1
|
Ladowski JM, Sudan DL. Normothermic Preservation of the Intestinal Allograft. Gastroenterol Clin North Am 2024; 53:221-231. [PMID: 38719374 PMCID: PMC11346631 DOI: 10.1016/j.gtc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Intestinal allotransplantation was first described in the 1960s and successfully performed in the 1980s. Since that time, less progress has been made in the preservation of the allograft before transplantation and static cold storage remains the current standard. Normothermic machine perfusion represents an opportunity to simultaneously preserve, assess, and recondition the organ for transplantation and improve the procurement radius for allografts. The substantial progress made in the field during the last 60 years, coupled with the success of the preclinical animal model of machine perfusion-preserved intestinal transplantation, suggest we are approaching the point of clinical application.
Collapse
Affiliation(s)
- Joseph M Ladowski
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Debra L Sudan
- Division Chief of Abdominal Transplant in the Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Stevens LJ, van de Steeg E, Doppenberg JB, Alwayn IPJ, Knibbe CAJ, Dubbeld J. Ex vivo gut-hepato-biliary organ perfusion model to characterize oral absorption, gut-wall metabolism, pre-systemic hepatic metabolism and biliary excretion; application to midazolam. Eur J Pharm Sci 2024; 196:106760. [PMID: 38574899 DOI: 10.1016/j.ejps.2024.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
To date, characterization of the first-pass effect of orally administered drugs consisting of local intestinal absorption and metabolism, portal vein transport and hepatobiliary processes remains challenging. Aim of this study was to explore the applicability of a porcine ex-vivo perfusion model to study oral absorption, gut-hepatobiliary metabolism and biliary excretion of midazolam. Slaughterhouse procured porcine en bloc organs (n = 4), were perfused via the aorta and portal vein. After 120 min of perfusion, midazolam, atenolol, antipyrine and FD4 were dosed via the duodenum and samples were taken from the systemic- and portal vein perfusate, intestinal faecal effluent and bile to determine drug and metabolite concentrations. Stable arterial and portal vein flow was obtained and viability of the perfused organs was confirmed. After intraduodenal administration, midazolam was rapidly detected in the portal vein together with 1-OH midazolam (EG-pv of 0.16±0.1) resulting from gut wall metabolism through oxidation. In the intestinal faecal effluent, 1-OH midazolam and 1-OH midazolam glucuronide (EG-intestine 0.051±0.03) was observed resulting from local gut glucuronidation. Biliary elimination of midazolam (0.04±0.01 %) and its glucuronide (0.01±0.01 %) only minimally contributed to the enterohepatic circulation. More extensive hepatic metabolism (FH 0.35±0.07) over intestinal metabolism (FG 0.78±0.11) was shown, resulting in oral bioavailability of 0.27±0.05. Ex vivo perfusion demonstrated to be a novel approach to characterize pre-systemic extraction of midazolam by measuring intestinal as well as hepatic extraction. The model can generate valuable insights into the absorption and metabolism of new drugs.
Collapse
Affiliation(s)
- L J Stevens
- Department of Surgery, Leiden University Medical Center (LUMC), Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - E van de Steeg
- Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - J B Doppenberg
- LUMC Transplant Center, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - I P J Alwayn
- Department of Surgery, Leiden University Medical Center (LUMC), Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| | - C A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden & Department of Clinical Pharmacy, St. Antonius Hospital Nieuwegein & Utrecht, Leiden University, the Netherlands
| | - J Dubbeld
- Department of Surgery, Leiden University Medical Center (LUMC), Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
3
|
Ludwig EK, Abraham N, Schaaf CR, McKinney CA, Freund J, Stewart AS, Veerasammy BA, Thomas M, Cardona DM, Garman K, Barbas AS, Sudan DL, Gonzalez LM. Comparison of the effects of normothermic machine perfusion and cold storage preservation on porcine intestinal allograft regenerative potential and viability. Am J Transplant 2024; 24:564-576. [PMID: 37918482 PMCID: PMC11082874 DOI: 10.1016/j.ajt.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
Intestinal transplantation (IT) is the final treatment option for intestinal failure. Static cold storage (CS) is the standard preservation method used for intestinal allografts. However, CS and subsequent transplantation induce ischemia-reperfusion injury (IRI). Severe IRI impairs epithelial barrier function, including loss of intestinal stem cells (ISC), critical to epithelial regeneration. Normothermic machine perfusion (NMP) preservation of kidney and liver allografts minimizes CS-associated IRI; however, it has not been used clinically for IT. We hypothesized that intestine NMP would induce less epithelial injury and better protect the intestine's regenerative ability when compared with CS. Full-length porcine jejunum and ileum were procured, stored at 4 °C, or perfused at 34 °C for 6 hours (T6), and transplanted. Histology was assessed following procurement (T0), T6, and 1 hour after reperfusion. Real-time quantitative reverse transcription polymerase chain reaction, immunofluorescence, and crypt culture measured ISC viability and proliferative potential. A greater number of NMP-preserved intestine recipients survived posttransplant, which correlated with significantly decreased tissue injury following 1-hour reperfusion in NMP compared with CS samples. Additionally, ISC gene expression, spheroid area, and cellular proliferation were significantly increased in NMP-T6 compared with CS-T6 intestine. NMP appears to reduce IRI and improve graft regeneration with improved ISC viability and proliferation.
Collapse
Affiliation(s)
- Elsa K Ludwig
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Nader Abraham
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cecilia R Schaaf
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Caroline A McKinney
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - John Freund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Amy S Stewart
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Brittany A Veerasammy
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Mallory Thomas
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Diana M Cardona
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine Garman
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew S Barbas
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Debra L Sudan
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Liara M Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
4
|
López-Martínez S, Simón C, Santamaria X. Normothermic Machine Perfusion Systems: Where Do We Go From Here? Transplantation 2024; 108:22-44. [PMID: 37026713 DOI: 10.1097/tp.0000000000004573] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Normothermic machine perfusion (NMP) aims to preserve organs ex vivo by simulating physiological conditions such as body temperature. Recent advancements in NMP system design have prompted the development of clinically effective devices for liver, heart, lung, and kidney transplantation that preserve organs for several hours/up to 1 d. In preclinical studies, adjustments to circuit structure, perfusate composition, and automatic supervision have extended perfusion times up to 1 wk of preservation. Emerging NMP platforms for ex vivo preservation of the pancreas, intestine, uterus, ovary, and vascularized composite allografts represent exciting prospects. Thus, NMP may become a valuable tool in transplantation and provide significant advantages to biomedical research. This review recaps recent NMP research, including discussions of devices in clinical trials, innovative preclinical systems for extended preservation, and platforms developed for other organs. We will also discuss NMP strategies using a global approach while focusing on technical specifications and preservation times.
Collapse
Affiliation(s)
- Sara López-Martínez
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Xavier Santamaria
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
5
|
Serradilla J, Andrés Moreno AM, Talayero P, Burgos P, Machuca M, Camps Ortega O, Vallejo MT, Rubio Bolívar FJ, Bueno A, Sánchez A, Zambrano C, De la Torre Ramos CA, Rodríguez O, Largo C, Serrano P, Prieto Bozano G, Ramos E, López Santamaría M, Stringa P, Hernández F. Preclinical Study of DCD and Normothermic Perfusion for Visceral Transplantation. Transpl Int 2023; 36:11518. [PMID: 37745640 PMCID: PMC10514355 DOI: 10.3389/ti.2023.11518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Considering recent clinical and experimental evidence, expectations for using DCD-derived intestines have increased considerably. However, more knowledge about DCD procedure and long-term results after intestinal transplantation (ITx) is needed. We aimed to describe in detail a DCD procedure for ITx using normothermic regional perfusion (NRP) in a preclinical model. Small bowel was obtained from pigs donors after 1 h of NRP and transplanted to the recipients. Graft Intestinal samples were obtained during the procedure and after transplantation. Ischemia-reperfusion injury (Park-Chiu score), graft rejection and transplanted intestines absorptive function were evaluated. Seven of 8 DCD procedures with NRP and ITx were successful (87.5%), with a good graft reperfusion and an excellent recovery of the recipient. The architecture of grafts was well conserved during NRP. After an initial damage of Park-chiu score of 4, all grafts recovered from ischemia-reperfusion, with no or very subtle alterations 2 days after ITx. Most recipients (71.5%) did not show signs of rejection. Only two cases demonstrated histologic signs of mild rejection 7 days after ITx. Interestingly intestinal grafts showed good absorptive capacity. The study's results support the viability of intestinal grafts from DCD using NRP, contributing more evidence for the use of DCD for ITx.
Collapse
Affiliation(s)
- Javier Serradilla
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Ane Miren Andrés Moreno
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Paloma Talayero
- Department of Immunology, University Hospital 12 de Octubre, Madrid, Spain
| | - Paula Burgos
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Department of Cardiovascular Surgery, La Paz University Hospital, Madrid, Spain
| | - Mariana Machuca
- Special Pathology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Onys Camps Ortega
- Molecular Imaging and Immunohistochemistry Laboratory, Institute for Health Research IdiPaz, Madrid, Spain
| | - María Teresa Vallejo
- Molecular Imaging and Immunohistochemistry Laboratory, Institute for Health Research IdiPaz, Madrid, Spain
| | | | - Alba Bueno
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Alba Sánchez
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Cristina Zambrano
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Carlos Andrés De la Torre Ramos
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Olaia Rodríguez
- Department of Biochemistry, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Carlota Largo
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Department of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Pilar Serrano
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Gerardo Prieto Bozano
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Esther Ramos
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Intestinal Rehabilitation and Transplantation Unit, La Paz University Hospital, Madrid, Spain
| | - Manuel López Santamaría
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| | - Pablo Stringa
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
- Institute for Immunological and Pathophysiological Studies (IIFP), National University of La Plata, National Council of Scientific and Technical Research (CONICET), La Plata, Argentina
| | - Francisco Hernández
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
- Transplant Research Group, Institute for Health Research IdiPaz, Madrid, Spain
| |
Collapse
|
6
|
Hou W, Yang S, Lu J, Shi Y, Chen J, Chen D, Wang F, Liu L. Hypothermic machine perfusion alleviates ischemia-reperfusion injury of intestinal transplantation in pigs. Front Immunol 2023; 14:1117292. [PMID: 36926337 PMCID: PMC10011072 DOI: 10.3389/fimmu.2023.1117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Background Intestinal transplantation (IT) has become an important procedure for the treatment of irreversible intestinal failure. However, IT is extremely vulnerable to ischemia-reperfusion injury (IRI). Due to the limitations of static cold storage (SCS), hypothermic machine perfusion (HMP) is rapidly gaining popularity. In this study, the intestinal HMP system is established and HMP is compared with SCS. Methods An intestinal HMP system was built. Ten miniature pigs were randomly divided into the HMP and SCS groups, and their intestines were perfused using the HMP device and SCS, respectively, followed by orthotopic auto-transplantation. Analysis was done on the grafts between the two groups. Results Operation success rates of the surgery were 100% in both groups. The 7-day survival rate was 100% in the HMP group, which was significantly higher than that of the SCS group (20%, P< 0.05). The pathological results showed that fewer injuries of grafts were in the HMP group. Endotoxin (ET), IL-1, IL-6, IFN-γ and TNF-α levels in the HMP group were significantly lower than in the SCS group (P<0.05), whereas IL-10 levels were significantly higher (P<0.05).The intestinal expression levels of ZO-1 and Occludin were higher in the HMP group compared to the SCS group, whereas Toll-like receptor 4 (TLR4), nuclear factor kappa B (NFκB), and caspase-3 were lower. Conclusions In this study, we established a stable intestinal HMP system and demonstrated that HMP could significantly alleviate intestinal IRI and improve the outcome after IT.
Collapse
Affiliation(s)
- Wen Hou
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Shuang Yang
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Jiansen Lu
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Yuan Shi
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China
| | - Jing Chen
- Organ Transplant Department, Tianjin First Central Hospital, Tianjin, China
| | - Decheng Chen
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Fei Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Lei Liu
- Research Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China.,Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin, China.,Organ Transplant Department, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
7
|
Li JH, Xu X, Wang YF, Xie HY, Chen JY, Dong NG, Badiwala M, Xin LM, Ribeiro RVP, Yin H, Zhang H, Zhang JZ, Huo F, Yang JY, Yang HJ, Pan H, Li SG, Qiao YB, Luo J, Li HY, Jia JJ, Yu H, Liang H, Yang SJ, Wang H, Liu ZY, Zhang LC, Hu XY, Wu H, Hu YQ, Tang PF, Ye QF, Zheng SS. Chinese expert consensus on organ protection of transplantation (2022 edition). Hepatobiliary Pancreat Dis Int 2022; 21:516-526. [PMID: 36376226 DOI: 10.1016/j.hbpd.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yan-Feng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jing-Yu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi 214023, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mitesh Badiwala
- Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Canada
| | - Li-Ming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | | | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Jian-Zheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Feng Huo
- Department of Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510040, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Ji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shao-Guang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Yin-Biao Qiao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jia Luo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hao-Yu Li
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Yu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Si-Jia Yang
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Xiao-Yi Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi-Qing Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Qi-Fa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
8
|
Abraham N, Ludwig EK, Schaaf CR, Veerasammy B, Stewart AS, McKinney C, Freund J, Brassil J, Samy KP, Gao Q, Kahan R, Niedzwiecki D, Cardona DM, Garman KS, Barbas AS, Sudan DL, Gonzalez LM. Orthotopic Transplantation of the Full-length Porcine Intestine After Normothermic Machine Perfusion. Transplant Direct 2022; 8:e1390. [PMID: 36299444 PMCID: PMC9592306 DOI: 10.1097/txd.0000000000001390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Successful intestinal transplantation is currently hindered by graft injury that occurs during procurement and storage, which contributes to postoperative sepsis and allograft rejection. Improved graft preservation may expand transplantable graft numbers and enhance posttransplant outcomes. Superior transplant outcomes have recently been demonstrated in clinical trials using machine perfusion to preserve the liver. We hypothesized that machine perfusion preservation of intestinal allografts could be achieved and allow for transplantation in a porcine model. Methods Using a translational porcine model, we developed a device for intestinal perfusion. Intestinal samples were collected at the time of organ procurement, and after 6 h of machine perfusion for gross and histologic evaluation, hourly chemistry panels were performed on the perfusate and were used for protocol optimization. Following transplantation, porcine recipient physical activity, systemic blood parameters, and vital signs were monitored for 2 d before sacrifice. Results In initial protocol development (generation 1, n = 8 grafts), multiple metabolic, electrolyte, and acid-base derangements were measured. These factors coincided with graft and mesenteric edema and luminal hemorrhage and were addressed with the addition of dialysis. In the subsequent protocol (generation 2, n = 9 grafts), differential jejunum and ileum perfusion were observed resulting in gross evidence of ileal ischemia. Modifications in vasodilating medications enhanced ileal perfusion (generation 3, n = 4 grafts). We report successful transplantation of 2 porcine intestinal allografts after machine perfusion with postoperative clinical and gross evidence of normal gut function. Conclusions This study reports development and optimization of machine perfusion preservation of small intestine and successful transplantation of intestinal allografts in a porcine model.
Collapse
Affiliation(s)
- Nader Abraham
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Elsa K. Ludwig
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Cecilia R. Schaaf
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Brittany Veerasammy
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Amy S. Stewart
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Caroline McKinney
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - John Freund
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | - Kannan P. Samy
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Qimeng Gao
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Riley Kahan
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Duke University, Durham, NC
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Katherine S. Garman
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Andrew S. Barbas
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Debra L. Sudan
- Duke Ex-Vivo Organ Lab (DEVOL), Division of Abdominal Transplantation, Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC
| | - Liara M. Gonzalez
- Intestinal Regenerative Medicine Lab, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
9
|
Liu L, Liu Y, Zhou X, Xu Z, Zhang Y, Ji L, Hong C, Li C. Analyzing the metabolic fate of oral administration drugs: A review and state-of-the-art roadmap. Front Pharmacol 2022; 13:962718. [PMID: 36278150 PMCID: PMC9585159 DOI: 10.3389/fphar.2022.962718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Villegas-Novoa C, Wang Y, Sims CE, Allbritton NL. Development of a Primary Human Intestinal Epithelium Enriched in L-Cells for Assay of GLP-1 Secretion. Anal Chem 2022; 94:9648-9655. [PMID: 35758929 DOI: 10.1021/acs.analchem.2c00912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus is a chronic disease associated with obesity and dysregulated human feeding behavior. The hormone glucagon-like peptide 1 (GLP-1), a critical regulator of body weight, food intake, and blood glucose levels, is secreted by enteroendocrine L-cells. The paucity of L-cells in primary intestinal cell cultures including organoids and monolayers has made assays of GLP-1 secretion from primary human cells challenging. In the current paper, an analytical assay pipeline consisting of an optimized human intestinal tissue construct enriched in L-cells paired with standard antibody-based GLP-1 assays was developed to screen compounds for the development of pharmaceuticals to modulate L-cell signaling. The addition of the serotonin receptor agonist Bimu 8, optimization of R-spondin and Noggin concentrations, and utilization of vasoactive intestinal peptide (VIP) increased the density of L-cells in a primary human colonic epithelial monolayer. Additionally, the incorporation of an air-liquid interface culture format increased the L-cell number so that the signal-to-noise ratio of conventional enzyme-linked immunoassays could be used to monitor GLP-1 secretion in compound screens. To demonstrate the utility of the optimized analytical method, 21 types of beverage sweeteners were screened for their ability to stimulate GLP-1 secretion. Stevioside and cyclamate were found to be the most potent inducers of GLP-1 secretion. This platform enables the quantification of GLP-1 secretion from human primary L-cells and will have broad application in understanding L-cell formation and physiology and will improve the identification of modulators of human feeding behavior.
Collapse
Affiliation(s)
- Cecilia Villegas-Novoa
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|