1
|
Su Y, Li Y, Yang W, Luo X, Chen L. Optimized machine learning model for predicting unplanned reoperation after rectal cancer anterior resection. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108703. [PMID: 39326305 DOI: 10.1016/j.ejso.2024.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Unplanned reoperation (URO) after surgery adversely affects the quality of life and prognosis of patients undergoing anterior resection for rectal cancer. This study aims to meet the urgent need for reliable predictive tools by developing an optimized machine learning model to estimate the risk of URO following anterior resection in rectal cancer patients. METHODS This retrospective study collected multidimensional data from patients who underwent anterior resection for rectal cancer at Tongji Hospital of Huazhong University of Science and Technology from January 2012 to December 2022. Feature selection was conducted using both least absolute shrinkage and selection operator (LASSO) regression and the Boruta algorithm. Multiple machine learning models were developed, with parameter optimization via grid search and cross-validation. Performance metrics included accuracy, specificity, sensitivity, and area under curve (AUC). The optimal model was interpreted using SHapley Additive exPlanations (SHAP), and an online platform was created for real-time risk prediction. RESULTS A total of 2384 patients who underwent anterior resection for rectal cancer were included in this study. Following rigorous selection, 14 variables were identified for constructing the machine learning model. The optimized model demonstrated high predictive accuracy, with the random forest (RF) model achieving the best overall performance. The model achieved an AUC of 0.889 and an accuracy of 0.842 on the test dataset. SHAP analysis revealed that the tumor location, previous abdominal surgery, and operative time were the most significant factors influencing the risk of URO. CONCLUSION This study developed an optimized machine learning-based online predictive system to assess the risk of URO after anterior resection in rectal cancer patients. Accessible at https://yangsu2023.shinyapps.io/UROrisk/, this system improves prediction accuracy and offers real-time risk assessment, providing a valuable tool that may support clinical decision-making and potentially improve the prognosis of rectal cancer patients.
Collapse
Affiliation(s)
- Yang Su
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanqi Li
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wangshuo Yang
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuelai Luo
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lisheng Chen
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Qin S, Liu K, Chen Y, Zhou Y, Zhao W, Yan R, Xin P, Zhu Y, Wang H, Lang N. Prediction of pathological response and lymph node metastasis after neoadjuvant therapy in rectal cancer through tumor and mesorectal MRI radiomic features. Sci Rep 2024; 14:21927. [PMID: 39304726 DOI: 10.1038/s41598-024-72916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Establishing predictive models for the pathological response and lymph node metastasis in locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT) based on MRI radiomic features derived from the tumor and mesorectal compartment (MC). This study included 209 patients with LARC who underwent rectal MRI both before and after nCRT. The patients were divided into a training set (n = 146) and a test set (n = 63). Regions of interest (ROIs) for the tumor and MC were delineated on both pre- and post-nCRT MRI images. Radiomic features were extracted, and delta radiomic features were computed. The predictive endpoints were pathological complete response (pCR), pathological good response (pGR), and lymph node metastasis (LNM). Feature selection for various models involved sequentially removing features with a correlation coefficient > 0.9, and features with P-values ≥ 0.05 in univariate analysis, followed by LASSO regression on the remaining features. Logistic regression models were developed, and their performance was evaluated using the area under the receiver operating characteristic curve (AUC). Among the 209 LARC patients, the number of patients achieving pCR, pGR, and LNM were 44, 118, and 40, respectively. The optimal model for predicting each endpoint is the combined model that incorporates pre- and delta-radiomics features for both the tumor and MC. These models exhibited superior performance with AUC values of 0.874 (for pCR), 0.801 (for pGR), and 0.826 (for LNM), outperforming the MRI tumor regression grade (mrTRG) which yielded AUC values of 0.800, 0.715, and 0.603, respectively. The results demonstrate the potential utility of the tumor and MC radiomics features, in predicting treatment efficacy among LARC patients undergoing nCRT.
Collapse
Affiliation(s)
- Siyuan Qin
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ke Liu
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yongye Chen
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yan Zhou
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Weili Zhao
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ruixin Yan
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Peijin Xin
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yupeng Zhu
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hao Wang
- Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Zhu Y, Wei Y, Chen Z, Li X, Zhang S, Wen C, Cao G, Zhou J, Wang M. Different radiomics annotation methods comparison in rectal cancer characterisation and prognosis prediction: a two-centre study. Insights Imaging 2024; 15:211. [PMID: 39186173 PMCID: PMC11347551 DOI: 10.1186/s13244-024-01795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVES To explore the performance differences of multiple annotations in radiomics analysis and provide a reference for tumour annotation in large-scale medical image analysis. METHODS A total of 342 patients from two centres who underwent radical resection for rectal cancer were retrospectively studied and divided into training, internal validation, and external validation cohorts. Three predictive tasks of tumour T-stage (pT), lymph node metastasis (pLNM), and disease-free survival (pDFS) were performed. Twelve radiomics models were constructed using Lasso-Logistic or Lasso-Cox to evaluate and four annotation methods, 2D detailed annotation along tumour boundaries (2D), 3D detailed annotation along tumour boundaries (3D), 2D bounding box (2DBB), and 3D bounding box (3DBB) on T2-weighted images, were compared. Radiomics models were used to establish combined models incorporating clinical risk factors. The DeLong test was performed to compare the performance of models using the receiver operating characteristic curves. RESULTS For radiomics models, the area under the curve values ranged from 0.627 (0.518-0.728) to 0.811 (0.705-0.917) in the internal validation cohort and from 0.619 (0.469-0.754) to 0.824 (0.689-0.918) in the external validation cohort. Most radiomics models based on four annotations did not differ significantly, except between the 3D and 3DBB models for pLNM (p = 0.0188) in the internal validation cohort. For combined models, only the 2D model significantly differed from the 2DBB (p = 0.0372) and 3D models (p = 0.0380) for pDFS. CONCLUSION Radiomics and combined models constructed with 2D and bounding box annotations showed comparable performances to those with 3D and detailed annotations along tumour boundaries in rectal cancer characterisation and prognosis prediction. CRITICAL RELEVANCE STATEMENT For quantitative analysis of radiological images, the selection of 2D maximum tumour area or bounding box annotation is as representative and easy to operate as 3D whole tumour or detailed annotations along tumour boundaries. KEY POINTS There is currently a lack of discussion on whether different annotation efforts in radiomics are predictively representative. No significant differences were observed in radiomics and combined models regardless of the annotations (2D, 3D, detailed, or bounding box). Prioritise selecting the more time and effort-saving 2D maximum area bounding box annotation.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaru Wei
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongwei Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiwei Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Caiyun Wen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guoquan Cao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiejie Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Horvat N, Papanikolaou N, Koh DM. Radiomics Beyond the Hype: A Critical Evaluation Toward Oncologic Clinical Use. Radiol Artif Intell 2024; 6:e230437. [PMID: 38717290 PMCID: PMC11294952 DOI: 10.1148/ryai.230437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Radiomics is a promising and fast-developing field within oncology that involves the mining of quantitative high-dimensional data from medical images. Radiomics has the potential to transform cancer management, whereby radiomics data can be used to aid early tumor characterization, prognosis, risk stratification, treatment planning, treatment response assessment, and surveillance. Nevertheless, certain challenges have delayed the clinical adoption and acceptability of radiomics in routine clinical practice. The objectives of this report are to (a) provide a perspective on the translational potential and potential impact of radiomics in oncology; (b) explore frequent challenges and mistakes in its derivation, encompassing study design, technical requirements, standardization, model reproducibility, transparency, data sharing, privacy concerns, quality control, as well as the complexity of multistep processes resulting in less radiologist-friendly interfaces; (c) discuss strategies to overcome these challenges and mistakes; and (d) propose measures to increase the clinical use and acceptability of radiomics, taking into account the different perspectives of patients, health care workers, and health care systems. Keywords: Radiomics, Oncology, Cancer Management, Artificial Intelligence © RSNA, 2024.
Collapse
Affiliation(s)
- Natally Horvat
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| | - Nikolaos Papanikolaou
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| | - Dow-Mu Koh
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| |
Collapse
|
5
|
Deng B, Wang Q, Liu Y, Yang Y, Gao X, Dai H. A nomogram based on MRI radiomics features of mesorectal fat for diagnosing T2- and T3-stage rectal cancer. Abdom Radiol (NY) 2024; 49:1850-1860. [PMID: 38349392 DOI: 10.1007/s00261-023-04164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 06/29/2024]
Abstract
PURPOSE To develop and validate a nomogram for the preoperative diagnosis of T2 and T3 stage rectal cancer using MRI radiomics features of mesorectal fat. METHODS The data of 288 patients with T2 and T3 stage rectal cancer were retrospectively collected. Radiomics features were extracted from the lesion region of interest (ROI) in the MRI high-resolution T2WI, apparent diffusion coefficient (ADC), and diffusion-weighted imaging (DWI) sequences. After using ICC inter-group consistency analysis and Pearson correlation analysis to reduce dimensions, LASSO regression analysis was performed to select features and calculate Rad-score for each sequence. Then, Combined_Radscore and nomogram were constructed based on the LASSO-selected features and clinical data for each sequence. Receiver operating characteristic curve (ROC) area under the curve (AUC) was used to evaluate the performance of the Rad-score model and nomogram. Decision curve analysis (DCA) was performed to evaluate the clinical usability of the radiomics nomogram, which were combined with calibration curves to evaluate the prediction accuracy. RESULTS The nomogram based on MRI-report T status and Combined_Radscore achieved AUCs of 0.921 and 0.889 in the training and validation cohorts, respectively. CONCLUSION The nomogram can be stated that the radiomics nomogram based on multi-sequence MRI imaging of the mesorectal fat has excellent diagnosing performance for preoperative differentiation of T2 and T3 stage rectal cancer.
Collapse
Affiliation(s)
- Bo Deng
- Department of Radiology, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Wang
- Department of Radiology, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Yuanqing Liu
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanwei Yang
- Magnetic Resonance Room of Orthopedics Department, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Shanghai University Medical College, Baoshan District, Shanghai, China.
| | - Hui Dai
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Guo X, He Y, Yuan Z, Nie T, Liu Y, Xu H. Association Analysis Between Intratumoral and Peritumoral MRI Radiomics Features and Overall Survival of Neoadjuvant Therapy in Rectal Cancer. J Magn Reson Imaging 2024. [PMID: 38733601 DOI: 10.1002/jmri.29396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The use of peritumoral features to determine the survival time of patients with rectal cancer (RC) is still imprecise. PURPOSE To explore the correlation between intratumoral, peritumoral and combined features, and overall survival (OS). STUDY TYPE Retrospective. POPULATION One hundred sixty-six RC patients (53 women, 113 men; average age: 55 ± 12 years) who underwent radical resection after neoadjuvant therapy. FIELD STRENGTH/SEQUENCE 3 T; T2WI sagittal, T1WI axial, T2WI axial with fat suppression, and high-resolution T2WI axial sequences, enhanced T1WI axial and sagittal sequences with fat suppression. ASSESSMENT Radiologist A segmented 166 patients, and radiologist B randomly segmented 30 patients. Intratumoral and peritumoral features were extracted, and features with good stability (ICC ≥0.75) were retained through intra-observer analysis. Seven classifiers, including Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Extremely randomized trees (ET), eXtreme Gradient Boosting (XGBoost), and LightGBM (LGBM), were applied to select the classifier with the best performance. Next, the Rad-score of best classifier and the clinical features were selected to establish the models, thus, nomogram was built to identify the association with 1-, 3-, and 5-year OS. STATISTICAL TESTS LASSO, regression analysis, ROC, DeLong method, Kaplan-Meier curve. P < 0.05 indicated a significant difference. RESULTS Only Node (irregular tumor nodules in the surrounding mesentery) and ExtraMRF (lymph nodes outside the perirectal mesentery) were significantly different in 20 clinical features. Twelve intratumoral, 3 peritumoral, and 14 combined features related to OS were selected. LR, SVM, and RF classier showed the best efficacy in the intratumoral, peritumoral, and combined model, respectively. The combined model (AUC = 0.954 and 0.821) had better survival association than the intratumoral model (AUC = 0.833 and 0.813) and the peritumoral model (AUC = 0.824 and 0.687). DATA CONCLUSION The proposed peritumoral model with radiomics features may serve as a tool to improve estimated survival time. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiaofang Guo
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Colorectal Cancer, Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaoyao He
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Nie
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulin Liu
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Flory MN, Napel S, Tsai EB. Artificial Intelligence in Radiology: Opportunities and Challenges. Semin Ultrasound CT MR 2024; 45:152-160. [PMID: 38403128 DOI: 10.1053/j.sult.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Artificial intelligence's (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process - from algorithm initiation and design to development and implementation - to maximize benefit and minimize harm that can be enabled by this technology.
Collapse
Affiliation(s)
- Marta N Flory
- Department of Radiology, Stanford University School of Medicine, Center for Academic Medicine, Palo Alto, CA
| | - Sandy Napel
- Department of Radiology, Stanford University School of Medicine, Center for Academic Medicine, Palo Alto, CA
| | - Emily B Tsai
- Department of Radiology, Stanford University School of Medicine, Center for Academic Medicine, Palo Alto, CA.
| |
Collapse
|
8
|
Liu J, Lin W, Yan L, Xie J, Dai J, Xu D, Zhao J. Contrast CT radiomic features add value to prediction of prognosis in adrenal cortical carcinoma. Endocrine 2024; 83:763-774. [PMID: 37968537 DOI: 10.1007/s12020-023-03568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with poor prognosis due to high postoperative recurrence rates. The aim of this study is to develop a contrast CT radiomic feature-based prognosis prediction model for ACC and evaluate its performance by comparison with ENSAT staging system and S-GRAS score. METHODS Included in this study were 39 ACC patients, from which we extracted 1411 radiomic features. Using cross-validated least absolute shrinkage and selection operator regression (cv-LASSO regression), we generated a radiomic index. Additionally, we further validated the radiomic index using both univariate and multivariate Cox regression analyses. We constructed a radiomic nomogram that incorporated the radiomic signature and compared it with ENSAT stage and S-GRAS score in terms of calibration, discrimination and clinical usefulnes. RESULTS In this study, the average progression free survival (PFS) of 39 patients was 20.4 (IQR 9.1-60.1) months and the average overall survival (OS) was 57.8 (IQR 32.4-NA). The generated radiomic features were significantly associated with PFS, OS, independent of clinical-pathologic risk factors (HR 0.16, 95%CI 0.02-0.99, p = 0.05; HR 0.20, 95%CI 0.04-1.07, p = 0.06, respectively). The radiomic index, ENSAT stage, resection status, and Ki67% index incorporated nomogram exhibited better performance for both PFS and OS prediction as compared with the S-GRAS and ENSAT nomogram (C-index: 0.75 vs. C-index: 0.68, p = 0.030 and 0.67, p = 0.025; C-index: 0.78 vs. C-index: 0.72, p = 0.003 and 0.73, p = 0.006). Calibration curve analysis showed that the radiomics-based model performs best in predicting the two-year PFS and the three-year OS. Decision curve analysis demonstrated that the radiomic index nomogram outperformed the S-GRAS and ENSAT nomogram in predicting the two-year PFS and the three-year OS. CONCLUSION The contrast CT radiomic-based nomogram performed better than S-GRAS or ENSAT in predicting PFS and OS in ACC patients.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhao Lin
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Dai
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juping Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Wei Y, Wang H, Chen Z, Zhu Y, Li Y, Lu B, Pan K, Wen C, Cao G, He Y, Zhou J, Pan Z, Wang M. Deep Learning-Based Multiparametric MRI Model for Preoperative T-Stage in Rectal Cancer. J Magn Reson Imaging 2024; 59:1083-1092. [PMID: 37367938 DOI: 10.1002/jmri.28856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T-staging is unclear. PURPOSE To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T-staging accuracy. STUDY TYPE Retrospective. POPULATION After cross-validation, 260 patients (123 with T-stage T1-2 and 134 with T-stage T3-4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). FIELD STRENGTH/SEQUENCE 3.0 T/Dynamic contrast enhanced (DCE), T2-weighted imaging (T2W), and diffusion-weighted imaging (DWI). ASSESSMENT The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T-stage. For comparison, the single parameter DL-model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. STATISTICAL TESTS The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P-values less than 0.05 were considered statistically significant. RESULTS The Area Under Curve (AUC) of the multiparametric DL-model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL-models including T2W-model (AUC = 0.735), DWI-model (AUC = 0.759), and DCE-model (AUC = 0.789). DATA CONCLUSION In the evaluation of rectal cancer patients, the proposed multiparametric DL-model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL-model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yaru Wei
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haojie Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
- Key Laboratory of Intelligent Medical Imaging of Wenzhou, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongwei Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingfa Li
- Key Laboratory of Intelligent Medical Imaging of Wenzhou, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Beichen Lu
- Key Laboratory of Intelligent Medical Imaging of Wenzhou, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kehua Pan
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Caiyun Wen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guoquan Cao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yun He
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiejie Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhifang Pan
- Key Laboratory of Intelligent Medical Imaging of Wenzhou, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Mou M, Gao R, Wu Y, Lin P, Yin H, Chen F, Huang F, Wen R, Yang H, He Y. Endoscopic Rectal Ultrasound-Based Radiomics Analysis for the Prediction of Synchronous Liver Metastasis in Patients With Primary Rectal Cancer. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:361-373. [PMID: 37950599 DOI: 10.1002/jum.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES To develop and validate an ultrasound-based radiomics model to predict synchronous liver metastases (SLM) in rectal cancer (RC) patients preoperatively. METHODS Two hundred and thirty-nine RC patients were included in this study and randomly divided into training and validation cohorts. A total of 5936 radiomics features were calculated on the basis of ultrasound images to build a radiomic model and obtain a radiomics score (Rad-score) using logistic regression. Meanwhile, clinical characteristics were collected to construct a clinical model. The radiomics-clinical model was developed and validated by integrating the radiomics features with the selected clinical characteristics. The performances of three models were evaluated and compared through their discrimination, calibration, and clinical usefulness. RESULTS The radiomics model was developed based on 13 radiomic features. The radiomics-clinical model, which incorporated Rad-score, CEA, and CA199, exhibited favorable discrimination and calibration with areas under the receiver operating characteristic curve (AUC) of 0.920 (95% CI: 0.874-0.965) in the training cohorts and 0.855 (95% CI: 0.759-0.951) in the validation cohorts. And the AUC of the radiomics-clinical model was 0.849 (95% CI: 0.771-0.927) for the training cohorts and 0.780 (95% CI: 0.655-0.905) for the validation cohorts, the clinical model was 0.811 (95% CI: 0.718-0.905) for the training cohorts and 0.805 (95% CI: 0.645-0.965) for the validation cohorts. Moreover, decision curve analysis (DCA) further confirmed the clinical utility of the radiomics-clinical model. CONCLUSIONS The radiomics-clinical model performed satisfactory predictive performance, which can help improve clinical diagnosis performance and outcome prediction for SLM in RC patients.
Collapse
Affiliation(s)
- Meiyan Mou
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Medical Ultrasound, Yulin No. 1 People's Hospital of Guangxi Zhuang Autonomous Region, Yulin, China
| | - Ruizhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuquan Wu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongxia Yin
- Department of Medical Ultrasound, Yulin No. 1 People's Hospital of Guangxi Zhuang Autonomous Region, Yulin, China
| | - Fenghuan Chen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fen Huang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Li Y, Lyu B, Wang R, Peng Y, Ran H, Zhou B, Liu Y, Bai G, Huai Q, Chen X, Zeng C, Wu Q, Zhang C, Gao S. Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis. Thorac Cancer 2024; 15:466-476. [PMID: 38191149 PMCID: PMC10883857 DOI: 10.1111/1759-7714.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Radiomics is increasingly utilized to distinguish pulmonary nodules between lung adenocarcinoma (LUAD) and tuberculosis (TB). However, it remains unclear whether different segmentation criteria, such as the inclusion or exclusion of the cavity region within nodules, affect the results. METHODS A total of 525 patients from two medical centers were retrospectively enrolled. The radiomics features were extracted according to two regions of interest (ROI) segmentation criteria. Multiple logistic regression models were trained to predict the pathology: (1) The clinical model relied on clinical-radiological semantic features; (2) The radiomics models (radiomics+ and radiomics-) utilized radiomics features from different ROIs (including or excluding cavities); (3) the composite models (composite+ and composite-) incorporated both above. RESULTS In the testing set, the radiomics+/- models and the composite+/- models still possessed efficient prediction performance (AUC ≥ 0.94), while the AUC of the clinical model was 0.881. In the validation set, the AUC of the clinical model was only 0.717, while that of the radiomics+/- models and the composite+/- models ranged from 0.801 to 0.825. The prediction performance of all the radiomics+/- and composite+/- models were significantly superior to that of the clinical model (p < 0.05). Whether the ROI segmentation included or excluded the cavity had no significant effect on these models (radiomics+ vs. radiomics-, composite+ model vs. composite-) (p > 0.05). CONCLUSIONS The present study established a machine learning-based radiomics strategy for differentiating LUAD from TB lesions. The ROI segmentation including or excluding the cavity region may exert no significant effect on the predictive ability.
Collapse
Affiliation(s)
- Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
| | - Rong Wang
- Department of Echocardiography, Fuwai Hospital/ National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yue Peng
- Department of Thoracic Surgery, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Haoyu Ran
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qilin Huai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chun Zeng
- Department of Radiologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qingchen Wu
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Cheng Zhang
- Department of Cardiothoracic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
O’Sullivan NJ, Temperley HC, Horan MT, Corr A, Mehigan BJ, Larkin JO, McCormick PH, Kavanagh DO, Meaney JFM, Kelly ME. Radiogenomics: Contemporary Applications in the Management of Rectal Cancer. Cancers (Basel) 2023; 15:5816. [PMID: 38136361 PMCID: PMC10741704 DOI: 10.3390/cancers15245816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Radiogenomics, a sub-domain of radiomics, refers to the prediction of underlying tumour biology using non-invasive imaging markers. This novel technology intends to reduce the high costs, workload and invasiveness associated with traditional genetic testing via the development of 'imaging biomarkers' that have the potential to serve as an alternative 'liquid-biopsy' in the determination of tumour biological characteristics. Radiogenomics also harnesses the potential to unlock aspects of tumour biology which are not possible to assess by conventional biopsy-based methods, such as full tumour burden, intra-/inter-lesion heterogeneity and the possibility of providing the information of tumour biology longitudinally. Several studies have shown the feasibility of developing a radiogenomic-based signature to predict treatment outcomes and tumour characteristics; however, many lack prospective, external validation. We performed a systematic review of the current literature surrounding the use of radiogenomics in rectal cancer to predict underlying tumour biology.
Collapse
Affiliation(s)
- Niall J. O’Sullivan
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Hugo C. Temperley
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Michelle T. Horan
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Alison Corr
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
| | - Brian J. Mehigan
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - John O. Larkin
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Paul H. McCormick
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Dara O. Kavanagh
- Department of Surgery, Tallaght University Hospital, D24 NR0A Dublin, Ireland
- Department of Surgery, Royal College of Surgeons, D02 YN77 Dublin, Ireland
| | - James F. M. Meaney
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Michael E. Kelly
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Trinity St. James’s Cancer Institute (TSJCI), D08 NHY1 Dublin, Ireland
| |
Collapse
|
13
|
Xu L, Zhang H, Shao Y, Fu Z. Bioinformatics analysis-based screening of circRNA gene with mainstream expression trend in colorectal cancer and construction of a coexpression regulatory network. PLoS One 2023; 18:e0295126. [PMID: 38064496 PMCID: PMC10707487 DOI: 10.1371/journal.pone.0295126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE Since circRNA can be utilized as a potential diagnostic marker for cancer, to explore the regulatory mechanism of colorectal cancer (CRC) using bioinformatics, the public database of circRNA was mined. METHODS CRC differentially expressed miRNAs were screened in the Cancer Genome Atlas (TCGA) database, CRC differentially expressed circRNAs were searched in the Gene Expression Omnibus (GEO) database, the two databases were combined to identify CRC differentially expressed mRNAs, and a circRNA-miRNA‒mRNA regulatory network was constructed by combining a plurality of target prediction databases to identify key genes. The upstream circRNA and regulatory axis of the key genes were identified for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis to explore the biological functions of circRNA in CRC using the regulatory axis. RESULTS After the screening of the GSE21815 dataset, a total of 22 differentially expressed circRNAs were obtained, with 12 upregulated and 10 downregulated genes. Similarly, the GSE126094 dataset yielded 104 differentially expressed circRNAs, comprising 56 upregulated and 48 downregulated genes. Among the differentially expressed circRNAs, five were identified, with VDAC3 and SETD2 showing downregulated expression, while RAD23B, RPPH1, and MYBL2 exhibited upregulated expression. Following the selection process, five DEcircRNAs, eight target miRNAs, and 105 target DEmRNAs were identified. The protein-protein interaction (PPI) network revealed close relationships among the mRNAs, with E2F2, E2F3, CCND1, TNRC6A, and KAT2B identified as key genes. Notably, CCND1 emerged as a critical gene in the PPI network. Through the upregulation of has-circ-0087862, which binds to miR-892b, the translation inhibition of CCND1 by miR-892b was attenuated, leading to enhanced CCND1 expression. Functional enrichment analysis indicated that CCND1 was involved in protein binding and positive regulation of cellular processes, among other functions. CONCLUSION The differentially expressed genes (DEGs) in CRC markedly affected the survival time of patients. CircRNAs could be utilized as diagnostic markers of CRC, and the key genes in CRC could be screened out by bioinformatics, which would be helpful to understand the drug targets for the treatment of human immunodeficiency virus (HIV)-related CRC patients.
Collapse
Affiliation(s)
- Lei Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Miranda J, Horvat N, Araujo-Filho JAB, Albuquerque KS, Charbel C, Trindade BMC, Cardoso DL, de Padua Gomes de Farias L, Chakraborty J, Nomura CH. The Role of Radiomics in Rectal Cancer. J Gastrointest Cancer 2023; 54:1158-1180. [PMID: 37155130 PMCID: PMC11301614 DOI: 10.1007/s12029-022-00909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2022] [Indexed: 05/10/2023]
Abstract
PURPOSE Radiomics is a promising method for advancing imaging assessment in rectal cancer. This review aims to describe the emerging role of radiomics in the imaging assessment of rectal cancer, including various applications of radiomics based on CT, MRI, or PET/CT. METHODS We conducted a literature review to highlight the progress of radiomic research to date and the challenges that need to be addressed before radiomics can be implemented clinically. RESULTS The results suggest that radiomics has the potential to provide valuable information for clinical decision-making in rectal cancer. However, there are still challenges in terms of standardization of imaging protocols, feature extraction, and validation of radiomic models. Despite these challenges, radiomics holds great promise for personalized medicine in rectal cancer, with the potential to improve diagnosis, prognosis, and treatment planning. Further research is needed to validate the clinical utility of radiomics and to establish its role in routine clinical practice. CONCLUSION Overall, radiomics has emerged as a powerful tool for improving the imaging assessment of rectal cancer, and its potential benefits should not be underestimated.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA.
| | - Jose A B Araujo-Filho
- Department of Radiology, Hospital Sirio-Libanes, 91 Adma Jafet, Sao Paulo, SP, 01308-050, Brazil
| | - Kamila S Albuquerque
- Department of Radiology, Hospital Beneficência Portuguesa, 637 Maestro Cardim, Sao Paulo, SP, 01323-001, Brazil
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA
| | - Bruno M C Trindade
- Department of Radiology, University of Sao Paulo, 75 Dr. Ovídio Pires de Campos, Sao Paulo, SP, 05403-010, Brazil
| | - Daniel L Cardoso
- Department of Radiology, Hospital Sirio-Libanes, 91 Adma Jafet, Sao Paulo, SP, 01308-050, Brazil
| | | | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, 75 Dr. Ovídio Pires de Campos, Sao Paulo, SP, 05403-010, Brazil
| |
Collapse
|
15
|
Yin F, Yan X, Gao R, Ren Z, Yu T, Zhao Z, Zhang G. Radiomics features from 3D-MPRAGE imaging can differentiate temporal-plus epilepsy from temporal lobe epilepsy. Epileptic Disord 2023; 25:681-689. [PMID: 37349866 DOI: 10.1002/epd2.20092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/15/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE This study aimed to differentiate temporal-plus epilepsy (TPE) from temporal lobe epilepsy (TLE) using extraction of radiomics features from three-dimensional magnetization-prepared rapid acquisition gradient echo (3D-MPRAGE) imaging data. METHODS Data from patients with TLE or TPE who underwent epilepsy surgery between January 2019 and January 2021 were retrospectively analyzed. Thirty-three regions of interest in the affected hemisphere of each patient were defined on 3D-MPRAGE images. A total of 3531 image features were extracted from each patient. Four feature selection methods and 10 machine learning algorithms were used to build 40 differentiation models. Model performance was evaluated using receiver operating characteristic analysis. RESULTS Eighty-two patients were included for analysis, 47 with TLE and 35 with TPE. The model combining logistic regression and the relief selection method had the best performance (area under the receiver operating characteristic curve, .779; accuracy, .875; sensitivity, .800; specificity, .929; positive predictive value, .889; negative predictive value, .867). SIGNIFICANCE Radiomics analysis can differentiate TPE from TLE. The logistic regression classifier trained with radiomics features extracted from 3D-MPRAGE images had the highest accuracy and best performance.
Collapse
Affiliation(s)
- Fangzhao Yin
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Tianjin Huanhu Hospital, Tianjin, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhuoling Zhao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Di Costanzo G, Ascione R, Ponsiglione A, Tucci AG, Dell’Aversana S, Iasiello F, Cavaglià E. Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:406-421. [PMID: 37455833 PMCID: PMC10344900 DOI: 10.37349/etat.2023.00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 07/18/2023] Open
Abstract
Rectal cancer (RC) is one of the most common tumours worldwide in both males and females, with significant morbidity and mortality rates, and it accounts for approximately one-third of colorectal cancers (CRCs). Magnetic resonance imaging (MRI) has been demonstrated to be accurate in evaluating the tumour location and stage, mucin content, invasion depth, lymph node (LN) metastasis, extramural vascular invasion (EMVI), and involvement of the mesorectal fascia (MRF). However, these features alone remain insufficient to precisely guide treatment decisions. Therefore, new imaging biomarkers are necessary to define tumour characteristics for staging and restaging patients with RC. During the last decades, RC evaluation via MRI-based radiomics and artificial intelligence (AI) tools has been a research hotspot. The aim of this review was to summarise the achievement of MRI-based radiomics and AI for the evaluation of staging, response to therapy, genotyping, prediction of high-risk factors, and prognosis in the field of RC. Moreover, future challenges and limitations of these tools that need to be solved to favour the transition from academic research to the clinical setting will be discussed.
Collapse
Affiliation(s)
- Giuseppe Di Costanzo
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Raffaele Ascione
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Giacoma Tucci
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Serena Dell’Aversana
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Francesca Iasiello
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| | - Enrico Cavaglià
- Department of Radiology, Santa Maria delle Grazie Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy
| |
Collapse
|
17
|
Miranda J, Horvat N, Assuncao AN, de M Machado FA, Chakraborty J, Pandini RV, Saraiva S, Nahas CSR, Nahas SC, Nomura CH. MRI-based radiomic score increased mrTRG accuracy in predicting rectal cancer response to neoadjuvant therapy. Abdom Radiol (NY) 2023; 48:1911-1920. [PMID: 37004557 PMCID: PMC10942660 DOI: 10.1007/s00261-023-03898-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE To develop a magnetic resonance imaging (MRI)-based radiomics score, i.e., "rad-score," and to investigate the performance of rad-score alone and combined with mrTRG in predicting pathologic complete response (pCR) in patients with locally advanced rectal cancer following neoadjuvant chemoradiation therapy. METHODS This retrospective study included consecutive patients with LARC who underwent neoadjuvant chemoradiotherapy followed by surgery from between July 2011 to November 2015. Volumes of interest of the entire tumor on baseline rectal MRI and of the tumor bed on restaging rectal MRI were manually segmented on T2-weighted images. The radiologist also provided the ymrTRG score on the restaging MRI. Radiomic score (rad-score) was calculated and optimal cut-off points for both mrTRG and rad-score to predict pCR were selected using Youden's J statistic. RESULTS Of 180 patients (mean age = 63 years; 60% men), 33/180 (18%) achieved pCR. High rad-score (> - 1.49) yielded an area under the curve (AUC) of 0.758, comparable to ymrTRG 1-2 which yielded an AUC of 0.759. The combination of high rad-score and ymrTRG 1-2 yielded a significantly higher AUC of 0.836 compared with ymrTRG 1-2 and high rad-score alone (p < 0.001). A logistic regression model incorporating both high rad-score and mrTRG 1-2 was built to calculate adjusted odds ratios for pCR, which was 4.85 (p < 0.001). CONCLUSION Our study demonstrates that a rectal restaging MRI-based rad-score had comparable diagnostic performance to ymrTRG. Moreover, the combined rad-score and ymrTRG model yielded a significant better diagnostic performance for predicting pCR.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA.
| | - Antonildes N Assuncao
- Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
- Research and Education Institute, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | | | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Samya Saraiva
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | | | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| |
Collapse
|
18
|
Panic J, Defeudis A, Balestra G, Giannini V, Rosati S. Normalization Strategies in Multi-Center Radiomics Abdominal MRI: Systematic Review and Meta-Analyses. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 4:67-76. [PMID: 37283773 PMCID: PMC10241248 DOI: 10.1109/ojemb.2023.3271455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/18/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Goal: Artificial intelligence applied to medical image analysis has been extensively used to develop non-invasive diagnostic and prognostic signatures. However, these imaging biomarkers should be largely validated on multi-center datasets to prove their robustness before they can be introduced into clinical practice. The main challenge is represented by the great and unavoidable image variability which is usually addressed using different pre-processing techniques including spatial, intensity and feature normalization. The purpose of this study is to systematically summarize normalization methods and to evaluate their correlation with the radiomics model performances through meta-analyses. This review is carried out according to the PRISMA statement: 4777 papers were collected, but only 74 were included. Two meta-analyses were carried out according to two clinical aims: characterization and prediction of response. Findings of this review demonstrated that there are some commonly used normalization approaches, but not a commonly agreed pipeline that can allow to improve performance and to bridge the gap between bench and bedside.
Collapse
Affiliation(s)
- Jovana Panic
- Department of Surgical Science, and Polytechnic of Turin, Department of Electronics and TelecommunicationsUniversity of Turin10129TurinItaly
| | - Arianna Defeudis
- Department of Surgical ScienceUniversity of Turin10129TurinItaly
- Candiolo Cancer InstituteFPO-IRCCS10060CandioloItaly
| | - Gabriella Balestra
- Department of Electronics and TelecommunicationsPolytechnic of Turin10129TurinItaly
| | - Valentina Giannini
- Department of Surgical ScienceUniversity of Turin10129TurinItaly
- Candiolo Cancer InstituteFPO-IRCCS10060CandioloItaly
| | - Samanta Rosati
- Department of Electronics and TelecommunicationsPolytechnic of Turin10129TurinItaly
| |
Collapse
|
19
|
Liu Y, Wei X, Feng X, Liu Y, Feng G, Du Y. Repeatability of radiomics studies in colorectal cancer: a systematic review. BMC Gastroenterol 2023; 23:125. [PMID: 37059990 PMCID: PMC10105401 DOI: 10.1186/s12876-023-02743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Recently, radiomics has been widely used in colorectal cancer, but many variable factors affect the repeatability of radiomics research. This review aims to analyze the repeatability of radiomics studies in colorectal cancer and to evaluate the current status of radiomics in the field of colorectal cancer. METHODS The included studies in this review by searching from the PubMed and Embase databases. Then each study in our review was evaluated using the Radiomics Quality Score (RQS). We analyzed the factors that may affect the repeatability in the radiomics workflow and discussed the repeatability of the included studies. RESULTS A total of 188 studies was included in this review, of which only two (2/188, 1.06%) studies controlled the influence of individual factors. In addition, the median score of RQS was 11 (out of 36), range-1 to 27. CONCLUSIONS The RQS score was moderately low, and most studies did not consider the repeatability of radiomics features, especially in terms of Intra-individual, scanners, and scanning parameters. To improve the generalization of the radiomics model, it is necessary to further control the variable factors of repeatability.
Collapse
Affiliation(s)
- Ying Liu
- School of Medical Imaging, North Sichuan Medical College, Sichuan Province, Nanchong City, 637000, China
| | - Xiaoqin Wei
- School of Medical Imaging, North Sichuan Medical College, Sichuan Province, Nanchong City, 637000, China
| | | | - Yan Liu
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, 1 Maoyuannan Road, Sichuan Province, 637000, Nanchong City, China
| | - Guiling Feng
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, 1 Maoyuannan Road, Sichuan Province, 637000, Nanchong City, China
| | - Yong Du
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, 1 Maoyuannan Road, Sichuan Province, 637000, Nanchong City, China.
| |
Collapse
|
20
|
Wong C, Fu Y, Li M, Mu S, Chu X, Fu J, Lin C, Zhang H. MRI-Based Artificial Intelligence in Rectal Cancer. J Magn Reson Imaging 2023; 57:45-56. [PMID: 35993550 DOI: 10.1002/jmri.28381] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/03/2023] Open
Abstract
Rectal cancer (RC) accounts for approximately one-third of colorectal cancer (CRC), with death rates increasing in patients younger than 50 years old. Magnetic resonance imaging (MRI) is routinely performed for tumor evaluation. However, the semantic features from images alone remain insufficient to guide treatment decisions. Functional MRIs are useful for revealing microstructural and functional abnormalities and nevertheless have low or modest repeatability and reproducibility. Therefore, during the preoperative evaluation and follow-up treatment of patients with RC, novel noninvasive imaging markers are needed to describe tumor characteristics to guide treatment strategies and achieve individualized diagnosis and treatment. In recent years, the development of artificial intelligence (AI) has created new tools for RC evaluation based on MRI. In this review, we summarize the research progress of AI in the evaluation of staging, prediction of high-risk factors, genotyping, response to therapy, recurrence, metastasis, prognosis, and segmentation with RC. We further discuss the challenges of clinical application, including improvement in imaging, model performance, and the biological meaning of features, which may also be major development directions in the future. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Chinting Wong
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Mingyang Li
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Shengnan Mu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Xiaotong Chu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Jiahui Fu
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| | - Chenghe Lin
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Changchun, China
| |
Collapse
|
21
|
An endorectal ultrasound-based radiomics signature for preoperative prediction of lymphovascular invasion of rectal cancer. BMC Med Imaging 2022; 22:84. [PMID: 35538520 PMCID: PMC9087958 DOI: 10.1186/s12880-022-00813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate whether radiomics based on ultrasound images can predict lymphovascular invasion (LVI) of rectal cancer (RC) before surgery. Methods A total of 203 patients with RC were enrolled retrospectively, and they were divided into a training set (143 patients) and a validation set (60 patients). We extracted the radiomic features from the largest gray ultrasound image of the RC lesion. The intraclass correlation coefficient (ICC) was applied to test the repeatability of the radiomic features. The least absolute shrinkage and selection operator (LASSO) was used to reduce the data dimension and select significant features. Logistic regression (LR) analysis was applied to establish the radiomics model. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to evaluate the comprehensive performance of the model. Results Among the 203 patients, 33 (16.7%) were LVI positive and 170 (83.7%) were LVI negative. A total of 5350 (90.1%) radiomic features with ICC values of ≥ 0.75 were reported, which were subsequently subjected to hypothesis testing and LASSO regression dimension reduction analysis. Finally, 15 selected features were used to construct the radiomics model. The area under the curve (AUC) of the training set was 0.849, and the AUC of the validation set was 0.781. The calibration curve indicated that the radiomics model had good calibration, and DCA demonstrated that the model had clinical benefits. Conclusion The proposed endorectal ultrasound-based radiomics model has the potential to predict LVI preoperatively in RC. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-022-00813-6.
Collapse
|