1
|
Fang T, Zhang R, Song F, Chu X, Fu Q, Wu Q. miR-468-3p suppresses osteogenic differentiation of BMSCs by targeting Runx2 and inhibits bone formation. J Orthop Surg Res 2024; 19:887. [PMID: 39734217 DOI: 10.1186/s13018-024-05410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024] Open
Abstract
An improved understanding of the molecular actions underpinning bone marrow mesenchymal stem cell (BMSC) differentiation could highlight new therapeutics for osteoporosis (OP). Current evidence indicates that microRNAs (miRNAs) exert critical roles in many biological systems, including osteoblast differentiation. In this study, we examined miR-468-3p effects on osteogenic differentiation (OD). Distinct miR-468-3p reductions were identified during OD. MiR-468-3p also suppressed BMSC OD in gain- and loss-of-function assays, while it negatively regulated Runx2 as shown by molecular, protein, and bioinformatics approaches. When Runx2 was inhibited by small-interfering RNA (siRNA), the inhibitory effects of miR-468-3p toward BMSC osteogenesis were considerably reversed. Also, silenced miR-468-3p in ovariectomized (OVX) and sham mice augmented bone mass (BM) and bone formation (BF) and improved trabecular (Tb) microarchitecture. Therefore, miR-468-3p is a novel Runx2 regulator with key physiological action in BF and OD.
Collapse
Affiliation(s)
- Tao Fang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, 266000, China
| | - Ranxi Zhang
- Department of Spine Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, 266000, China
| | - Feng Song
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, 266000, China
| | - Xueru Chu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266000, China
| | - Qin Fu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Qianqian Wu
- Department of Cardiology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Liu J, Cheng J, Zhou H, Zuo Q, Liu F. CRNDE alleviates IL-1β-induced chondrocyte damage by modulating miR-31/NF-κB pathway. J Orthop Surg Res 2024; 19:860. [PMID: 39702223 DOI: 10.1186/s13018-024-05182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/17/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The long non-coding RNA CRNDE (CRNDE) has been identified as a lncRNA associated with osteoarthritis (OA), playing a role the age-related degeneration of articular cartilage. However, the precise mechanism by which CRNDE affects the physiological functions of OA chondrocytes remains unclear. METHODS To simulate the inflammatory conditions observed in OA, interleukin (IL)-1β-stimulated chondrocyte C-28/I2 cells were utilized. The expression levels of CRNDE and miR-31 were assessed using reverse transcription-polymerase chain reaction (RT-PCR). Chondrocyte viability and apoptosis were evaluated through CCK-8 assay and flow cytometry, respectively. The levels of IL-6, IL-1β and Tumor necrosis factor (TNF-α) were determined using enzyme-linked immunosorbent assay (ELISA). mRNA expression levels of MMP-13, Aggrecan and COL2A1 were detected by quantitative RT-PCR. Western blot analysis was performed to evaluate the protein levels of factors related to cartilage matrix degradation, including p-p65, p65 and p-IκBα of the NF-κB pathway. RESULTS CRNDE expression was downregulated in both OA cartilage tissues and IL-1β-stimulated chondrocytes. Overexpression of CRNDE mitigated IL-1β-stimulated chondrocytes apoptosis, inflammatory responses, and cartilage matrix degradation. Compared with healthy controls, OA tissues exhibited reduced expression of miR-31, which was negatively correlated with the expression of CRNDE. Additionally, overexpression of miR-31 partially reversed the inhibitory effects of CRNDE on apoptosis, inflammation, cartilage matrix degradation, and the inactivation of Nuclear factor (NF)-κB pathway induced by IL-1β stimulation. Moreover, silencing of CRNDE exacerbated IL-1β-induced chondrocytes damage, which was aliviated by the NF-κB pathway inhibitor, Bay 11-7082. CONCLUSION CRNDE alleviated IL-1β-induced injuries in OA chondrocytes by suppressing the miR-31-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jiuxiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, NanjingJiangsu Province, 210029, China.
| | - Jiangqi Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, NanjingJiangsu Province, 210029, China
| | - Hao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, NanjingJiangsu Province, 210029, China
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, NanjingJiangsu Province, 210029, China.
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), No. 300 Guangzhou Road, NanjingJiangsu Province, 210029, China.
| |
Collapse
|
3
|
Zhang Z, Wang L, Zhang F, Jing S, Cen M. Functional mechanism and clinical implications of mir-1271-5p in pilon fracture healing processes. J Orthop Surg Res 2024; 19:782. [PMID: 39578827 PMCID: PMC11583746 DOI: 10.1186/s13018-024-05291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Pilon fractures are challenging to treat and carry a risk of delayed healing. MicroRNA (miRNA) is closely associated with various diseases due to its ability to regulate gene expression. Consequently, this study aimed to examine the connection between miR-1271-5p expression levels and pilon fracture healing processes, while also exploring the underlying mechanisms. The objective of this research was to provide valuable insights for the future clinical treatment of pilon fractures. MATERIALS Venous blood samples were obtained for RNA extraction from patients with normal healing (n = 107) or delayed healing (n = 45) of pilon fractures. The expression levels of miR-1271-5p were measured using qRT-PCR. MiR-1271-5p and ZBTB7A biological functions in MC3T3-E1 cells were examined using the Cell Counting Kit-8 (CCK-8), flow cytometry, and qRT-PCR. Finally, an investigation into the underlying mechanisms was carried out using a dual luciferase reporter assay. RESULTS This study found that, compared to those who healed normally, patients who experienced delayed healing of pilon fractures had significantly higher expression of miR-1271-5p. This suggests that miR-1271-5p may be an indicator for delayed healing in pilon fractures. Moreover, the upregulation of miR-1271-5p may result in a reduction of ZBTB7A expression, which is thought to mediate the effects of miR-1271-5p on MC3T3-E1 cell activities. CONCLUSIONS MiR-1271-5p was involved in the healing processes of pilon fractures via targeting ZBTB7A. MiR-1271-5p was a possible target for the therapy of pilon fractures.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Wang
- Department of Joint and Trauma Surgery, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Fangyuan Zhang
- Department of Trauma Surgery, First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Shaochun Jing
- Department of Traumatic Arthropathy, The Second Hospital of Qinhuangdao, No. 133, Chaoyang South Street, Changli County, Qinhuangdao City, 066000, Hebei Province, China.
| | - Meini Cen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Youjiang District, Baise, 533000, Guangxi, China.
| |
Collapse
|
4
|
Wu X, Shen T, Ji W, Huang M, Sima J, Li J, Song H, Xiong W, Cen M. lncRNA CASC11 regulates the progress of delayed fracture healing via sponging miR-150-3p. J Orthop Surg Res 2024; 19:757. [PMID: 39543626 PMCID: PMC11562309 DOI: 10.1186/s13018-024-05226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) plays a pivotal role in bone regeneration by interaction with microRNAs (miRNAs) and constructing a lncRNA-miRNA regulatory network. OBJECTIVES This research aimed to elucidate the role of lncRNA CASC11 in the delayed healing process of tibial fractures and to explore its potential regulatory mechanisms. MATERIALS AND METHODS The expression levels of CASC11 and miR-150-3p in serum samples were detected and the predictive capability of CASC11 regarding delayed healing in fracture patients. Furthermore, the study confirmed the accuracy of the binding sites between CASC11 and miR-150-3p. Subsequently, overexpression/interference plasmids of CASC11, along with overexpression plasmids co-transfected with both CASC11 and miR-150-3p, were systematically introduced into MC3T3-E1 cells to investigate their effects on the expression of osteogenic marker genes, as well as their influence on cellular proliferation and apoptosis. RESULTS The expression levels of CASC11 were significantly elevated, while miR-150-3p levels were markedly decreased in individuals exhibiting delayed fracture healing (P < 0.001). CASC11 was observed to suppress the expression of osteogenic marker genes, inhibit the proliferation of MC3T3-E1 cells, and promote cell apoptosis (P < 0.05). Furthermore, the overexpression of miR-150-3p effectively countered the inhibitory impact of CASC11 on osteogenic differentiation and the promoting effect on cell apoptosis (P < 0.05). CONCLUSION The sponging effect of CASC11 on miR-150-3p led to delayed fracture healing. CASC11 emerges as a potential target for treating delayed fracture healing.
Collapse
Affiliation(s)
- Xiaoming Wu
- Orthopedics, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Tuwang Shen
- Operating Room, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, China
| | - Wenjun Ji
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Miao Huang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Jincheng Sima
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Jin Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Hao Song
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Wei Xiong
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China.
| | - Meini Cen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Youjiang District, Baise, Guangxi, 533000, China.
| |
Collapse
|
5
|
Costa V, Terrando S, Bellavia D, Salvatore C, Alessandro R, Giavaresi G. MiR203a-3p as a potential biomarker for synovial pathology associated with osteoarthritis: a pilot study. J Orthop Surg Res 2024; 19:746. [PMID: 39533317 PMCID: PMC11558974 DOI: 10.1186/s13018-024-05237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative musculoskeletal disease that significantly impacts the quality of life. Currently, no validated biomarkers for early detection of OA are defined. The possibility of discovering OA biomarkers is the focus of this study. METHODS Human primary OA synovial cells (SVs), isolated from discarded joint tissue of patients with Kellgren & Lawrence score (KL) < 3, (mild/moderate) and KL ≥ 3 (severe), were characterized by FACS analysis. Through qRT-PCR and ELISA assays the inflammation, fibrosis status and the different miRNAs expression has been investigated. The role of miR-203a-3p and its precursors were evaluated through gain and loss of function study, IL-1β synoviocytes treatments and methylation analysis of miR203a promoter. The qRT-PCR analysis of miR203a-3p and pre-miR203a on plasma (isolated 24 h before surgery, 3 days and 1 month after surgery) and synovial fluid (recovered during the surgery) were done to support our in vitro data. RESULTS MiR203a-3p expression is inversely correlated with the aggressiveness of OA, modulating the expression of epithelial to mesenchymal transition (EMT) and pro-inflammatory factors, as well as regulating the expression of secreted protein acidic and rich in cysteine (SPARC) mRNA. Methylation analysis of the miR203a promoter and SVs IL-1β treatment's highlighted the impact of inflammation on miR203a-3p and pre-miR203a expression; as confirmed by both miRNAs detection in biological fluids derived from patients with severe OA. CONCLUSION Our preliminary results suggest that miR-203a-3p might be a potential candidate for staging OA progression and a new protective/predictive biomarker for synovial OA degeneration. Further studies are needed to validate its potential impact on OA.
Collapse
Affiliation(s)
- Viviana Costa
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Silvio Terrando
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Daniele Bellavia
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | - Caruccio Salvatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, 90133, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133, Palermo, Italy
- Istituto Per La Ricerca E L'Innovazione Biomedica (IRIB-CNR), 90133, Palermo, Italy
| | - Gianluca Giavaresi
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
6
|
Park SH, Kim J, Yang HJ, Lee JY, Kim CH, Hur JK, Park SB. CRISPR activation identifies a novel miR-2861 binding site that facilitates the osteogenesis of human mesenchymal stem cells. J Orthop Surg Res 2024; 19:730. [PMID: 39506798 PMCID: PMC11542479 DOI: 10.1186/s13018-024-05163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
We investigated the regulation of histone deacetylases (HDACs) by miR-2861 in the osteoblastic differentiation of human mesenchymal stem cells (MSCs) and miR-2861 binding site by CRISPR activation (CRISPRa). Transfection of miR-2861 into human MSCs was performed and the effect on osteoblast differentiation was analyzed. Using catalytically inactive Cas12a, the CRISPRa system induced targeted overexpression of endogenous miRNA and repressed the luciferase activities of reporters that contained functional miRNA target sites. The delivery of miR-2861 into MSCs enhanced osteoblast differentiation by decreased expressions of the HDAC1, 4 and 5 genes. The mechanism of HDAC5 repression by miR-2861 in humans has not been fully elucidated. To this end, the HDAC5 mRNA sequence was analyzed and a putative primate-specific miR-2861 binding site was identified in the 3' untranslated region (3'-UTR). CRISPRa was applied to validate the putative binding site and an increase in endogenous miR-2861 was found to repress the expression of a reporter that contained the novel miR-2861 binding site. The delivery of miR-2861 to human MSCs enhanced osteoblast differentiation. In the 3'-UTR, the HDAC5 repression was mediated by the miR-2861 binding site, and miR-2861 promoted osteoblast differentiation via the inhibition of HDAC5 through a primate-specific miRNA binding site. Therefore, miRNAmiR-2861 with the CRISPRa methods might be a good biomaterial for osteogenesis augmentation.
Collapse
Affiliation(s)
- Seong-Ho Park
- Department of Medicine, Major in Medical Genetics, Graduate School, Hanyang University, Seoul, Korea
| | - Jungwoo Kim
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Hee-Jin Yang
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Ju Yeon Lee
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Junho K Hur
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
- Department of Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| | - Sung Bae Park
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea.
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Gao D, Shi J, Lu S, Li J, Lv K, Xu Y, Song M. METTL3 accelerates staphylococcal protein A (SpA)-induced osteomyelitis progression by regulating m6A methylation-modified miR-320a. J Orthop Surg Res 2024; 19:729. [PMID: 39506767 PMCID: PMC11542406 DOI: 10.1186/s13018-024-05164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Osteomyelitis (OM) is an inflammatory disease of bone infection and destruction characterized by dysregulation of bone homeostasis. Staphylococcus aureus (SA) has been reported to be the most common pathogen causing infectious OM. Recent studies have demonstrated that N6-methyladenosine (m6A) regulators are associated with the development of OM. However, the molecular mechanism of m6A modifications in OM remains unclear. Here, we investigated the function of methyltransferase-like 3 (METTL3)-mediated m6A modification in OM development. In this study, human bone mesenchymal stem cells (hBMSCs) were treated with staphylococcal protein A (SpA), a vital virulence factor of SA, to construct cell models of OM. Firstly, we found that METTL3 was upregulated in OM patients and SpA-induced hBMSCs, and SpA treatment suppressed osteogenic differentiation and induced oxidative stress and inflammatory injury in hBMSCs. Functional experiments showed that METTL3 knockdown alleviated the inhibition of osteogenic differentiation and the promotion of oxidative stress and inflammation in SpA-treated hBMSCs. Furthermore, METTL3-mediated m6A modification upregulated miR-320a expression by promoting pri-miR-320a maturation, and the mitigating effects of METTL3 knockdown on SpA-mediated osteogenic differentiation, oxidative stress and inflammatory responses can be reversed by miR-320 mimic. In addition, we demonstrated that phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) was a downstream target of miR-320a, upregulation of PIK3CA alleviated miR-320a-induced inhibition of osteogenic differentiation, and upregulation of oxidative stress and inflammatory responses during SpA infection. Finally, we found that silencing METTL3 alleviated OM development by regulating the miR-320a/PIK3CA axis. Taken together, our data demonstrated that the METTL3/m6A/miR-320a/PIK3CA axis regulated SpA-mediated osteogenic differentiation, oxidative stress, and inflammatory responses in OM, which may provide a new therapeutic strategy for OM patients.
Collapse
Affiliation(s)
- Ding Gao
- Department of Orthopedic Trauma Surgery, Meizhou People's Hospital, Meizhou, 514031, China
| | - Jian Shi
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China
| | - Siyu Lu
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China
| | - Junyi Li
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China
- Graduate School of Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, China
| | - Kehan Lv
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China
- Graduate School of Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, China
| | - Yongqing Xu
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China.
| | - Muguo Song
- Department of Orthopedics, 920th Hospital of the Joint Logistics Force of the People's Liberation Army, No. 212, Daguan Road, Xishan District, Kunming, 650032, China.
- Graduate School of Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, China.
| |
Collapse
|
8
|
Dong L, Ji F, Guo XQ, Wang GG, Xie J. The role of lncRNA TSIX in osteoarthritis pathogenesis: mechanistic insights and clinical biomarker potential. J Orthop Surg Res 2024; 19:722. [PMID: 39497068 PMCID: PMC11536947 DOI: 10.1186/s13018-024-05207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/26/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND This study seeks to elucidate the expressions of lncRNA TSIX in Osteoarthritis (OA) and to explore its mechanisms in regulating OA progression. METHODS RT-qPCR was employed to analyze the expression of TSIX in OA patients classified by Kellgren-Lawrence (K-L) grades. Receiver operator characteristic (ROC) was conducted to evaluate the diagnostic value of TSIX. Correlation between TSIX levels and clinical scores such as Lysholm and visual analogue scale (VAS) score was evaluated using Pearson method. IL-1β-induced SW1353 cells served as an in vitro model. The cell function were assessed by flow cytometry and cell counting kit-8 (CCK-8) assay. The relationship between TSIX and miR-320a was verified by luciferase reporting system, while bioinformatics approaches were utilized to predict the downstream target genes of miR-320a. RESULTS The findings revealed that TSIX level in OA patients was elevated compared to that of the control group, with a notable progressive increase in TSIX expression correlated with higher K-L grades. In OA patients, the Lysholm score showed a negative correlation with TSIX expression, while the VAS score displayed a positive correlation with TSIX levels. Cell studies demonstrated that inhibition of TSIX enhanced cell viability and mitigated IL-1β-induced apoptosis by targeting miR-320a, in addition to promoting Aggrecan and Collagen II secretion. Luciferase reporter assay further validated the targeting interaction among TSIX, miR-320a, and PTEN. CONCLUSIONS This study demonstrated an increased expression of TSIX in OA patients. It suggests that TSIX may play a role in chondrocyte dysfunction during OA by modulating the miR-320a/PTEN axis.
Collapse
Affiliation(s)
- Liangchao Dong
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Futao Ji
- Orthopaedic Center, Zhengzhou 460 Hospital, Zhengzhou, 450007, China
| | - Xiu-Quan Guo
- Department of Spinal Surgery, Zhucheng People's Hospital, Weifang, Shandong, China
| | - Gang-Gang Wang
- Department of Hand and Foot Surgery, Zhucheng People's Hospital, 59 South Ring Road, Zhucheng, Weifang, 262200, Shandong, China.
| | - Junhui Xie
- Department of Geriatric Orthopedics, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Hospital), No. 9 Pingle Road, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Lan X, Yu R, Xu J. Identification of circRNA CDR1as/miR-214-3p regulatory axis in Legg-Calvé-Perthes disease. Orphanet J Rare Dis 2024; 19:380. [PMID: 39407304 PMCID: PMC11481470 DOI: 10.1186/s13023-024-03394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease (LCPD) commonly occurs among adolescents, threatening their health. However, the potential mechanism underlying LCPD remains unclear. miR-214-3p is shown as a critical role in LCPD development with unspecified upstream regulators. METHODS Levels of miR-214-3p and circCDR1as in healthy controls and LCPD patients were determined by qRT-PCR. The role of circCDR1as/miR-214-3p axis in LCPD was determined by testing the cell viability and apoptosis in TC28 cells and primary chondrocytes. Regulation between circCDR1as and miR-214-3p was examined by RIP and ChIP assays. The inflammatory response and angiogenesis were evaluated by M2 macrophage polarization and HUVECs tumor formation. RESULTS circCDR1as was overexpressed in LCPD patients with a negative correlation with miR-214-3p. Inhibition of circCDR1as alleviated the cell viability and apoptosis of DEX-treated chondrocytes, stimulated M2 macrophage polarization and angiogenesis. miR-214-3p was proved as a downstream effector to participate in circCDR1as mediated actions. circCDR1as recruited PRC2 complex to epigenetically suppress miR-214-3p. CONCLUSION Our study illustrated the role and mechanism of circCDR1as in LCPD development by targeting miR-214-3p, highlighting its potential in the therapy for LCPD.
Collapse
Affiliation(s)
- Xia Lan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China.
| | - Ronghui Yu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Jianyun Xu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1519, Dongyue Avenue, Nanchang, Jiangxi Province, 330006, P.R. China
| |
Collapse
|
10
|
Zhao J, Xia Y. Low shear stress protects chondrocytes from IL-1β-induced apoptosis by activating ERK5/KLF4 signaling and negatively regulating miR-143-3p. J Orthop Surg Res 2024; 19:656. [PMID: 39402582 PMCID: PMC11476932 DOI: 10.1186/s13018-024-05140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This study investigated the protective effects of low fluid shear stress (FSS ≤ 2 dyn/cm²) against interleukin-1β (IL-1β)-induced chondrocyte apoptosis and explored the underlying molecular mechanisms. METHODS Chondrocytes were cultured under four conditions: control, IL-1β stimulation, low FSS, and combined low FSS + IL-1β stimulation. Apoptosis was assessed using Hoechst staining and flow cytometry. Western blotting determined the expression of caspase-3 (CASP3), caspase-8 (CASP8), and NF-κB p65. Quantitative real-time PCR measured miR-143-3p expression. The roles of miR-143-3p and the extracellular signal-regulated kinase 5 (ERK5)/Krüppel-like factor 4 (KLF4) signaling pathway were further investigated using miR-143-3p mimics and inhibitors, an ERK5 inhibitor, and a KLF4 overexpression vector. RESULTS IL-1β induced significant chondrocyte apoptosis, which was markedly inhibited by low FSS. Mechanistically, low FSS suppressed miR-143-3p expression, thereby enhancing ERK5 signaling. This activated ERK5 subsequently upregulated KLF4 expression, further mitigating IL-1β-induced damage. Importantly, miR-143-3p overexpression under low FSS conditions exacerbated IL-1β-induced apoptosis, while miR-143-3p inhibition attenuated it. Consistent with this, ERK5 inhibition augmented IL-1β-induced apoptosis, whereas KLF4 overexpression suppressed it. CONCLUSION Low FSS protects chondrocytes from IL-1β-induced apoptosis by suppressing miR-143-3p and activating the ERK5/KLF4 signaling pathway. This study reveals a novel mechanism by which mechanical stimulation protects cartilage.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, Gansu, 730000, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, #82 Cuiyingmen, Lanzhou, Gansu, 730000, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
11
|
Tan YL, Ju SH, Wang Q, Zhong R, Gao JH, Wang MJ, Kang YL, Xu MZ. Shuanglongjiegu pill promoted bone marrow mesenchymal stem cell osteogenic differentiation by regulating the miR-217/RUNX2 axis to activate Wnt/β-catenin pathway. J Orthop Surg Res 2024; 19:617. [PMID: 39350234 PMCID: PMC11443779 DOI: 10.1186/s13018-024-05085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
This study aimed to investigate the effects of Shuanglongjiegu pill (SLJGP) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explore its mechanism based on miR-217/RUNX2 axis. Results found that drug-containing serum of SLJGP promoted BMSCs viability with a dose-dependent effect. Under osteogenic differentiation conditions, SLJGP promoted the expression of ALP, OPN, BMP2, RUNX2, and the osteogenic differentiation ability of BMSCs. In addition, SLJGP significantly reduced miR-217 expression, and miR-217 directly targeted RUNX2. After treatment with miR-217 mimic, the promoting effects of SLJGP on proliferation and osteogenic differentiation of BMSCs were significantly inhibited. MiR-217 mimic co-treated with pcDNA-RUNX2 further confirmed that the miR-217/RUNX2 axis was involved in SLJGP to promote osteogenic differentiation of BMSCs. In addition, analysis of Wnt/β-catenin pathway protein expression showed that SLJGP activated the Wnt/β-catenin pathway through miR-217/RUNX2. In conclusion, SLJGP promoted osteogenic differentiation of BMSCs by regulating miR-217/RUNX2 axis and activating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- You-Li Tan
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China.
| | - Shao-Hua Ju
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Qiang Wang
- Department of Rehabilitation of sports medicine, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Rui Zhong
- Department of Orthopedics, Affiliated Sports Hospital of Chengdu Sport University, Chengdu, 610041, China
| | - Ji-Hai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming-Jian Wang
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Ya-Lan Kang
- Department of Pharmacy, Affiliated Sport Hospital of CDSU, Chengdu Sport University, Chengdu, 610041, China
| | - Meng-Zhang Xu
- Department of Neck, Shoulder, Waist, and Leg Pain, Sichuan Province Orthopedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Tang C, Huang L, Guo XQ, Wang GG, Chen Z. LINC01133 promotes the osteogenic differentiation of bone marrow mesenchymal stem cells by upregulating CTNNB1 by acting as a sponge for miR-214-3p. J Orthop Surg Res 2024; 19:572. [PMID: 39285416 PMCID: PMC11406849 DOI: 10.1186/s13018-024-05053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Osteoporosis results from decreased bone mass and disturbed bone structure. Human bone marrow mesenchymal stem cells (hBMSCs) demonstrate robust osteogenic differentiation, a critical process for bone formation. This research was designed to examine the functions of LINC01133 in osteogenic differentiation. METHODS Differentially expressed lncRNAs affecting osteogenic differentiation in hBMSCs were identified from the GEO database. A total of 74 osteoporosis patients and 70 controls were enrolled. hBMSCs were stimulated to undergo osteogenic differentiation using an osteogenic differentiation medium (OM). RT-qPCR was performed to evaluate LINC01133 levels and osteogenesis-related genes such as osteocalcin, osteopontin, and RUNX2. An alkaline phosphates (ALP) activity assay was conducted to assess osteogenic differentiation. Cell apoptosis was detected using flow cytometry. Dual luciferase reporter assay and RIP assay were employed to investigate the association between miR-214-3p and LINC01133 or CTNNB1. Loss or gain of function assays were conducted to elucidate the impact of LINC01133 and miR-214-3p on osteogenic differentiation of hBMSCs. RESULTS LINC01133 and CTNNB1 expression decreased in osteoporotic patients but increased in OM-cultured hBMSCs, whereas miR-214-3p showed an opposite trend. Depletion of LINC01133 suppressed the expression of genes associated with bone formation and ALP activity triggered by OM in hBMSCs, leading to increased cell apoptosis. Nevertheless, this suppression was partially counteracted by the reduced miR-214-3p levels. Mechanistically, LINC01133 and CTNNB1 were identified as direct targets of miR-214-3p. CONCLUSIONS Our study highlights the role of LINC01133 in positively regulating CTNNB1 expression by inhibiting miR-214-3p, thereby promoting osteogenic differentiation of BMSCs. These findings may provide valuable insights into bone regeneration in osteoporosis.
Collapse
Affiliation(s)
- Chao Tang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Lina Huang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiu-Quan Guo
- Department of Spinal Surgery, Zhucheng People's Hospital, Weifang, Shandong, China
| | - Gang-Gang Wang
- Department of Hand and Foot Surgery, Zhucheng People's Hospital, 59 South Ring Road, Zhucheng, Weifang, 262200, Shandong, China.
| | - Zhigang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
13
|
Zhou S, Ma W, Li Y, Liu L, Lu S. Analysis of the predictive value of microRNA-199b-5p combined with nitric oxide for venous thrombosis in patients undergoing total knee arthroplasty. J Orthop Surg Res 2024; 19:505. [PMID: 39182115 PMCID: PMC11344363 DOI: 10.1186/s13018-024-04997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Deep vein thrombosis (DVT) of lower extremity is a common complications after total knee arthroplasty (TKA). The purpose of this study was to evaluate the risk factors for DVT after TKA and analyze the expression of miR-199b-5p and nitric oxide (NO) before and after TKA, as well as their predictive value for DVT. METHODS Basic clinical information of 121 patients with TKA was analyzed retrospectively. RT-qPCR was used to detect the relative expression level of miR-199b-5p in patients before and after TKA treatment. Based on the occurrence of DVT, patients were divided into DVT and non-DVT groups. Logistic regression analysis evaluated the risk factors of DVT. The receiver operating characteristic (ROC) curve assessed the predictive value of postoperative miR-199b-5p level, preoperative NO level, and their combination in DVT. The target genes of miR-199b-5p and their functions were predicted and annotated using bioinformatics analysis. RESULTS The level of miR-199b-5p after TKA was upregulated compared with that before TKA (P < 0.001). DVT occurred in 20 of 121 patients after TKA, with an incidence of 16.53%. Multivariate analysis showed that age, family history of DVT, decrease of NO and increase of miR-199b-5p were risk factors for DVT after TKA (P < 0.05). The ROC curve showed that both miR-199b-5p and NO had certain diagnostic value for DVT, but the combination of miR-199b-5p and NO had the highest diagnostic accuracy (P < 0.001). CONCLUSION This study showed that the expression of miR-199b-5p was up-regulated after TKA, and miR-199b-5p levels were higher in DVT patients than in non-DVT patients. miR-199b-5p combined with NO is of great value in the diagnosis of DVT after TKA.
Collapse
Affiliation(s)
- Shen Zhou
- Department of Articular Surgery, XuZhou Renci Hospital, Xuzhou, 221400, China
| | - Wenhan Ma
- Department of Cardiology, the Second Hospital of Shandong University, Jinan, 250022, China
| | - Yuan Li
- Department of General Practice, Affiliated Hospital of Panzhihua University, 27 Taoyuan Street, Panzhihua, 617200, Sichuan, China
| | - Li Liu
- Department of General Practice, Affiliated Hospital of Panzhihua University, 27 Taoyuan Street, Panzhihua, 617200, Sichuan, China.
| | - Shenyi Lu
- Department of Rehabilitation, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Youjiang District, Baise, 533000, Guangxi, China.
| |
Collapse
|
14
|
Na C, Ao D, Chen H. MiR-331-3p facilitates osteoporosis and may promote osteoporotic fractures by modulating NRP2 expression. J Orthop Surg Res 2024; 19:487. [PMID: 39154011 PMCID: PMC11330005 DOI: 10.1186/s13018-024-04959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a high-incidence bone disease that is prone to osteoporotic fractures (OF), so it has attracted widespread attention. AIM This study investigated the specific expression and role of miR-331 in patients with OP and OF. The findings have profound implications for the clinical prevention and treatment of these conditions. METHODS The study included 60 OP patients, 46 OF patients, and 40 healthy controls. The expression level of miR-331-3p was detected using RT-qPCR. BMP2 was used to stimulate differentiation in MC3T3-E1 cells. After induction, the expression activity of osteogenic differentiation-related gene markers was detected using RT-qPCR. The target gene analysis was conducted using a luciferase reporter assay. RESULTS The levels of miR-331-3p were significantly elevated, while NRP2 levels were significantly reduced in OF patients. Post-surgery, miR-331-3p levels decreased over time. MiR-331-3p was found to negatively regulate the luciferase activity of NPR2 in MC3T3-E1 cells. Furthermore, overexpression of miR-331-3p inhibited cell proliferation and decreased the levels of osteoblast differentiation markers. CONCLUSION The up-regulation of miR-331-3p can promote OP and might also encourage the occurrence of OF by regulating NRP2. However, this needs further verification.
Collapse
Affiliation(s)
- Cikedaoerji Na
- Sports Medicine Department of The Sixth Affiliated Hospital of Xinjiang Medical University, No.39, Wuxing South Road, Urumqi City, 830000, China
| | - Denggaowa Ao
- Oncology Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Hongtao Chen
- Sports Medicine Department of The Sixth Affiliated Hospital of Xinjiang Medical University, No.39, Wuxing South Road, Urumqi City, 830000, China.
| |
Collapse
|
15
|
Xie L, Li W, Li Y. mir-744-5p inhibits cell growth and angiogenesis in osteosarcoma by targeting NFIX. J Orthop Surg Res 2024; 19:485. [PMID: 39152460 PMCID: PMC11330078 DOI: 10.1186/s13018-024-04947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumor that commonly occurs in children and adolescents under the age of 20. Dysregulation of microRNAs (miRNAs) is an important factor in the occurrence and progression of OS. MicroRNA miR-744-5p is aberrantly expressed in various tumors. However, its roles and molecular targets in OS remain unclear. METHODS Differentially expressed miRNAs in OS were analyzed using the Gene Expression Omnibus dataset GSE65071, and the potential hub miRNA was identified through weighted gene co-expression network analysis. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-744-5p in OS cell lines. In vitro experiments, including CCK-8 assays, colony formation assays, flow cytometry apoptosis assays, and tube formation assays, were performed to explore the effects of miR-744-5p on OS cell biological behaviors. The downstream target genes of miR-744-5p were predicted through bioinformatics, and the binding sites were validated by a dual-luciferase reporter assay. RESULTS The lowly expressed miRNA, miR-744-5p, was identified as a hub miRNA involved in OS progression through bioinformatic analysis. Nuclear factor I X (NFIX) was confirmed as a direct target for miR-744-5p in OS. In vitro studies revealed that overexpression of miR-744-5p could restrain the growth of OS cells, whereas miR-744-5p inhibition showed the opposite effect. It was also observed that treatment with the conditioned medium from miR-744-5p-overexpressed OS cells led to poorer proliferation and angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, NFIX overexpression restored the suppression effects of miR-744-5p overexpression on OS cell growth and HUVECs angiogenesis. CONCLUSION Our results indicated that miR-744-5p is a potential tumor-suppressive miRNA in OS progression by targeting NFIX to restrain the growth of OS cells and angiogenesis in HUVECs.
Collapse
Affiliation(s)
- Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Yu Li
- First Ward of Trauma Orthopaedics, Yantai Shan Hospital, Yantai, Shandong, 264003, China.
| |
Collapse
|
16
|
Kang R, Huang L, Zeng T, Ma J, Jin D. Long non-coding TRPM2-AS regulates fracture healing by targeting miR-545-3p/Bmp2. J Orthop Surg Res 2024; 19:466. [PMID: 39118176 PMCID: PMC11308420 DOI: 10.1186/s13018-024-04969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE Delayed fracture healing increases the suffering of patients. An in-depth investigation of the pathogenesis of delayed fracture healing may offer new direction for the prevention and treatment. METHODS The study included 63 normal healing tibial fractures and 58 delayed healing tibial fractures patients. Long non-coding RNA (lncRNA)TRPM2-AS, microRNA-545-3p (miR-545-3p), bone morphogenetic protein 2 (Bmp2) mRNA and osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), and alkaline phosphatase (Alp) mRNA expression were determined by Real-time quantitative reverse transcription-polymerase chain reaction in serum and MC3T3-E1 cells. The prediction potential of TRPM2-AS in delayed healing fracture patients was verified by receiver operating characteristic curves. The binding relationship of TRPM2-AS/miR-545-3p/Bmp2 was evaluated by dual luciferase reporter gene assay. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry. RESULTS TRPM2-AS was remarkably down-regulated in patients with delayed fracture healing and could better predict the fracture healing status. TRPM2-AS downregulation inhibited osteogenic markers mRNA expression, restrained proliferation, and promoted apoptosis of MC3T3-E1 cells (p < 0.05). In delayed fracture healing, miR-545-3p was dramatically up-regulated and was negatively regulated by TRPM2-AS. Reducing miR-545-3p eliminate the negative effect of TRPM2-AS down-regulation on osteoblast proliferation and differentiation (p < 0.05). miR-545-3p targets Bmp2, which plays a positive role in osteoblast differentiation (p < 0.05). CONCLUSION This study found that TRPM2-AS has the potential to be a diagnostic marker for delayed fracture healing and revealed that the TRPM2-AS/miR-545-3p/Bmp2 axis affects fracture healing by regulating osteoblast.
Collapse
Affiliation(s)
- Renjie Kang
- Department of Orthopedics, Peking University First Hospital Taiyuan Hospital, Taiyuan, 030000, China
| | - Lina Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Teng Zeng
- Department of Orthopedics, The First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, No. 8, Hangkong Road, Shashi District, Jingzhou, 434000, China
| | - Jinliang Ma
- Department of Orthopedics, The First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, No. 8, Hangkong Road, Shashi District, Jingzhou, 434000, China.
| | - Danjie Jin
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68, Gehu Middle Road, Wujin District, Changzhou, 213000, China.
| |
Collapse
|
17
|
Zhong L, Sun Y, Wang C, Liu R, Ru W, Dai W, Xiong T, Zhong A, Li S. SP1 regulates BMSC osteogenic differentiation through the miR-133a-3p/MAPK3 axis : SP1 regulates osteogenic differentiation of BMSCs. J Orthop Surg Res 2024; 19:396. [PMID: 38982418 PMCID: PMC11232211 DOI: 10.1186/s13018-024-04889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The progression of osteoporosis (OP) can dramatically increase the risk of fractures, which seriously disturb the life of elderly individuals. Specific protein 1 (SP1) is involved in OP progression. However, the mechanism by which SP1 regulates OP progression remains unclear. OBJECTIVE This study investigated the mechanism underlying the function of SP1 in OP. METHODS SAMP6 mice were used to establish an in vivo model of age-dependent OP, and BALB/c mice were used as controls. BMSCs were extracted from two subtypes of mice. Hematoxylin and eosin staining were performed to mark the intramedullary trabecular bone structure to evaluate histological changes. ChIP assay was used to assess the targeted regulation between SP1 and miR-133a-3p. The binding sites between MAPK3 and miR-133a-3p were verified using a dual-luciferase reporter assay. The mRNA levels of miR-133a-3p and MAPK3 were detected using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The protein expression of SP1, MAPK3, Colla1, OCN, and Runx2 was examined using Western blotting. Alkaline phosphatase (ALP) kit and Alizarin Red S staining were used to investigate ALP activity and mineralized nodules, respectively. RESULTS The levels of SP1 and miR-133a-3p were upregulated, whereas the expression of MAPK3 was downregulated in BMSCs from SAMP6 mice, and miR-133a-3p inhibitor accelerated osteogenic differentiation in BMSCs. SP1 directly targeted miR-133a-3p, and MAPK3 was the downstream mRNA of miR-133a-3p. Mechanically, SP1 accelerated osteogenic differentiation in BMSCs via transcriptional mediation of the miR-133a-3p/MAPK3 axis. CONCLUSION SP1 regulates osteogenic differentiation by mediating the miR-133a-3p/MAPK3 axis, which would shed new light on strategies for treating senile OP.
Collapse
Affiliation(s)
- Liying Zhong
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Yehai Sun
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Cong Wang
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Runzhi Liu
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Wenjuan Ru
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Wei Dai
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Ting Xiong
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Aimin Zhong
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China
| | - Shundong Li
- Department of Geriatrics, The Third Hospital of Changsha, No. 176 Laodongxi Road, Tianxin District, Changsha, Hunan Province, 410015, China.
| |
Collapse
|
18
|
Dong Z, Hu B, Wang S, Wang M, Sun S, Liu X, Li D, Wu D. LncRNA MAGI2-AS3 promotes fracture healing through downregulation of miR-223-3p. J Orthop Surg Res 2024; 19:370. [PMID: 38907263 PMCID: PMC11193218 DOI: 10.1186/s13018-024-04850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are recognized as a pivotal element in the processes of fracture healing and the osteogenic differentiation of stem cells. This study investigated the molecular mechanism and regulatory significance of lncRNA MAGI2-AS3 (MAGI2-AS3) in fracture healing. METHODS Serum levels of MAGI2-AS3 in patients with normal and delayed fracture healing were verified by RT-qPCR assays. The predictive efficacy of MAGI2-AS3 for delayed fracture healing was analyzed by ROC curve. Osteogenic markers were quantified by RT-qPCR assays. MC3T3-E1 cell viability was detected using CCK-8 assay, and flow cytometry was utilized to measure cell apoptosis. The dual-luciferase reporter gene assay was used to determine the targeted binding between MAGI2-AS3 and miR-223-3p. RESULTS Serum MAGI2-AS3 expression was decreased in patients with delayed fracture healing compared with patients with normal healing. Elevated MAGI2-AS3 resulted in an upregulation of the proliferative capacity of MC3T3-E1 cells and a decrease in mortality, along with increased levels of both osteogenic markers. However, after transfection silencing MAGI2-AS3, the trend was reversed. Additionally, miR-223-3p was the downstream target of MAGI2-AS3 and was controlled by MAGI2-AS3. miR-223-3p mimic reversed the promoting effects of MAGI2-AS3 overexpression on osteogenic marker levels and cell growth, and induced cell apoptosis. CONCLUSION The upregulation of MAGI2-AS3 may expedite the healing of fracture patients by targeting miR-223-3p, offering a novel biomarker for diagnosing patients with delayed healing.
Collapse
Affiliation(s)
- Zhiqiang Dong
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, 710000, China
| | - Bingbing Hu
- Department of Orthopedics, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shantao Wang
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou City, Weifang, 262500, China.
| | - Mingwei Wang
- Department of Pediatric, Yidu Central Hospital of Weifang, Weifang, 262500, China
| | - Shengliang Sun
- Hand, Foot and Ankle Surgery, Yidu Central Hospital of Weifang, Weifang, 262500, China
| | - Xinsheng Liu
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou City, Weifang, 262500, China
| | - Danzhi Li
- Spinal Trauma Orthopedics, Yidu Central Hospital of Weifang, No.5168, Jiangjunshan Road, Qingzhou City, Weifang, 262500, China
| | - Dengjiang Wu
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China.
| |
Collapse
|
19
|
Yu C, Chen B, Su H, Yang Y. Long non-coding RNA MIAT serves as a biomarker of fragility fracture and promotes fracture healing. J Orthop Surg Res 2024; 19:343. [PMID: 38849896 PMCID: PMC11162066 DOI: 10.1186/s13018-024-04824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Fragility fracture is common in the elderly. Osteoblast differentiation is essential for bone healing and regeneration. Expression pattern of long non-coding RNA MIAT during fracture healing was examined, and its role in osteoblast differentiation was investigated. METHODS 90 women with simple osteoporosis and 90 women with fragility fractures were included. Another 90 age-matched women were set as the control group. mRNA levels were tested using RT-qPCR. Cell viability was detected via CCK-8, and osteoblastic biomarkers, including ALP, OCN, Collagen I, and RUNX2 were tested via ELISA. The downstream miRNAs and genes targeted by MIAT were predicted by bioinformatics analysis, whose functions and pathways were annotated via GO and KEGG analysis. RESULTS Serum MIAT was upregulated in osteoporosis women with high accuracy of diagnostic efficacy. Serum MIAT was even elevated in the fragility fracture group, but decreased in a time manner after operation. MIAT knockdown promoted osteogenic proliferation and differentiation of MC3T3-E1, but the influences were reversed by miR-181a-5p inhibitor. A total of 137 overlapping target genes of miR-181a-5p were predicted based on the miRDB, TargetScan and microT datasets, which were mainly enriched for terms related to signaling pathways regulating pluripotency of stem cells, cellular senescence, and osteoclast differentiation. CONCLUSIONS LncRNA MIAT serves as a promising biomarker for osteoporosis, and promotes osteogenic differentiation via targeting miR-181a-5p.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, Liaocheng People's Hospital, No. 67, West Dongchang Road, Liaocheng, 252000, China
| | - Binbin Chen
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Hui Su
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Yiqun Yang
- Department of Orthopedics, Liaocheng People's Hospital, No. 67, West Dongchang Road, Liaocheng, 252000, China.
| |
Collapse
|
20
|
Yao H, Qian J, Bian XT, Guo L, Tang KL, Tao X. miR-27b-3p reduces muscle fibrosis during chronic skeletal muscle injury by targeting TGF-βR1/Smad pathway. J Orthop Surg Res 2024; 19:329. [PMID: 38825706 PMCID: PMC11145862 DOI: 10.1186/s13018-024-04733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/13/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Fibrosis is a significant pathological feature of chronic skeletal muscle injury, profoundly affecting muscle regeneration. Fibro-adipogenic progenitors (FAPs) have the ability to differentiate into myofibroblasts, acting as a primary source of extracellular matrix (ECM). the process by which FAPs differentiate into myofibroblasts during chronic skeletal muscle injury remains inadequately explored. METHOD mouse model with sciatic nerve denervated was constructed and miRNA expression profiles between the mouse model and uninjured mouse were analyzed. qRT/PCR and immunofluorescence elucidated the effect of miR-27b-3p on fibrosis in vivo and in vitro. Dual-luciferase reporter identified the target gene of miR-27b-3p, and finally knocked down or overexpressed the target gene and phosphorylation inhibition of Smad verified the influence of downstream molecules on the abundance of miR-27b-3p and fibrogenic differentiation of FAPs. RESULT FAPs derived from a mouse model with sciatic nerves denervated exhibited a progressively worsening fibrotic phenotype over time. Introducing agomiR-27b-3p effectively suppressed fibrosis both in vitro and in vivo. MiR-27b-3p targeted Transforming Growth Factor Beta Receptor 1 (TGF-βR1) and the abundance of miR-27b-3p was negatively regulated by TGF-βR1/Smad. CONCLUSION miR-27b-3p targeting the TGF-βR1/Smad pathway is a novel mechanism for regulating fibrogenic differentiation of FAPs. Increasing abundance of miR-27b-3p, suppressing expression of TGF-βR1 and inhibiting phosphorylation of smad3 presented potential strategies for treating fibrosis in chronic skeletal muscle injury.
Collapse
Affiliation(s)
- Hang Yao
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Jin Qian
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Xu-Ting Bian
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China
| | - Lin Guo
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China.
| | - Kang-Lai Tang
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China.
| | - Xu Tao
- Center of sports, Southwest Hospital, Army Medical University, Gaotanyan Str. 30, Chongqing city, 400038, People's Republic of China.
| |
Collapse
|
21
|
Cai P, Fu X, Li X, Zhao W. Upregulation of circ_0076684 in osteosarcoma facilitates malignant processes by mediating miRNAs/CUX1. J Orthop Surg Res 2024; 19:260. [PMID: 38659042 PMCID: PMC11044396 DOI: 10.1186/s13018-024-04742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.
Collapse
Affiliation(s)
- Pengfei Cai
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Xin Fu
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Xiaofei Li
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China.
| | - Wei Zhao
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China.
| |
Collapse
|
22
|
Qian W, Mei K, Zhu L, Chu Y, Lv J, Yun C. Circ_0044235 regulates the development of osteoarthritis by the modulation of miR-375/PIK3R3 axis. J Orthop Surg Res 2024; 19:241. [PMID: 38622668 PMCID: PMC11017539 DOI: 10.1186/s13018-024-04694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play an important role in osteoarthritis (OA). However, the role of circRNA in OA is still unclear. Here, we explored the role and mechanism of circ_0044235 in OA. METHODS CHON-001 cells were treated with IL-1β to establish OA model in vitro. The levels of circ_0044235, miR-375 and phosphoinositide 3-kinase (PI3K) regulatory subunit 3 (PIK3R3) were detected by quantitative real-time PCR. Cell count kit-8 assay and flow cytometry assay were used to detect cell viability and apoptosis. The concentrations of inflammation factors were determined by enzyme-linked immunosorbent assay. Western blot was used to detect protein levels. The interaction between miR-375 and circ_0044235 or PIK3R3 was analyzed by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS Circ_0044235 was significantly decreased in OA cartilage tissue and IL-1β-treated CHON-001 cells. Overexpression of circ_0044235 promoted IL-1β-stimulated CHON-001 cell viability and inhibited apoptosis, inflammation, and extracellular matrix (ECM) degradation. In mechanism analysis, circ_0044235 could act as a sponge for miR-375 and positively regulate PIK3R3 expression. In addition, miR-375 ameliorated the effect of circ_0044235 overexpression on IL-1β-mediated CHON-001 cells injury. In addition, miR-375 inhibition mitigated IL-1β-induced CHON-001 cell injury, while PIK3R3 silencing restored the effect. CONCLUSION Circ_0044235 knockdown alleviated IL-1β-induced chondrocytes injury by regulating miR-375/PIK3R3 axis, confirming that circ_0044235 might be a potential target for OA treatment.
Collapse
Affiliation(s)
- Wenjie Qian
- Department of Joint Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu, 213002, China
- Department of Joint Orthopedics, the Wujin Clinical College of Xuzhou Medical University, Changzhou City, Jiangsu, 213002, China
| | - Kai Mei
- Department of Joint Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu, 213002, China
- Department of Joint Orthopedics, the Wujin Clinical College of Xuzhou Medical University, Changzhou City, Jiangsu, 213002, China
| | - Lei Zhu
- Department of Joint Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu, 213002, China
- Department of Joint Orthopedics, the Wujin Clinical College of Xuzhou Medical University, Changzhou City, Jiangsu, 213002, China
| | - Ying Chu
- Department of science & education, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu, 213002, China
- Department of science & education, the Wujin Clinical College of Xuzhou Medical University, Changzhou City, Jiangsu, 213002, China
| | - Jinpeng Lv
- Changzhou University, Changzhou City, Jiangsu, 213164, China
| | - Changjun Yun
- Department of Joint Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, Jiangsu, 213002, China.
- Department of Joint Orthopedics, the Wujin Clinical College of Xuzhou Medical University, Changzhou City, Jiangsu, 213002, China.
| |
Collapse
|
23
|
Ben Shimol J. Perimenopause in women with rheumatologic diseases: a spotlight on an under-addressed transition. Climacteric 2024; 27:115-121. [PMID: 37990992 DOI: 10.1080/13697137.2023.2276201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Abundant research has been published describing the effects invoked during menopause across different organ systems. Changing levels of estrogen and progesterone result in bidirectional alterations of immune cell pathways. Overall, the net trend dampens immunoregulation and promotes inflammation. In paradigmatic rheumatologic diseases, the combined effect is far from predictable. While some features may abate during menopause, studies have shown a general increased frequency toward disease exacerbation. Similarly, while impossible to isolate the ramifications of menopause in women with fibromyalgia, a tendency toward enhanced symptoms is unquestionably apparent. Furthermore, the comorbidities accrued by increasing age and the consequences of long-term medication use may also confound this picture. Periodic rheumatologic visits are warranted, with clinical assessments directed toward a multi-disciplinary approach. Ultimately, while an arsenal of effective tools is available for caring for these women and their underlying conditions, more studies are needed to better clarify how the different stages surrounding perimenopause affect subpopulations with rheumatic diseases and fibromyalgia-related disorders so that clinical course can be predicted and addressed prior to the emergence of symptomatology.
Collapse
Affiliation(s)
- J Ben Shimol
- Department of Rheumatology, Barzilai University Medical Center, Ashqelon, Israel
| |
Collapse
|
24
|
Yan M, Zhang D, Yang M. Saikosaponin D alleviates inflammatory response of osteoarthritis and mediates autophagy via elevating microRNA-199-3p to target transcription Factor-4. J Orthop Surg Res 2024; 19:151. [PMID: 38389105 PMCID: PMC10882832 DOI: 10.1186/s13018-024-04607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE This study was to investigate the underlying mechanism by which Saikosaponin D (SSD) mitigates the inflammatory response associated with osteoarthritis (OA) and regulates autophagy through upregulation of microRNA (miR)-199-3p and downregulation of transcription Factor-4 (TCF4). METHODS A mouse OA model was established. Mice were intragastrically administered with SSD (0, 5, 10 μmol/L) or injected with miR-199-3p antagomir into the knee. Then, pathological changes in cartilage tissues were observed. Normal chondrocytes and OA chondrocytes were isolated and identified. Chondrocytes were treated with SSD and/or transfected with oligonucleotides or plasmid vectors targeting miR-199-3p and TCF4. Cell viability, apoptosis, inflammation, and autophagy were assessed. miR-199-3p and TCF4 expressions were measured, and their targeting relationship was analyzed. RESULTS In in vivo experiments, SSD ameliorated cartilage histopathological damage, decreased inflammatory factor content and promoted autophagy in OA mice. miR-199-3p expression was downregulated and TCF4 expression was upregulated in cartilage tissues of OA mice. miR-199-3p expression was upregulated and TCF4 expression was downregulated after SSD treatment. Downregulation of miR-199-3p attenuated the effect of SSD on OA mice. In in vitro experiments, SSD inhibited the inflammatory response and promoted autophagy in OA chondrocytes. Downregulation of miR-199-3p attenuated the effect of SSD on OA chondrocytes. In addition, upregulation of miR-199-3p alone inhibited inflammatory responses and promoted autophagy in OA chondrocytes. miR-199-3p targeted TCF4. Upregulation of TCF4 attenuated the effects of miR-199-3p upregulation on OA chondrocytes. CONCLUSIONS SSD alleviates inflammatory response and mediates autophagy in OA via elevating miR-199-3p to target TCF4.
Collapse
Affiliation(s)
- Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China
| | - DaWei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China.
| |
Collapse
|
25
|
Shen Y, Zhang Y, Wang Q, Jiang B, Jiang X, Luo B. MicroRNA-877-5p promotes osteoblast differentiation by targeting EIF4G2 expression. J Orthop Surg Res 2024; 19:134. [PMID: 38342889 PMCID: PMC10860299 DOI: 10.1186/s13018-023-04396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 02/13/2024] Open
Abstract
Stimulating bone formation potentially suggests therapeutics for orthopedic diseases including osteoporosis and osteoarthritis. Osteoblasts are key to bone remodeling because they act as the only bone-forming cells. miR-877-5p has a chondrocyte-improving function in osteoarthritis, but its effect on osteoblast differentiation is unknown. Here, miR-877-5p-mediated osteoblast differentiation was studied. Real-time reverse transcriptase-polymerase chain reaction was performed to measure miR-877-5p expression during the osteogenic differentiation of MC3T3-E1 cells. Osteoblast markers, including alkaline phosphatase (ALP), collagen type I a1 chain, and osteopontin, were measured and detected by alizarin red staining and ALP staining. Potential targets of miR-877-5p were predicted from three different algorithms: starBase ( http://starbase.sysu.edu.cn/ ), PITA ( http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html ), and miRanda ( http://www.microrna.org/microrna/home.do ). It was further verified by dual luciferase reporter gene assay. The experimental results found that miR-877-5p was upregulated during the osteogenic differentiation of MC3T3-E1 cells. Overexpression of miR-877-5p promoted osteogenic differentiation, which was characterized by increased cell mineralization, ALP activity, and osteogenesis-related gene expression. Knockdown of miR-877-5p produced the opposite result. Dual luciferase reporter gene assay showed that miR-877-5p directly targeted eukaryotic translation initiation factor 4γ2 (EIF4G2). Overexpression of EIF4G2 inhibited osteogenic differentiation and reversed the promoting effect of overexpression of miR-135-5p on osteogenic differentiation. These results indicate that miR-877-5p might have a therapeutic application related to its promotion of bone formation through targeting EIF4G2.
Collapse
Affiliation(s)
- YingChao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| | - Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu City, 215500, Jiangsu, China
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu Province, No. 1055 Sanxiang Road, Suzhou City, 215004, China.
| | - XiaoWei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China.
| | - Bin Luo
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, ChangShu City, 215500, China
| |
Collapse
|
26
|
Tang L, Yuan L, Yan J, Ge J, Lian Z, Li Z. circ_0029463 promotes osteoclast differentiation by mediating miR-134-5p/Rab27a axis. J Orthop Surg Res 2024; 19:128. [PMID: 38326867 PMCID: PMC10851473 DOI: 10.1186/s13018-024-04610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVE Osteoporosis is the imbalance in bone homeostasis between osteoblasts and osteoclasts. In this study, we investigated the effects of the circ_0029463/miR-134-5p/Rab27a axis on RANKL-induced osteoclast differentiation. METHODS RT-qPCR and western blotting were used to detect the expression of circ_0029463, miR-134-5p, and Rab27a in tissues from patients with osteoporosis and in RANKL-induced osteoclasts. Osteoclast differentiation was verified by TRAP staining. Osteoclast biomarkers, including NFATc1, TRAP, and CTSK, were measured. The target and regulatory relationships between circ_0029463, miR-134-5p, and the Rab27a axis were verified using RIP, dual-luciferase reporter gene, and RNA pull-down assays. RESULTS Elevated expression of circ_0029463 and Rab27a and decreased miR-134-5p expression were observed in the tissues of patients with osteoporosis, and a similar expression pattern was observed in RANKL-induced osteoclasts. Suppression of circ_0029463 expression or miR-134-5p overexpression curbed RANKL-induced osteoclast differentiation, whereas such an effect was abolished by Rab27 overexpression. circ_0029463 sponges miR-134-5p to induce Rab27a expression. CONCLUSION circ_0029463 sponges miR-134-5p to abolish its suppressive effect of miR-134-5p on Rab27a expression, thereby promoting osteoclast differentiation.
Collapse
Affiliation(s)
- Lian Tang
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lin Yuan
- Department of Clinical Skills Center, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiyuan Yan
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jianhua Ge
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhi Lian
- Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhong Li
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
27
|
Deng Y, Phillips K, Feng ZP, Smith PN, Li RW. Aseptic loosening around total joint replacement in humans is regulated by miR-1246 and miR-6089 via the Wnt signalling pathway. J Orthop Surg Res 2024; 19:94. [PMID: 38287447 PMCID: PMC10823634 DOI: 10.1186/s13018-024-04578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Total joint replacement for osteoarthritis is one of the most successful surgical procedures in modern medicine. However, aseptic loosening continues to be a leading cause of revision arthroplasty. The diagnosis of aseptic loosening remains a challenge as patients are often asymptomatic until the late stages. MicroRNA (miRNA) has been demonstrated to be a useful diagnostic tool and has been successfully used in the diagnosis of other diseases. We aimed to identify differentially expressed miRNA in the plasma of patients with aseptic loosening. METHODS Adult patients undergoing revision arthroplasty for aseptic loosening and age- and gender-matched controls were recruited. Samples of bone, tissue and blood were collected, and RNA sequencing was performed in 24 patients with aseptic loosening and 26 controls. Differentially expressed miRNA in plasma was matched to differentially expressed mRNA in periprosthetic bone and tissue. Western blot was used to validate protein expression. RESULTS Seven miRNA was differentially expressed in the plasma of patients with osteolysis (logFC >|2|, adj-P < 0.05). Three thousand six hundred and eighty mRNA genes in bone and 427 mRNA genes in tissue samples of osteolysis patients were differentially expressed (logFC >|2|, adj-P < 0.05). Gene enrichment analysis and pathway analysis revealed two miRNA (miR-1246 and miR-6089) had multiple gene targets in the Wnt signalling pathway in the local bone and tissues which regulate bone metabolism. CONCLUSION These results suggest that aseptic loosening may be regulated by miR-1246 and miR-6089 via the Wnt signalling pathway.
Collapse
Affiliation(s)
- Yi Deng
- Australian National University Medical School, Canberra, Australia.
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia.
| | - Kate Phillips
- Australian National University Medical School, Canberra, Australia
| | - Zhi-Ping Feng
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Paul N Smith
- Australian National University Medical School, Canberra, Australia
- Department of Orthopaedic Surgery, Canberra Hospital, Canberra, Australia
| | - Rachel W Li
- Australian National University Medical School, Canberra, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
28
|
Atta A, Salem MM, El-Said KS, Mohamed TM. Mechanistic role of quercetin as inhibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review. Cell Mol Biol Lett 2024; 29:14. [PMID: 38225555 PMCID: PMC10790468 DOI: 10.1186/s11658-024-00531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving T and B lymphocytes. Autoantibodies contribute to joint deterioration and worsening symptoms. Adenosine deaminase (ADA), an enzyme in purine metabolism, influences adenosine levels and joint inflammation. Inhibiting ADA could impact RA progression. Intracellular ATP breakdown generates adenosine, which increases in hypoxic and inflammatory conditions. Lymphocytes with ADA play a role in RA. Inhibiting lymphocytic ADA activity has an immune-regulatory effect. Synovial fluid levels of ADA are closely associated with the disease's systemic activity, making it a useful parameter for evaluating joint inflammation. Flavonoids, such as quercetin (QUE), are natural substances that can inhibit ADA activity. QUE demonstrates immune-regulatory effects and restores T-cell homeostasis, making it a promising candidate for RA therapy. In this review, we will explore the impact of QUE in suppressing ADA and reducing produced the inflammation in RA, including preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
29
|
Yin Y, He Q, He J, Feng Y, Xu Y. Inhibition of LINC00958 hinders the progression of osteoarthritis through regulation of the miR-214-3p/FOXM1 axis. J Orthop Surg Res 2024; 19:66. [PMID: 38218927 PMCID: PMC10788018 DOI: 10.1186/s13018-024-04545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE We investigated the impact of the long noncoding RNA LINC00958 on cellular activity and oxidative stress in osteoarthritis (OA). METHODS We performed bioinformatics analysis via StarBase and luciferase reporter assays to predict and validate the interactions between LINC00958 and miR-214-3p and between miR-214-3p and FOXM1. The expression levels of LINC00958, miR-214-3p, and FOXM1 were measured by qRT-PCR and western blotting. To assess effects on CHON-001 cells, we performed MTT proliferation assays, evaluated cytotoxicity with a lactate dehydrogenase (LDH) assay, and examined apoptosis through flow cytometry. Additionally, we measured the levels of apoptosis-related proteins, including BAX and BCL2, using western blotting. The secretion of inflammatory cytokines (IL-6, IL-8, and TNF-α) was measured using ELISA. RESULTS Our findings confirmed that LINC00958 is a direct target of miR-214-3p. LINC00958 expression was upregulated but miR-214-3p expression was downregulated in both OA cells and IL-1β-stimulated CHON-001 cells compared to the corresponding control cells. Remarkably, miR-214-3p expression was further reduced after miR-214-3p inhibitor treatment but increased following LINC00958-siRNA stimulation. Silencing LINC00958 significantly decreased its expression, and this effect was reversed by miR-214-3p inhibitor treatment. Notably, LINC00958-siRNA transfection alleviated the IL-1β-induced inflammatory response, as evidenced by the increased cell viability, reduced LDH release, suppression of apoptosis, downregulated BAX expression, and elevated BCL2 levels. Moreover, LINC00958 silencing led to reduced secretion of inflammatory factors from IL-1β-stimulated CHON-001 cells. The opposite results were observed in the miR-214-3p inhibitor-transfected groups. Furthermore, in CHON-001 cells, miR-214-3p directly targeted FOXM1 and negatively regulated its expression. CONCLUSION Our findings suggest that downregulating LINC00958 mitigates IL-1β-induced injury in CHON-001 cells through the miR-214-3p/FOXM1 axis. These results imply that LINC00958 plays a role in OA development and may be a valuable therapeutic target for OA.
Collapse
Affiliation(s)
- Yingchuan Yin
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China.
| | - Qiaojuan He
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China
| | - Jing He
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China
| | - Ying Feng
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China
| | - Yunyun Xu
- Endocrinology Department, The Third People's Hospital of Hefei, No.204, Wangjiangdong Road, Hefei, 230022, China
| |
Collapse
|
30
|
Dai H, Yi G, Jiang D, Min Y, Li Z. Circ_0000376 regulates miR-577/HK2/LDHA signaling pathway to promote the growth, invasion and glycolysis of osteosarcoma. J Orthop Surg Res 2024; 19:67. [PMID: 38218855 PMCID: PMC10788008 DOI: 10.1186/s13018-023-04520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Many studies have confirmed that circular RNAs (circRNAs) mediate the malignant progression of various tumors including osteosarcoma (OS). Our study is to uncover novel molecular mechanisms by which circ_0000376 regulates OS progression. METHODS The expression of circ_0000376, microRNA (miR)-577, hexokinase 2 (HK2) and lactate dehydrogenase-A (LDHA) was determined by quantitative real-time PCR. OS cell proliferation, apoptosis and invasion were measured using cell counting kit 8 assay, colony formation assay, EdU assay, flow cytometry and transwell assay. Besides, cell glycolysis was assessed by testing glucose consumption, lactate production, and ATP/ADP ratios. Protein expression was examined by western blot analysis. The interaction between miR-577 and circ_0000376 or HK2/LADA was verified by dual-luciferase reporter assay. The role of circ_0000376 on OS tumor growth was explored by constructing mice xenograft models. RESULTS Circ_0000376 had been found to be upregulated in OS tissues and cells. Functional experiments revealed that circ_0000376 interference hindered OS cell growth, invasion and glycolysis. Circ_0000376 sponged miR-577 to reduce its expression. In rescue experiments, miR-577 inhibitor abolished the regulation of circ_0000376 knockdown on OS cell functions. MiR-577 could target HK2 and LDHA in OS cells. MiR-577 suppressed OS cell growth, invasion and glycolysis, and these effects were reversed by HK2 and LDHA overexpression. Also, HK2 and LDHA expression could be regulated by circ_0000376. In vivo experiments showed that circ_0000376 knockdown inhibited OS tumorigenesis. CONCLUSION Circ_0000376 contributed to OS growth, invasion and glycolysis depending on the regulation of miR-577/HK2/LDHA axis, providing a potential target for OS treatment.
Collapse
Affiliation(s)
- Hongchun Dai
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Guangming Yi
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Dong Jiang
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Yanmei Min
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Zongwei Li
- Department of Foot and Ankle Surgery, Mianyang Orthopedic Hospital, No.30, Nanhe Road, Fucheng District, Mianyang City, 621000, Sichuan, China.
| |
Collapse
|
31
|
Yang D, Wei H, Sheng Y, Peng T, Zhao Q, Xie L, Yang J. Circ_0006640 transferred by bone marrow-mesenchymal stem cell-exosomes suppresses lipopolysaccharide-induced apoptotic, inflammatory and oxidative injury in spinal cord injury. J Orthop Surg Res 2024; 19:50. [PMID: 38195468 PMCID: PMC10777583 DOI: 10.1186/s13018-023-04523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Emerging proofs have shown that differentially expressed circular RNAs (circRNAs) are closely associated with the pathophysiological process of spinal cord injury (SCI). Mesenchymal stem cell (MSC)-exosomes have been demonstrated to possess favorable therapeutic effects in diseases. Herein, this work aimed to investigate the action of circ_0006640 transferred by MSC-exosomes functional recovery after SCI. METHODS SCI animal models were established by spinal cord contusion surgery in mice and lipopolysaccharide (LPS)-stimulated mouse microglial cell line BV2. Levels of genes and proteins were detected by qRT-PCR and Western blot. Properties of BV2 cells were characterized using CCK-8 assay, flow cytometry and ELISA analysis. The oxidative stress was evaluated. Dual-luciferase reporter assay was used for verifying the binding between miR-382-5p and circ_0006640 or IGF-1 (Insulin-like Growth Factor 1). Exosome separation was conducted by using the commercial kit. RESULTS Circ_0006640 expression was lower in SCI mice and LPS-induced microglial cells. Circ_0006640 overexpression protected microglial cells from LPS-induced apoptotic, inflammatory and oxidative injury. Mechanistically, circ_0006640 directly sponged miR-382-5p, which targeted IGF-1. MiR-382-5p was increased, while IGF-1 was decreased in SCI mice and LPS-induced microglial cells. Knockdown of miR-382-5p suppressed apoptosis, inflammation and oxidative stress in LPS-induced microglial cells, which were reversed by IGF-1 deficiency. Moreover, miR-382-5p up-regulation abolished the protective functions of circ_0006640 in LPS-induced microglial cells. Additionally, circ_0006640 was packaged into MSC-exosomes and could be transferred by exosomes. Exosomal circ_0006640 also had protective effects on microglial cells via miR-382-5p/IGF-1 axis. CONCLUSION Circ_0006640 transferred by BMSC-exosomes suppressed LPS-induced apoptotic, inflammatory and oxidative injury via miR-382-5p/IGF-1 axis, indicating a new insight into the clinical application of exosomal circRNA-based therapeutic in the function recovery after SCI.
Collapse
Affiliation(s)
- Dan Yang
- Department of Rehabilitation Medicine, Hankou Hospital of Wuhan, No. 2273 Jiefang Dadao, Wuhan City, 430014, Hubei, China
| | - Haitang Wei
- Department of Rehabilitation Medicine, Hankou Hospital of Wuhan, No. 2273 Jiefang Dadao, Wuhan City, 430014, Hubei, China
| | - Yang Sheng
- Department of Rehabilitation Medicine, Hankou Hospital of Wuhan, No. 2273 Jiefang Dadao, Wuhan City, 430014, Hubei, China
| | - Tao Peng
- Department of Rehabilitation Medicine, Hankou Hospital of Wuhan, No. 2273 Jiefang Dadao, Wuhan City, 430014, Hubei, China
| | - Qiang Zhao
- Department of Rehabilitation Medicine, Hankou Hospital of Wuhan, No. 2273 Jiefang Dadao, Wuhan City, 430014, Hubei, China
| | - Liang Xie
- Department of Rehabilitation Medicine, Hankou Hospital of Wuhan, No. 2273 Jiefang Dadao, Wuhan City, 430014, Hubei, China
| | - Jun Yang
- Department of Rehabilitation Medicine, Hankou Hospital of Wuhan, No. 2273 Jiefang Dadao, Wuhan City, 430014, Hubei, China.
| |
Collapse
|
32
|
Zhang C, Li Q, Ye Z, Wang X, Zhao H, Wang Y, Zheng X. Mechanism of Circ_HECW2 regulating osteoblast apoptosis in osteoporosis by attenuating the maturation of miR-1224-5p. J Orthop Surg Res 2024; 19:40. [PMID: 38183099 PMCID: PMC10770914 DOI: 10.1186/s13018-023-04494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) poses a significant clinical challenge with escalating morbidity. This study explores Circ_HECW2 expression in OP patients and its regulatory role in lipopolysaccharide (LPS)-induced osteoblast apoptosis. METHODS Circ_HECW2 expression in OP patient serum and healthy controls was quantified using RT-qPCR. Diagnostic value of Circ_HECW2 for OP was assessed via ROC curve. Pearson's correlation model examined associations between indicators. Human osteoblasts HFOB1.19, treated with LPS, were analyzed for Circ_HECW2, pre-miR-1224, miR-1224-5p, and PDK2 mRNA levels. TUNEL assay determined cell apoptosis and Western blot assessed cleaved-caspase-3 protein levels. RNase R resistance assay and actinomycin D assay confirmed Circ_HECW2's cyclic structure. RNA pull-down and dual-luciferase reporter assay verified binding relationships between Circ_HECW2 and miR-1224 and between miR-1224-5p and PDK2. RESULTS Circ_HECW2 exhibited elevated expression in OP patients with diagnostic significance and a negative correlation with lumbar T-score. LPS co-culture increased Circ_HECW2 expression in HFOB1.19 cells, significantly elevating apoptosis index and cleaved-caspase-3. Circ_HECW2 downregulation inhibited HFOB1.19 apoptosis, reduced pre-miR-1224 expression, and elevated mature miR-1224-5p. Circ_HECW2 bound to pre-miR-1224, and inhibiting miR-1224-5p reversed the effect of Circ_HECW2 downregulation on osteoblast apoptosis. miR-1224-5p targeted PDK2 transcription. CONCLUSION Circ_HECW2, highly expressed in OP, holds diagnostic significance and reflects disease severity. Circ_HECW2 reduces mature miR-1224-5p by binding to pre-miR-1224, upregulating PDK2, and facilitating LPS-induced osteoblast apoptosis.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Qiangqiang Li
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Zhongduo Ye
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Xiong Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Hui Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Yongping Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, 73000, China
| | - Xingxing Zheng
- Department of Ophthalmology, The Second Hospital of Lanzhou University, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
33
|
Zhang X, Wang X, Yu F, Wang C, Peng J, Wang C, Chen X. PiRNA hsa_piR_019949 promotes chondrocyte anabolic metabolism by inhibiting the expression of lncRNA NEAT1. J Orthop Surg Res 2024; 19:31. [PMID: 38178210 PMCID: PMC10768105 DOI: 10.1186/s13018-023-04511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Osteoarthritis is a prevalent degenerative joint condition typically found in individuals who are aged 50 years or older. In this study, the focus is on PIWI-interacting RNA (piRNA), which belongs to a category of small non-coding RNAs. These piRNAs play a role in the regulation of gene expression and the preservation of genomic stability. The main objective of this research is to examine the expression of a specific piRNA called hsa_piR_019949 in individuals with osteoarthritis, to understand its impact on chondrocyte metabolism within this condition. METHODS We analyzed piRNA expression in osteoarthritis cartilage using the GEO database. To understand the impact of inflammatory factors on piRNA expression in chondrocytes, we conducted RT-qPCR experiments. We also investigated the effect of piRNA hsa_piR_019949 on chondrocyte proliferation using CCK-8 and clone formation assays. Furthermore, we assessed the influence of piRNA hsa_piR_019949 on chondrocyte apoptosis by conducting flow cytometry analysis. Additionally, we examined the differences in cartilage matrix composition through safranine O staining and explored the downstream regulatory mechanisms of piRNA using transcriptome sequencing. Lentiviral transfection of NEAT1 and NLRP3 was performed to regulate the metabolism of chondrocytes. RESULTS Using RNA sequencing technology, we compared the gene expression profiles of 5 patients with osteoarthritis to 3 normal controls. We found a gene called hsa_piR_019949 that showed differential expression between the two groups. Specifically, hsa_piR_019949 was downregulated in chondrocytes when stimulated by IL-1β, an inflammatory molecule. In further investigations, we discovered that overexpression of hsa_piR_019949 in vitro led to increased proliferation and synthesis of the extracellular matrix in chondrocytes, which are cells responsible for cartilage formation. Conversely, suppressing hsa_piR_019949 expression resulted in increased apoptosis (cell death) and degradation of the extracellular matrix in chondrocytes. Additionally, we found that the NOD-like receptor signaling pathway is linked to the low expression of hsa_piR_019949 in a specific chondrocyte cell line called C28/I2. Furthermore, we observed that hsa_piR_019949 can inhibit the expression of a long non-coding RNA called NEAT1 in chondrocytes. We hypothesize that NEAT1 may serve as a downstream target gene regulated by hsa_piR_019949, potentially influencing chondrocyte metabolism and function in the context of osteoarthritis. CONCLUSIONS PiRNA hsa_piR_019949 has shown potential in promoting the proliferation of chondrocytes and facilitating the synthesis of extracellular matrix in individuals with osteoarthritis. This is achieved by inhibiting the expression of a long non-coding RNA called NEAT1. The implication is that by using hsa_piR_019949 mimics, which are synthetic versions of the piRNA, as a therapeutic approach, it may be possible to effectively treat osteoarthritis.
Collapse
Affiliation(s)
- Xinhai Zhang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xuyi Wang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fengbin Yu
- Department of Orthopaedics, The 72, Group Army Hospital of PLA, Huzhou, 313000, Zhejiang, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianping Peng
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|
34
|
Fang S, Cao D, Wu Z, Chen J, Huang Y, Shen Y, Gao Z. Circ_0027885 sponges miR-203-3p to regulate RUNX2 expression and alleviates osteoporosis progression. BMC Musculoskelet Disord 2024; 25:5. [PMID: 38167042 PMCID: PMC10759341 DOI: 10.1186/s12891-023-07122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a progressive metabolic disorder that is difficult to cure clinically. The molecular mechanisms of OP urgently need to be further examined. This study was designed to explore the potential function of circ_0027885 during osteogenic differentiation, as well as the systematic interactions among circ_0027885, miR-203-3p and runt-related transcription factor 2 (RUNX2). METHODS Relative levels of circ_0027885, miR-203-3p and RUNX2 were analyzed with RT-qPCR and western blotting. Alizarin red staining was performed to detect the mineralization ability under the control of circ_0027885 and miR-203-3p. Dual-luciferase reporter gene assay was conducted to examine the combination among circ_0027885, miR-203-3p and RUNX2. RESULTS Our research demonstrated that circ_0027885 was significantly increased during hBMSCs differentiation. Overexpression of circ_0027885 notably facilitated osteogenic differentiation and upregulated RUNX2 expression, while knockdown of circ_0027885 reversed the above results. Through prediction on bioinformatics analysis, miR-203-3p was the target binding circ_0027885, and RUNX2 was the potential target of miR-203-3p. Subsequently, these changes induced by the overexpression of circ_0027885 were reversed upon addition of miR-203-3p mimic. CONCLUSIONS Circ_0027885 could sponge miR-203-3p to regulate RUNX2 expression and alleviate osteoporosis progression.
Collapse
Affiliation(s)
- Shuhua Fang
- Department of Pharmacy, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, China
| | - Dingwen Cao
- Department of Pharmacy, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, China
| | - Zhanpo Wu
- Department of Orthopedics, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, China
| | - Jie Chen
- Department of Pharmacy, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, China
| | - Yafei Huang
- Department of Pharmacy, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, China
| | - Ying Shen
- Department of Pharmacy, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, China.
| | - Zengxin Gao
- Department of Orthopedics, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, China.
| |
Collapse
|
35
|
Gargano G, Asparago G, Spiezia F, Oliva F, Maffulli N. Small interfering RNAs in the management of human osteoporosis. Br Med Bull 2023; 148:58-69. [PMID: 37675799 PMCID: PMC10788844 DOI: 10.1093/bmb/ldad023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Osteoporosis results in reduced bone mass and consequent bone fragility. Small interfering RNAs (siRNAs) can be used for therapeutic purposes, as molecular targets or as useful markers to test new therapies. SOURCES OF DATA A systematic search of different databases to May 2023 was performed to define the role of siRNAs in osteoporosis therapy. Fourteen suitable studies were identified. AREAS OF AGREEMENT SiRNAs may be useful in studying metabolic processes in osteoporosis and identify possible therapeutic targets for novel drug therapies. AREAS OF CONTROVERSY The metabolic processes of osteoporosis are regulated by many genes and cytokines that can be targeted by siRNAs. However, it is not easy to predict whether the in vitro responses of the studied siRNAs and drugs are applicable in vivo. GROWING POINTS Metabolic processes can be affected by the effect of gene dysregulation mediated by siRNAs on various growth factors. AREAS TIMELY FOR DEVELOPING RESEARCH Despite the predictability of pharmacological response of siRNA in vitro, similar responses cannot be expected in vivo.
Collapse
Affiliation(s)
- Giuseppe Gargano
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
- Department of Trauma and Orthopaedic Surgery, AOR San Carlo, Via Potito Petrone, 85100 Potenza, Italy
| | - Giovanni Asparago
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Filippo Spiezia
- Department of Trauma and Orthopaedic Surgery, AOR San Carlo, Via Potito Petrone, 85100 Potenza, Italy
| | - Francesco Oliva
- Department of Trauma and Orthopaedic Surgery, AOU San Giovanni di Dio e Ruggi D’Aragona, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Nicola Maffulli
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, UK
- Department of Orthopaedic Surgery and Traumatology, University of Rome La Sapienza, Hospital Sant’Andrea, Rome, Italy
| |
Collapse
|
36
|
Zheng C, Wu Y, Xu J, Liu Y, Ma J. Exosomes from bone marrow mesenchymal stem cells ameliorate glucocorticoid-induced osteonecrosis of femoral head by transferring microRNA-210 into bone microvascular endothelial cells. J Orthop Surg Res 2023; 18:939. [PMID: 38062514 PMCID: PMC10704824 DOI: 10.1186/s13018-023-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVES Bone microvascular endothelial cells (BMECs) played an important role in the pathogenesis of glucocorticoid-induced osteonecrosis of femoral head (GCS-ONFH), and exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) may provide an effective treatment. This study aimed to evaluate the effects of BMSC-Exos and internal microRNA-210-3p (miRNA-210) on GCS-ONFH in an in vitro hydrocortisone-induced BMECs injury model and an in vivo rat GCS-ONFH model. METHODS BMECs, BMSCs and BMSC-Exos were isolated and validated. BMECs after the treatment of hydrocortisone were cocultured with different concentrations of BMSC-Exos, then proliferation, migration, apoptosis and angiogenesis of BMECs were evaluated by CCK-8, Annexin V-FITC/PI, cell scratch and tube formation assays. BMSCs were transfected with miRNA-210 mimics and miRNA-210 inhibitors, then BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor secreted from such cells were collected. The differences between BMSC-Exos, BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor in protecting BMECs against GCS treatment were analyzed by methods mentioned above. Intramuscular injections of methylprednisolone were performed on Sprague-Dawley rats to establish an animal model of GCS-ONFH, then tail intravenous injections of BMSC-Exos, BMSC-ExosmiRNA-210 mimic or BMSC-ExosmiRNA-210 inhibitor were conducted after methylprednisolone injection. Histological and immunofluorescence staining and micro-CT were performed to evaluate the effects of BMSC-Exos and internal miRNA-210 on the in vivo GCS-ONFH model. RESULTS Different concentrations of BMSC-Exos, especially high concentration of BMSC-Exos, could enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs treated with GCS. Compared with BMSC-Exos, BMSC-ExosmiRNA-210 mimic could further enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs, while BMECs in the GCS + BMSC-ExosmiRNA-210 inhibitor group showed reduced proliferation, migration and angiogenesis ability and higher apoptosis rates. In the rat GCS-ONFH model, BMSC-Exos, especially BMSC-ExosmiRNA-210 mimic, could increase microvascular density and enhance bone remodeling of femoral heads. CONCLUSIONS BMSC-Exos containing miRNA-210 could serve as potential therapeutics for protecting BMECs and ameliorating the progression of GCS-ONFH.
Collapse
Affiliation(s)
- Che Zheng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
- Department of Orthopedic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Yuangang Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Jiawen Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Yuan Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Jun Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, 37# Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
37
|
Long S, Long S, He H, Luo L, Liu M, Ding T. Exosomal miR-182 derived from bone marrow mesenchymal stem cells drives carfilzomib resistance of multiple myeloma cells by targeting SOX6. J Orthop Surg Res 2023; 18:937. [PMID: 38062424 PMCID: PMC10702080 DOI: 10.1186/s13018-023-04399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a common hematological malignancy. Drug resistance remains to be a major clinical challenge in MM therapy. In this study, we aim to investigate the functional roles of bone marrow mesenchymal stem cells (BMSC)-derived exosomal miR-182 on the carfilzomib resistance of MM and its underlying mechanism. METHODS qRT-PCR and Western blot methods were utilized to confirm the gene or protein expressions. CCK-8 and transwell assays were performed to measure the capabilities of proliferation, migration, and invasion. The molecular interactions were validated through ChIP and Dual luciferase assay. RESULTS Our findings indicated that miR-182 expression was upregulated in serum, BMSCs and BMSC-derived exosomes from MM patients. Hypoxia-inducible factor-1α (HIF-1α), a key transcriptional factor in tumor microenvironment, could boost miR-182 expression by directly binding to its promoter, thus favoring exosomal secretion. Moreover, exosomal miR-182 from BMSCs could be transferred to MM cells and was able to promote malignant proliferation, metastasis, and invasion, as well as decrease the sensitivity of MM cells against carfilzomib. Additionally, SOX6 was identified as a downstream target of miR-182 in MM cells, and its expression was negatively regulated by miR-182. Rescue experiments proved that loss of SOX6 in MM cells dramatically reversed the promoting roles of BMSC-secreted exosomal miR-182 on proliferation, metastasis, and carfilzomib resistance in MM cells. CONCLUSION Collectively, our findings indicated that exosomal miR-182 derived from BMSCs contributed to the metastasis and carfilzomib resistance of MM cells by targeting SOX6. This study sheds light on the pathogenesis of the BMSC-derived exosome containing miR-182 in the malignant behaviors of MM cells and carfzomib resistance.
Collapse
Affiliation(s)
- Shifeng Long
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China.
| | - Shengping Long
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| | - Honglei He
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| | - Liang Luo
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| | - Mei Liu
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| | - Ting Ding
- Department of Hematology, The Affiliated Hospital of Jinggangshan University, No. 110, Jinggangshan Avenue, Jizhou District, Ji'an, 343000, Jiangxi Province, People's Republic of China
| |
Collapse
|
38
|
Lin H, Nie L, Lu G, Wu H, Xu T. Long non-coding RNA KCNQ10T1/miR-19a-3p/SMAD5 axis promotes osteogenic differentiation of mouse bone mesenchymal stem cells. J Orthop Surg Res 2023; 18:929. [PMID: 38057885 PMCID: PMC10698940 DOI: 10.1186/s13018-023-04425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Bone fracture is a common orthopedic disease that needs over 3 months to recover. Promoting the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is beneficial for fracture healing. Therefore, this research aimed to study the roles of long non-coding RNA (lncRNA) KCNQ10T1 in osteogenic differentiation of BMSCs. METHODS BMSCs were treated with osteogenic medium and assessed by CCK-8 and flow cytometry assays. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS), as well as concentration of osteoblast markers were measured to evaluate osteogenic differentiation of BMSCs. Western blot was employed to detect proteins; while, qRT-PCR was for mRNA levels. Additionally, targeted relationships between KCNQ10T1 and miR-19a-3p, as well as miR-19a-3p and SMAD5 were verified by dual luciferase reporter gene assay along with RNA pull-down method. RESULTS Upregulation of KCNQ10T1 promoted the ALP staining and ARS intensity, increased the cell viability and decreased the apoptosis rate of BMSCs. Besides, KCNQ10T1 overexpression increased the ALP, OPG, OCN and OPN protein levels. KCNQ10T1 sponges miR-19a-3p, which targets Smad5. Upregulated miR-19a-3p reversed the overexpressed KCNQ10T1-induced effects, and depletion of SMAD5 reversed the miR-19a-3p inhibitor-induced effects on osteogenic medium-treated BMSCs. CONCLUSIONS Upregulation of KCNQ10T1 promoted osteogenic differentiation of BMSCs through miR-19a-3p/SMAD5 axis in bone fracture.
Collapse
Affiliation(s)
- He Lin
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China.
| | - Lanjun Nie
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China
| | - Guiqing Lu
- Dermatological Department, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haixia Wu
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China
| | - Tao Xu
- Department of Neurosurgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
39
|
Li X, Hou Q, Yuan W, Zhan X, Yuan H. Inhibition of miR-96-5p alleviates intervertebral disc degeneration by regulating the peroxisome proliferator-activated receptor γ/nuclear factor-kappaB pathway. J Orthop Surg Res 2023; 18:916. [PMID: 38041147 PMCID: PMC10691123 DOI: 10.1186/s13018-023-04412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is the main pathogenesis of low back pain. MicroRNAs (miRNAs) have been found to exert regulatory function in IDD. This study aimed to investigate the effect and potential mechanism of miR-96-5p in IDD. METHODS In vitro cell model of IDD was established by treating human nucleus pulposus cells (HNPCs) with interleukin-1β (IL-1β). The level of peroxisome proliferator-activated receptor γ (PPARγ) was examined in the IDD cell model by Western blot and quantification real-time reverse transcription-polymerase chain reaction (qRT-PCR). The expression level of miR-96-5p was detected by RT-qPCR. Effects of PPARγ or/and PPARγ agonist on inflammatory factors, extracellular matrix (ECM), apoptosis, and nuclear factor-kappaB (NF-κB) nuclear translocation were examined through enzyme-linked immunosorbent assay (ELISA), Western blot, flow cytometry assay, and immunofluorescence staining. The Starbase database and dual luciferase reporter assay were used to predict and validate the targeting relationship between miR-96-5p and PPARγ, and rescue assay was performed to gain insight into the role of miR-96-5p on IDD through PPARγ/NF-κB signaling. RESULTS PPARγ expression reduced with concentration and time under IL-1β stimulation, while miR-96-5p expression showed the reverse trend (P < 0.05). Upregulation or/and activation of PPARγ inhibited IL-1β-induced the increase in inflammatory factor levels, apoptosis, degradation of the ECM, and the nuclear translocation of NF-κB (P < 0.05). MiR-96-5p was highly expressed but PPARγ was lowly expressed in IDD, while knockdown of PPARγ partially reversed remission of IDD induced by miR-96-5p downregulation (P < 0.05). MiR-96-5p promoted NF-κB entry into the nucleus but PPARγ inhibited this process. CONCLUSION Inhibition of miR-96-5p suppressed IDD progression by regulating the PPARγ/NF-κB pathway. MiR-96-5p may be a promising target for IDD treatment clinically.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Malaysia
| | - Qian Hou
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Wenqi Yuan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Xuehua Zhan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Haifeng Yuan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China.
| |
Collapse
|
40
|
Zhang C, He W. Circ_0020014 mediates CTSB expression and participates in IL-1β-prompted chondrocyte injury via interacting with miR-24-3p. J Orthop Surg Res 2023; 18:877. [PMID: 37980493 PMCID: PMC10657024 DOI: 10.1186/s13018-023-04370-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Recent studies have shown that circRNAs are involved in the pathogenesis of osteoarthritis (OA) by affecting various fundamental cellular characteristics of chondrocytes. The purpose of this paper is to investigate the role and regulatory mechanism of hsa_circ_0020014 (circ_0020014) in chondrocytes of OA. METHODS The inflammatory cytokine interleukin 1 beta (IL-1β) was used to stimulate human chondrocytes. Cell viability, proliferation, and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-Ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Several protein levels were determined by western blotting (WB). Levels of inflammatory cytokines and malondialdehyde (MDA) were determined by enzyme-linked immunosorbent assay (ELISA). Relative expression of circ_0020014 was estimated by real-time polymerase quantitative chain reaction (RT-qPCR). Bioinformatics prediction combined with dual-luciferase reporter, RIP and RNA pull-down assays were done to probe into the regulatory mechanism of circ_0020014. RESULTS Circ_0020014 was overexpressed in OA patient-derived articular cartilages and IL-1β-stimulated chondrocytes. Silencing of circ_0020014 lighted IL-1β-prompted chondrocyte proliferation repression, apoptosis, inflammation, and oxidative stress. Mechanically, circ_0020014 functioned as a miR-24-3p molecular sponge to regulate cathepsin B (CTSB) expression. Furthermore, miR-24-3p inhibition alleviated circ_0020014 knockdown-mediation repression of IL-1β-urged chondrocyte injury. In addition, CTSB overexpression whittled miR-24-3p upregulation-mediated suppression of IL-1β-urged chondrocyte injury. CONCLUSION Our findings demonstrated that the circ_0020014/miR-24-3p/CTSB axis was associated with IL-1β-prompted chondrocyte injury, supporting the involvement of circ_0020014 in the OA pathogenesis.
Collapse
Affiliation(s)
- Chenpeng Zhang
- Department of Spinal Surgery, Liyang People's Hospital, Liyang, Jiangsu, China
| | - Wenjun He
- Department of Osteoarthritis, Liyang People's Hospital, Liyang, 213300, Jiangsu, China.
| |
Collapse
|
41
|
Wang H, Liu Z, Niu D, Li H, Han Y, Peng J, Qian Q. Carbamazepine regulates USP10 through miR-20a-5p to affect the deubiquitination of SKP2 and inhibit osteogenic differentiation. J Orthop Surg Res 2023; 18:820. [PMID: 37915040 PMCID: PMC10619296 DOI: 10.1186/s13018-023-04169-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Antiepileptic drugs (AEDs) harm bone health and are significantly associated with osteoporosis development. In this study, we aimed to explore the mechanisms involved in carbamazepine (CBZ) and microRNA (miR)-20a-5p/ubiquitin-specific peptidase 10 (USP10)/S-phase kinase-associated protein 2 (SKP2) axis in osteoporosis. METHODS Human bone marrow mesenchymal stem cells (BMSCs) were treated with different concentrations of CBZ. Knocking down or overexpressing miR-20a-5p, USP10, and SKP2 cell lines were constructed. The expressions of miR-20a-5p, USP10, SKP2, runt-related transcription factor 2 (Runx2), Alkaline phosphatase (ALP), Osterix (Osx), osteocalcin (OCN) and Collagen I were detected with western blot (WB) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Alizarin Red S (ARS) staining was performed to measure calcium deposition. Dual-luciferase assay and RNA immunoprecipitation (RIP) were applied to verify the binding relationship between miR-20a-5p and USP10. USP10 and SKP2 combination was verified by Co-Immunopurification (Co-IP). The stability of the SKP2 protein was verified by Cycloheximide chase assay. RESULTS CBZ could reduce cell activity. ALP activity and ARS staining were enhanced in the osteogenic induction (OM) group. The expressions of Runx2, ALP, Osx, OCN and Collagen I were increased. CBZ reduced miR-20a-5p expressions. Verification experiments showed miR-20a-5p could target USP10. USP10 increased SKP2 stability and promoted SKP2 expression. CBZ regulated miR-20a-5p/USP10/SPK2 and inhibited BMSCs osteogenic differentiation. CONCLUSIONS CBZ regulated USP10 through miR-20a-5p to affect the deubiquitination of SKP2 and inhibit osteogenic differentiation, which provided a new idea for osteoporosis treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Ziye Liu
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
- Department of Orthopedics, No. 971 Hospital of the PLA Navy, Qingdao, 266071, People's Republic of China
| | - Haobo Li
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Jinhui Peng
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| | - Qirong Qian
- Department of Orthopedics, Shanghai Changzheng Hospital, No.415, Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
42
|
Liang J, Bao D, Ye Z, Cao B, Jin G, Lu Z, Chen J. miR-3195 suppresses the malignant progression of osteosarcoma cells via targeting SOX4. J Orthop Surg Res 2023; 18:809. [PMID: 37904207 PMCID: PMC10614315 DOI: 10.1186/s13018-023-04321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a highly invasive primary malignancy of the bone that is common in children and adolescents. MicroRNAs (miRNAs) are novel diagnostic and predictive biomarkers for cancers. The miRNA miR-3195 is aberrantly expressed in multiple types of tumors. However, the expression levels and biological functions of miR-3195 in OS remain unclear. METHODS Two Gene Expression Omnibus (GEO) datasets (GSE69470 and GSE16088) were used to analyze differentially expressed miRNAs and mRNAs in osteosarcoma cell lines and OS tissues. Quantitative RT-PCR was used to detect the expression levels of miR-3195 and the SRY-box transcription factor 4 (SOX4) mRNA in OS tissues and cell lines. The relationship between miR-3195 and the 3'-upstream region (3'-UTR) in the SOX4 mRNA (predicted through bioinformatics) was analyzed using Pearson's correlation analysis and confirmed by a dual-luciferase reporter gene experiment. Cell counting kit-8 assays, colony formation assays, flow cytometry, wound healing assays, transwell assays, and western blotting were performed to explore the effects of miR-3195 levels on SOX4 affected OS cell biological behavior. RESULTS Our results revealed that miR-3195 was the most down-regulated miRNA and SOX4 was the most up-regulated mRNA by Bioinformatic analysis. It was further confirmed miR-3195 had low expression, and SOX4 had high expression levels in clinical OS tissue samples; the expression levels of both genes were negatively correlated with each other in OS tissues. Overexpression of miR-3195 in OS cell lines significantly inhibited cell proliferation, migration, and invasiveness, while promoting apoptosis; all these effects were reversed by increasing SOX4 expression levels. We also found that miR-3195 could directly bind with the SOX4 gene and down-regulate SOX4 expression. CONCLUSIONS miR-3195 can modulate proliferation, migration, invasiveness, and apoptosis in OS cells by regulating the SOX4 gene. Thus, the miR-3195/SOX4 signaling may be a novel therapeutic target in OS treatment.
Collapse
Affiliation(s)
- Jianwei Liang
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Dandan Bao
- Department of Pharmacy, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Zhan Ye
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Binhao Cao
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Guojun Jin
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Zhenyu Lu
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China
| | - Jianjun Chen
- Department of Orthopedics, The First People's Hospital of Taizhou, No.218 Hengjie Road, Huangyan District, Taizhou City, 318020, Zhejiang Province, China.
| |
Collapse
|
43
|
Ni Y, Wu A, Li J, Zhang W, Wang Y. Evaluation of the serum tRNA-derived fragment tRF-5022B as a potential biomarker for the diagnosis of osteoarthritis. J Orthop Surg Res 2023; 18:800. [PMID: 37880787 PMCID: PMC10601305 DOI: 10.1186/s13018-023-04273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease. It is common in middle-aged and elderly people and is one of the main causes of disability. Currently, the etiology of OA is unclear, and no specific biomarkers for the diagnosis of OA have been identified. Therefore, finding a highly sensitive biomarker is essential for a proper diagnosis.TRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs) are newly discovered classes of noncoding RNAs. tRF has been proven in several studies to have significant associations with tumor diagnosis, making it a promising biomarker in cancer research. However, the diagnostic utility of tRF in OA patients and the correlation between OA progression and trf differential expression have yet to be elaborated. The purpose of this research was to identify tRFs with differential expression in OA to assess their potential as OA biomarkers. To determine the tRF-5022B expression level in this research, real-time fluorescence quantitative PCR has been employed. Agarose gel electrophoresis, Sanger sequencing, and other investigations have been employed for evaluating tRF-5022B's molecular properties. Receiver operating characteristic curve analysis has been utilized for assessing the diagnostic effectiveness of the tRF-5022B. The findings demonstrated that tRF-5022B expression was considerably lower in OA serum. The Kellgren-Lawrence grading scale was shown to correspond with serum expression levels. The ROC curve confirmed that tRF-5022B serum expression levels might differentiate OA cases from healthy individuals and RA patients. According to the aforementioned findings, tRF-5022B may be employed as a novel biomarker for OA diagnosis due to its excellent diagnostic value.
Collapse
Affiliation(s)
- Yingchen Ni
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Anqi Wu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jianxin Li
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
44
|
Shen Y, Jiang B, Luo B, Jiang X, Zhang Y, Wang Q. Circular RNA-FK501 binding protein 51 boosts bone marrow mesenchymal stem cell proliferation and osteogenic differentiation via modulating microRNA-205-5p/Runt-associated transcription factor 2 axis. J Orthop Surg Res 2023; 18:782. [PMID: 37853466 PMCID: PMC10583363 DOI: 10.1186/s13018-023-04242-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Osteogenesis is the key process of bone homeostasis differentiation. Numerous studies have manifested that circular RNA (circRNA) is a critical regulator of osteogenesis. The research was to explore circRNA-mediated mechanisms in osteogenesis. METHODS Bone marrow mesenchymal stem cells (BMSCs) were cultured and induced to osteogenic differentiation (OD). Then, oe-circ-FKBP5, oe-NC, si-circ-FKBP5, si-NC, miR-205-5p mimic, mimic NC, miR-205-5p inhibitor, inhibitor NC, sh-RUNX2, or sh-NC were transfected into BMSCs. Alkaline phosphatase (ALP) activity was detected by ALP staining, cell mineralization was detected by alizarin red staining, cell proliferation was detected by CCK-8, and cell apoptosis was detected by flow cytometry. Then, the expression of circ-FKBP5, miR-205-5p, RUNX2 and osteogenic marker genes was detected by RT-qPCR, and the expression of RUNX2 protein was detected by Western blot. Finally, the targeting relationship between miR-205-5p and circ-FKBP5 or RUNX2 was verified by bioinformation website analysis and dual luciferase reporter gene detection. RESULTS Circ-FK501 binding protein 51 (FKBP5) was distinctly elevated during OD of BMSCs. Elevated circ-FKBP5 boosted the proliferation and OD, as well as expression of osteogenic marker genes while reduced apoptosis of BMSCs. Down-regulation of circ-FKBP5 inhibited BMSCs proliferation, OD and osteogenic marker gene expression, and promoted apoptosis of BMSCs. Subsequently, circ-FKBP5 combined with miR-205-5p and constrained miR-205-5p expression. Silenced miR-205-5p boosted proliferation, OD, and expression of osteogenic marker genes and suppressed apoptosis of BMSCs. However, up-regulation of miR-205-5p inhibited BMSC proliferation, OD and osteogenic marker gene expression, and promoted apoptosis. Additionally, miR-205-5p targeted Runt-associated transcription factor 2 (RUNX2). Repression of RUNX2 turned around the effect of circ-FKBP5 overexpression on BMSCs. CONCLUSION In brief, circ-FKBP5 boosted BMSC proliferation and OD by mediating the miR-205-5p/RUNX2 axis.
Collapse
Affiliation(s)
- Yingchao Shen
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou City, 215004, Jiangsu Province, China
| | - Bin Luo
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| | - Xiaowei Jiang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China.
| | - Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, No. 99, South Third Ring Road, Changshu City, 215500, Jiangsu Province, China.
| | - Qiang Wang
- Department of Orthopaedics, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, No. 6 Huanghe Road, Changshu City, 210023, Jiangsu Province, China
| |
Collapse
|
45
|
Xiao X, Liu M, Xie S, Liu C, Huang X, Huang X. Long non-coding HOXA-AS3 contributes to osteosarcoma progression through the miR-1286/TEAD1 axis. J Orthop Surg Res 2023; 18:730. [PMID: 37752588 PMCID: PMC10523635 DOI: 10.1186/s13018-023-04214-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Long non-coding RNA (lncRNA) HOXA cluster antisense RNA 3 (HOXA-AS3) regulates the progression of several types of human malignancy. However, the role and potential mechanism of HOXA-AS3 in osteosarcoma (OS) remain unknown. In this study, upregulation of HOXA-AS3 was observed in OS tissues and cell lines and associated with poor clinical outcomes. Silencing of HOXA-AS3 significantly inhibited the proliferation, migration and invasion of OS cells in vitro and suppressed the tumorigenesis of OS cells in vivo. Furthermore, knockdown of HOXA-AS3 inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) and epithelial-to-mesenchymal transition (EMT) in OS. Further investigation of this mechanism revealed that HOXA-AS3 could directly upregulate the expression of TEAD1 via its competing endogenous RNA (ceRNA) activity on miR-1286. This study clarified the oncogenic roles of the HOXA-AS3/miR-1286/TEAD1 axis in OS progression, suggesting a novel therapeutic target for OS.
Collapse
Affiliation(s)
- Xiangjun Xiao
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Mingjiang Liu
- Department of Orthopedic Trauma and Hand Surgery, Changsha Central Hospital Affiliated to Nanhua University, NO. 161 Shaoshan Nan Road, Changsha, 410018, China.
| | - Songlin Xie
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Changxiong Liu
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Xinfeng Huang
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Xiongjie Huang
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| |
Collapse
|
46
|
Sang L, Ding L, Hao K, Zhang C, Shen X, Sun H, Fu D, Qi X. LncRNA MSTRG.22719.16 mediates the reduction of enoxaparin sodium high-viscosity bone cement-induced thrombosis by targeting the ocu-miR-326-5p/CD40 axis. J Orthop Surg Res 2023; 18:716. [PMID: 37736740 PMCID: PMC10514947 DOI: 10.1186/s13018-023-04109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Polymethylmethacrylate (PMMA) bone cement promotes the development of local thrombi. Our study found that a novel material, ES-PMMA bone cement, can reduce local thrombosis. We used a simple and reproducible animal model to confirm the reduction in local thrombosis and explored the associated molecular mechanism. METHODS New Zealand rabbits, which were used to model thrombosis using extracorporeal carotid artery shunts, were divided into the following two groups, with 3 rabbits in each group: the PMMA bone cement group and the ES-PMMA bone cement group. Four hours after modelling, experimental samples, including thrombotic and vascular tissues, were collected. Thrombotic samples from the PMMA group and ES-PMMA group were subjected to lncRNA sequencing, and a lncRNA microarray was used to screen the differentially expressed lncRNAs. The expression of thrombomodulin in endothelial cells was quantified in vascular tissue samples. Differences in the lncRNA expression profiles between the thrombotic samples of the PMMA group and ES-PMMA group were assessed by base-to-base alignment in the intergenic regions of genomes. The lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was established in light of ceRNA theory. Thrombosis was observed in the PMMA group and ES-PMMA group. RESULTS The thrombotic weight was 0.00706 ± 0.00136 g/cm in the PMMA group and 0.00551 ± 0.00115 g/cm in the ES-PMMA group. Quantitative real-time polymerase chain reaction (RT-q-CR) and Western blotting revealed that the expression of CD40, which can regulate thrombosis in vascular endothelial cells, was significantly lower in the ES-PMMA group than in the PMMA group. High-throughput sequencing was used to identify 111 lncRNAs with lower expression in the ES-PMMA group than in the PMMA group. Through bioinformatics investigation, lncRNA MSTRG22719.16/ocu-miR-326-5p/CD40 binding sites were selected. Fluorescent in situ RNA hybridization (FISH) was performed to verify the lower expression of lncRNA MSTRG.22719.16 in vascular tissues from the ES-PMMA group. A dual-luciferase reporter gene assay was applied to verify that ocu-miR-326-5p binds the CD40 3'-UTR and targets lncRNA MSTRG.22719.16. CONCLUSION Compared with PMMA bone cement, ES-PMMA bone cement can reduce thrombosis through the lncRNA MSTRG.22719.16/ocu-miR-326-5p/CD40 axis.
Collapse
Affiliation(s)
- Linchao Sang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Luobin Ding
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kangning Hao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ce Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Sun
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Dehao Fu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080 People’s Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
47
|
Yu H, Yang J, Chen K, Kang W, Zhu F. Circ_0000396 suppresses the proliferation and inflammation of rheumatoid arthritis synovial fibroblasts by targeting miR-574-5p/RSPO1 axis. J Orthop Surg Res 2023; 18:718. [PMID: 37737195 PMCID: PMC10514958 DOI: 10.1186/s13018-023-04117-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are important regulators on the onset and progression of rheumatoid arthritis (RA). Our purpose is to explore the role and underpin mechanism of circ_0000396 in RA progression. METHODS RA patients (n = 39) and healthy volunteers (n = 33) were recruited from the Affiliated Hospital of Shaanxi University of Chinese Medicine for the present work. Circ_0000396, microRNA-574-5p (miR-574-5p) and R-spondin 1 (RSPO1) RNA levels were analyzed by reverse transcription-quantitative polymerase chain reaction. Cell proliferation was analyzed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EDU) assay. Cell apoptosis was assessed by flow cytometry. Protein expression levels of proliferating cell nuclear antigen (PCNA), Cyclin D1, Cyclin E1, BCL2-associated × protein (Bax), B-cell lymphoma-2 (Bcl2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and RSPO1 were detected by western blot assay. Enzyme-linked immunosorbent assay (ELISA) was conducted to analyze the secretion of pro-inflammatory cytokines including IL-1β and TNF-α. The interaction between miR-574-5p and circ_0000396 or RSPO1 was confirmed by dual-luciferase reporter assay and RNA-pull down assay. RESULTS Circ_0000396 expression was notably down-regulated in RA patients compared with healthy controls. Circ_0000396 overexpression suppressed the proliferation and inflammatory response and triggered the apoptosis of RA synovial fibroblasts (RASFs), accompanied by decreases in PCNA, Cyclin D1, Cyclin E1, Bcl2, IL-1β and TNF-α protein expression and an increase in Bax protein expression. Circ_0000396 acted as a molecular sponge for miR-574-5p, and circ_0000396 overexpression-mediated protective effects on RASFs dysfunction were largely reversed by the introduction of miR-574-5p mimics. miR-574-5p interacted with the 3' untranslated region (3'UTR) of RSPO1, and miR-574-5p negatively regulated RSPO1 expression in RASFs. Circ_0000396 could up-regulate the expression of RSPO1 by sponging miR-574-5p in RASFs. RSPO1 interference largely overturned circ_0000396 overexpression-mediated effects in RASFs. CONCLUSION Circ_0000396 restrained the proliferation and inflammation and induced the apoptosis of RASFs by mediating miR-574-5p/RSPO1 axis, which provided novel potential targets for RA treatment.
Collapse
Affiliation(s)
- Hongchao Yu
- Department of Bone Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jin Yang
- Department of Trauma, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2 Weiyang West Road, Xianyang City, 712000, Shaanxi Province, China.
| | - Kun Chen
- Department of Bone Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wulin Kang
- Department of Bone Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fengfeng Zhu
- Department of Bone Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
48
|
Huang H, Zhu W, Huang Z, Zhao D, Cao L, Gao X. Adipose-derived stem cell exosome NFIC improves diabetic foot ulcers by regulating miR-204-3p/HIPK2. J Orthop Surg Res 2023; 18:687. [PMID: 37710299 PMCID: PMC10503042 DOI: 10.1186/s13018-023-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) are a serious complication of diabetes that lead to significant morbidity and mortality. Recent studies reported that exosomes secreted by human adipose tissue-derived mesenchymal stem cells (ADSCs) might alleviate DFU development. However, the molecular mechanism of ADSCs-derived exosomes in DFU is far from being addressed. METHODS Human umbilical vein endothelial cells (HUVECs) were induced by high-glucose (HG), which were treated with exosomes derived from nuclear factor I/C (NFIC)-modified ADSCs. MicroRNA-204-3p (miR-204-3p), homeodomain-interacting protein kinase 2 (HIPK2), and NFIC were determined using real-time quantitative polymerase chain reaction. Cell proliferation, apoptosis, migration, and angiogenesis were assessed using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and tube formation assays. Binding between miR-204-3p and NFIC or HIPK2 was predicted using bioinformatics tools and validated using a dual-luciferase reporter assay. HIPK2, NFIC, CD81, and CD63 protein levels were measured using western blot. Exosomes were identified by a transmission electron microscope and nanoparticle tracking analysis. RESULTS miR-204-3p and NFIC were reduced, and HIPK2 was enhanced in DFU patients and HG-treated HUVECs. miR-204-3p overexpression might abolish HG-mediated HUVEC proliferation, apoptosis, migration, and angiogenesis in vitro. Furthermore, HIPK2 acted as a target of miR-204-3p. Meanwhile, NFIC was an upstream transcription factor that might bind to the miR-204-3p promoter and improve its expression. NFIC-exosome from ADSCs might regulate HG-triggered HUVEC injury through miR-204-3p-dependent inhibition of HIPK2. CONCLUSION Exosomal NFIC silencing-loaded ADSC sheet modulates miR-204-3p/HIPK2 axis to suppress HG-induced HUVEC proliferation, migration, and angiogenesis, providing a stem cell-based treatment strategy for DFU.
Collapse
Affiliation(s)
- Huimin Huang
- Burn, Plastic and Wound Surgery Department, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Wufei Zhu
- Department of Endocrinology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Zongwei Huang
- Burn, Plastic and Wound Surgery Department, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Dengze Zhao
- Burn, Plastic and Wound Surgery Department, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Lu Cao
- Burn, Plastic and Wound Surgery Department, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Xian Gao
- Burn, Plastic and Wound Surgery Department, Huanggang Central Hospital of Yangtze University, No.126, Qian Avenue, Huangzhou District, Huanggang, 438000, Hubei, China.
| |
Collapse
|
49
|
Huang F, Su Z, Yang J, Zhao X, Xu Y. Downregulation of lncRNA NEAT1 interacts with miR-374b-5p/PGAP1 axis to aggravate the development of osteoarthritis. J Orthop Surg Res 2023; 18:670. [PMID: 37691099 PMCID: PMC10494329 DOI: 10.1186/s13018-023-04147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), characterized by inflammation and articular cartilage degradation, is a prevalent arthritis among geriatric population. This paper was to scrutinize the novel mechanism of long noncoding RNA (lncRNA) NEAT1 in OA etiology. METHODS A total of 10 OA patients and 10 normal individuals was included in this study. Cell model of OA was built in human normal chondrocytes induced by lipopolysaccharide (LPS). An OA Wistar rat model was established through intra-articular injection of L-cysteine and papain mixtures (proportion at 1:2) into the right knee. Quantitative reverse transcription-polymerase chain reaction was employed to ascertain the expression levels of NEAT1, microRNA (miR)-374b-5p and post-GPI attachment to protein 1 (PGAP1), while dual-luciferase reporter experiments were used for the validation of target relationship among them. Cell cycle and apoptosis were calculated by flow cytometry analysis. CCK-8 assay was done to evaluate the proliferative potentials of chondrocytes. The levels of cell cycle-related proteins (Cyclin A1, Cyclin B1 and Cyclin D2) and pro-apoptotic proteins (Caspase3 and Caspase9) were measured by western blotting. Tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and IL-6 levels were determined via ELISA. Hematoxylin & eosin (HE) Staining was used for pathological examination in OA rats. RESULTS Pronounced downregulation of NEAT1 and PGAP1 and high amounts of miR-374b-5p were identified in OA patients, LPS-induced chondrocytes and OA rats. NEAT1 targeted miR-374b-5p to control PGAP1 expression. Loss of NEAT1 or upregulation of miR-374b-5p dramatically accelerated apoptosis, led to the G1/S arrest and promoted the secretion of inflammatory cytokines in LPS-induced chondrocytes, while ectopic expression of PGAP1 exhibited the opposite influences on chondrocytes. Additionally, we further indicated that upregulation of miR-374b-5p attenuated the effects of PGAP1 overexpression on LPS-induced chondrocytes. CONCLUSIONS Reduced NEAT1 induces the development of OA via miR-374b-5p/PGAP1 pathway. This suggests that the regulatory axis NEAT1/miR-374b-5p/PGAP1 is a novel and prospective target for OA treatment.
Collapse
Affiliation(s)
- Feiri Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu, China
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhongliang Su
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Jie Yang
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Xizhen Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Shanghai University, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
50
|
Zheng C, Ding L, Xiang Z, Feng M, Zhao F, Zhou Z, She C. Circ_0001825 promotes osteogenic differentiation in human-derived mesenchymal stem cells via miR-1270/SMAD5 axis. J Orthop Surg Res 2023; 18:663. [PMID: 37674252 PMCID: PMC10481475 DOI: 10.1186/s13018-023-04133-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The implication of deregulated circular RNAs in osteoporosis (OP) has gradually been proposed. Herein, we aimed to study the function and mechanism of circ_0001825 in OP using osteogenic-induced human-derived mesenchymal stem cells (hMSCs). METHODS The content of genes and proteins was tested by quantitative real-time polymerase chain reaction and Western blotting. The osteogenic differentiation in hMSCs were evaluated by ALP activity and Alizarin Red staining, as well as the detection of osteogenesis-related markers. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry. The binding between miR-1270 and circ_0001825 or SMAD5 (SMAD Family Member 5) was confirmed by using dual-luciferase reporter assay and pull-down assay. RESULTS Circ_0001825 was lowly expressed in OP patients and osteogenic induced hMSCs. Knockdown of circ_0001825 suppressed hMSC viability and osteogenic differentiation, while circ_0001825 overexpression showed the exact opposite effects. Mechanistically, circ_0001825/miR-1270/SMAD5 formed a feedback loop. MiR-1270 was increased and SMAD5 was decreased in OP patients and osteogenic induced hMSCs. MiR-1270 up-regulation suppressed hMSC viability and osteogenic differentiation, which was reversed by SMAD5 overexpression. Moreover, miR-1270 deficiency abolished the effects of circ_0001825 knockdown on hMSCs. CONCLUSION Circ_0001825 promoted hMSC viability and osteogenic differentiation via miR-1270/SMAD5 axis, suggesting the potential involvement of circ_0001825 in osteoporosis.
Collapse
Affiliation(s)
- Changjun Zheng
- Department of Joint Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, China
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Lingzhi Ding
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Ziming Xiang
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Mingxuan Feng
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Fujiang Zhao
- Department of Orthopedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Zhaoxin Zhou
- Department of Joint Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, China
| | - Chang She
- Department of Joint Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu Province, China.
| |
Collapse
|