, apparent strong ion difference, and serum pH. Mean arterial pressure, HR, UO, and LA are the most established markers of trauma and burn resuscitation. The evidence suggests LA is a superior metabolic endpoint marker. Newer resuscitation endpoint technologies such as point-of-care ultrasound (PoCUS), thromboelastography (TEG), and rotational thromboelastometry (ROTEM) may improve patient outcomes; however, additional research is needed to establish the efficacy in trauma and burn patients. The endpoints discussed have situational strengths and weaknesses and no single universal resuscitation endpoint has yet emerged. This review may increase knowledge and aid in guideline development. We recommend clinicians continue to integrate multiple endpoints with emphasis on MAP, HR, UO, LA, and BD. Future investigation should aim to standardize endpoints for each clinical presentation. The search for universal and novel resuscitation parameters in trauma and burns should also continue.
Collapse
Affiliation(s)
- Miguel Belaunzaran
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, FL, USA
| | - Shahm Raslan
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, FL, USA
| | - Aleeza Ali
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, FL, USA
| | - Kevin Newsome
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, FL, USA
| | - Mark McKenney
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, FL, USA.,University of South Florida, Tampa, FL, USA
| | - Adel Elkbuli
- Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, FL, USA
| |
Collapse
|
6
|
Ding YH, Miao RX, Zhang Q. Hypaphorine exerts anti-inflammatory effects in sepsis induced acute lung injury via modulating DUSP1/p38/JNK pathway. Kaohsiung J Med Sci 2021; 37:883-893. [PMID: 34250720 DOI: 10.1002/kjm2.12418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome attributed to infection, while sepsis-induced acute lung injury (ALI) has high morbidity and mortality. Here, we aimed to explore the specific mechanism of hypaphorine's anti-inflammatory effects in ALI. Lipopolysaccharide (LPS) was adopted to construct ALI model both in vivo and in vitro. BEAS-2B cell viability and apoptosis was testified by the MTT assay and flow cytometry. Reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to examine the expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-18), and Western blot was adopted to examine the expression of the apoptosis-related proteins (Bax, Bcl2, and Caspase3) and the DUSP1/p38/JNK signaling pathway. At the same time, lung injury score, lactate dehydrogenase (LDH) and myeloperoxidase (MPO) activity were monitored. The dry/wet weight method was used to examine lung edema, and the total protein content in BALF was determined to test pulmonary vascular permeability. As the data suggested, hypaphorine inhibited the LPS-mediated apoptosis of alveolar epithelial cells. What is more, hypaphorine attenuated the expression of inflammatory factors (IL-1β, IL-6, TNF-α, and IL-18) and inactivated the p38/JNK signaling pathway through upregulating DUSP1 in a dose-dependent manner. Meanwhile, DUSP1 knockdown weakened the anti-inflammatory effect of hypaphorine on LPS-mediated lung injury. Furthermore, hypaphorine also relieved LPS induced ALI in rats with anti-inflammatory effects. Taken together, hypaphorine prevented LPS-mediated ALI and proinflammatory response via inactivating the p38/JNK signaling pathway by upregulating DUSP1.
Collapse
Affiliation(s)
- Yu-Hua Ding
- Department of Pharmacy, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Run-Xin Miao
- Department of Emergency, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Qiang Zhang
- Department of Pharmacy, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| |
Collapse
|
7
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.3389/fcell.2021.664896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-Long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-Xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Donovan K, Shah A, Day J, McKechnie SR. Adjunctive treatments for the management of septic shock - a narrative review of the current evidence. Anaesthesia 2021; 76:1245-1258. [PMID: 33421029 DOI: 10.1111/anae.15369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Septic shock is a leading cause of death and morbidity worldwide. The cornerstones of management include prompt identification of sepsis, early initiation of antibiotic therapy, adequate fluid resuscitation and organ support. Over the past two decades, there have been considerable improvements in our understanding of the pathophysiology of sepsis and the host response, including regulation of inflammation, endothelial disruption and impaired immunity. This has offered opportunities for innovative adjunctive treatments such as vitamin C, corticosteroids and beta-blockers. Some of these approaches have shown promising results in early phase trials in humans, while others, such as corticosteroids, have been tested in large, international, multicentre randomised controlled trials. Contemporary guidelines make a weak recommendation for the use of corticosteroids to reduce mortality in sepsis and septic shock. Vitamin C, despite showing initial promise in observational studies, has so far not been shown to be clinically effective in randomised trials. Beta-blocker therapy may have beneficial cardiac and non-cardiac effects in septic shock, but there is currently insufficient evidence to recommend their use for this condition. The results of ongoing randomised trials are awaited. Crucial to reducing heterogeneity in the trials of new sepsis treatments will be the concept of enrichment, which refers to the purposive selection of patients with clinical and biological characteristics that are likely to be responsive to the intervention being tested.
Collapse
Affiliation(s)
- K Donovan
- Adult Intensive Care Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Adult Intensive Care Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - A Shah
- Adult Intensive Care Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - J Day
- Adult Intensive Care Unit and Nuffield Department of Anaesthesia, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - S R McKechnie
- Adult Intensive Care Unit and Nuffield Department of Anaesthesia, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
9
|
Bryden DC, Pittard AJ. 'Plus ça change' for the future of sepsis? Br J Anaesth 2019; 123:543-545. [PMID: 31542163 DOI: 10.1016/j.bja.2019.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Daniele C Bryden
- Critical Care Department, Sheffield Teaching Hospitals, Sheffield, UK.
| | - Alison J Pittard
- Department of Anaesthesia and Intensive Care Medicine, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
10
|
Hemmings HC, Mahajan R, Webster NR. The 2016 BJA/PGA special issue: a selection of six educational reviews. Br J Anaesth 2018; 117:i1-i2. [PMID: 27940451 DOI: 10.1093/bja/aew388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- H C Hemmings
- Editor, British Journal of Anaesthesia, 2016 BJA/PGA Supplement, Department of Anaesthesia and Intensive Care, New York, NY, USA
| | - R Mahajan
- Editor-in-Chief, British Journal of Anaesthesia, Department of Anaesthesia and Intensive Care, The University of Nottingham, Nottingham, UK
| | - N R Webster
- Chairman of the Editorial Board, British Journal of Anaesthesia, Department of Anaesthesia and Intensive Care, University of Aberdeen, Aberdeen, UK
| |
Collapse
|