1
|
Nmer S, Ameli A, Trhanint S, Chaouki S, Bouguenouch L, Ouldim K. Exploring Splice-Site Mutations in LAMA2-Related Muscular Dystrophies: A Comprehensive Analysis of Genotypic and Phenotypic Patterns. Cureus 2024; 16:e61599. [PMID: 38962616 PMCID: PMC11221619 DOI: 10.7759/cureus.61599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
LAMA2-related muscular dystrophies (LAMA2-RDs) constitute the most prevalent subtype of congenital muscular dystrophies (CMDs). The clinical spectrum of LAMA2-RDs exhibits considerable diversity, particularly in motor development and disease progression. Phenotypic variability ranges from severe, early-onset presentation, known as merosin-deficient CMD type 1A, to milder, late-onset presentations, including limb-girdle muscular dystrophy-like phenotype. In this study, whole exome sequencing (WES) was applied to a family with a single proband affected by severe muscular dystrophy. The identified causative mutation was a biallelic splice-site mutation in intron 58 of the LAMA2 gene, leading to a premature termination codon in the critical G domain of laminin-α2 and resulting in a severe phenotype. Additionally, we summarized previously reported splice-site mutations to investigate the clinical and transcription consequences of these mutations. Our findings conclude that splice-site mutations predominantly lead to severe MDC1A, whether in a homozygous or heterozygous state, often associated with another loss-of-function mutation. Besides, splice-site mutations with available analysis of their transcriptional consequences were found to be responsible for exon skipping in most cases and the loss of the reading frame. These findings revealed the importance of WES in identifying disease-causing mutations, particularly in highly diversified pathologies like LAMA2-RDs. The results also underscore the importance of transcriptional analysis in determining the impact of splice-site mutations and the phenotype of LAMA2-RDs on patients.
Collapse
Affiliation(s)
- Samira Nmer
- Biomedical and Translational Research Laboratory, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, Fez, MAR
- Medical Genetics and Oncogenetics Unit, Central Laboratory of Medical Analyses, Hassan II University Hospital, Fez, MAR
| | - Amina Ameli
- Medical Genetics and Oncogenetics Unit, Central Laboratory of Medical Analyses, Hassan II University Hospital, Fez, MAR
| | - Said Trhanint
- Medical Genetics and Oncogenetics Unit, Central Laboratory of Medical Analyses, Hassan II University Hospital, Fez, MAR
| | - Sana Chaouki
- Pediatric Emergency, Hassan II University Hospital, Fez, MAR
- Biomedical and Translational Research Laboratory, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Laila Bouguenouch
- Biomedical and Translational Research Laboratory, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, Fez, MAR
- Medical Genetics and Oncogenetics Unit, Central Laboratory of Medical Analyses, Hassan II University Hospital, Fez, MAR
| | - Karim Ouldim
- Biomedical and Translational Research Laboratory, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, Fez, MAR
- Medical Genetics and Oncogenetics Unit, Central Laboratory of Medical Analyses, Hassan II University Hospital, Fez, MAR
| |
Collapse
|
2
|
Magri F, Brusa R, Bello L, Peverelli L, Del Bo R, Govoni A, Cinnante C, Colombo I, Fortunato F, Tironi R, Corti S, Grimoldi N, Sciacco M, Bresolin N, Pegoraro E, Moggio M, Comi GP. Limb girdle muscular dystrophy due to LAMA2 gene mutations: new mutations expand the clinical spectrum of a still challenging diagnosis. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:67-82. [PMID: 32904964 PMCID: PMC7460730 DOI: 10.36185/2532-1900-009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 11/03/2022]
Abstract
Mutations in LAMA2 gene, encoding merosin, are generally responsible of a severe congenital-onset muscular dystrophy (CMD type 1A) characterized by severe weakness, merosin absence at muscle analysis and white matter alterations at brain Magnetic Resonance Imaging (MRI). Recently, LAMA2 mutations have been acknowledged as responsible of LGMD R23, despite only few cases with slowly progressive adult-onset and partial merosin deficiency have been reported. We describe 5 independent Italian subjects presenting with progressive limb girdle muscular weakness, brain white matter abnormalities, merosin deficiency and LAMA2 gene mutations. We detected 7 different mutations, 6 of which are new. All patients showed normal psicomotor development and slowly progressive weakness with onset spanning from childhood to forties. Creatin-kinase levels were moderately elevated. One patient showed dilated cardiomyopathy. Muscle MRI allowed to evaluate the degree and pattern of muscular involvement in all patients. Brain MRI was fundamental in order to address and/or support the molecular diagnosis, showing typical widespread white matter hyperintensity in T2-weighted sequences. Interestingly these alterations were associated with central nervous system involvement in 3 patients who presented epilepsy and migraine. Muscle biopsy commonly but not necessarily revealed dystrophic features. Western-blot was usually more accurate than immunohystochemical analysis in detecting merosin deficiency. The description of these cases further enlarges the clinical spectrum of LAMA2-related disorders. Moreover, it supports the inclusion of LGMD R23 in the new classification of LGMD. The central nervous system involvement was fundamental to address the diagnosis and should be always included in the diagnostic work-up of undiagnosed LGMD.
Collapse
Affiliation(s)
- Francesca Magri
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Brusa
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padua, Italy
| | - Lorenzo Peverelli
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cinnante
- Neuroradiology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Colombo
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Fortunato
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Tironi
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Nadia Grimoldi
- Neurosurgery Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Sciacco
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Maurizio Moggio
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy.,Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Endogenously produced LG3/4/5-peptide protects testes against toxicant-induced injury. Cell Death Dis 2020; 11:436. [PMID: 32513914 PMCID: PMC7280515 DOI: 10.1038/s41419-020-2608-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
Abstract
Laminin-α2 chain is one of the major constituent proteins of the basement membrane in the mammalian testis. The laminin-type globular (LG) domains of LG3, 4 and 5 (LG3/4/5, an 80 kDa fragment) can be cleaved from laminin-α2 chain at the C-terminus via the action of matrix metalloproteinase 9 (MMP-9). This LG3/4/5 is a biologically active fragment, capable of modulating the Sertoli cell blood–testis barrier (BTB) function by tightening the barrier both in vitro and in vivo. Overexpression of LG3/4/5 cloned into a mammalian expression vector pCI-neo in Sertoli cells in a Sertoli cell in vitro model with a functional BTB also protected Sertoli cells from cadmium chloride (CdCl2, an environmental toxicant) mediated cell injury. Importantly, overexpression of LG3/4/5 in the testis in vivo was found to block or rescue cadmium-induced BTB disruption and testis injury. LG3/4/5 was found to exert its BTB and spermatogenesis promoting effects through corrective spatiotemporal expression of actin- and MT-based regulatory proteins by maintaining the cytoskeletons in the testis, illustrating the therapeutic implication of this novel bioactive fragment.
Collapse
|
4
|
Gao Y, Mruk D, Chen H, Lui WY, Lee WM, Cheng CY. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin α2 in the basement membrane. FASEB J 2017; 31:584-597. [PMID: 27815338 PMCID: PMC5240664 DOI: 10.1096/fj.201600870r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
Laminin α2 is one of the constituent components of the basement membrane (BM) in adult rat testes. Earlier studies that used a mouse genetic model have shown that a deletion of laminin α2 impedes male fertility by disrupting ectoplasmic specialization (ES; a testis-specific, actin-rich anchoring junction) function along the length of Sertoli cell in the testis. This includes ES at the Sertoli cell-elongating/elongated spermatid interface, which is known as apical ES and possibly the Sertoli-Sertoli cell interface, known as basal ES, at the blood-testis barrier (BTB). Studies have also illustrated that there is a local regulatory axis that functionally links cellular events of spermiation that occur near the luminal edge of tubule lumen at the apical ES and the basal ES/BTB remodeling near the BM at opposite ends of the seminiferous epithelium during the epithelial cycle, known as the apical ES-BTB-BM axis. However, the precise role of BM in this axis remains unknown. Here, we show that laminin α2 in the BM serves as the crucial regulator in this axis as laminin α2, likely its 80-kDa fragment from the C terminus, was found to be transported across the seminiferous epithelium at stages VIII-IX of the epithelial cycle, from the BM to the luminal edge of the tubule, possibly being used to modulate apical ES restructuring at these stages. Of more importance, a knockdown of laminin α2 in Sertoli cells was shown to induce the Sertoli cell tight junction permeability barrier disruption via changes in localization of adhesion proteins at the tight junction and basal ES at the Sertoli cell BTB. These changes were found to be mediated by a disruption of F-actin organization that was induced by changes in the spatiotemporal expression of actin binding/regulatory proteins. Furthermore, laminin α2 knockdown also perturbed microtubule (MT) organization by considerable down-regulation of MT polymerization via changes in the spatiotemporal expression of EB1 (end-binding protein 1), a +TIP (MT plus-end tracking protein). In short, laminin α2 in the BM seems to play a crucial role in the BTB-BM axis by modulating BTB dynamics during spermatogenesis.-Gao, Y., Mruk, D., Chen, H., Lui, W.-Y., Lee, W. M., Cheng, C. Y. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin α2 in the basement membrane.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA;
| |
Collapse
|
5
|
Gavassini BF, Carboni N, Nielsen JE, Danielsen ER, Thomsen C, Svenstrup K, Bello L, Maioli MA, Marrosu G, Ticca AF, Mura M, Marrosu MG, Soraru G, Angelini C, Vissing J, Pegoraro E. Clinical and molecular characterization of limb-girdle muscular dystrophy due to LAMA2 mutations. Muscle Nerve 2011; 44:703-9. [DOI: 10.1002/mus.22132] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2011] [Indexed: 11/06/2022]
|
6
|
Rajakulendran S, Parton M, Holton JL, Hanna MG. Clinical and pathological heterogeneity in late-onset partial merosin deficiency. Muscle Nerve 2011; 44:590-3. [DOI: 10.1002/mus.22196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Lin YY, White RJ, Torelli S, Cirak S, Muntoni F, Stemple DL. Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies. Hum Mol Genet 2011; 20:1763-75. [PMID: 21317159 PMCID: PMC3071672 DOI: 10.1093/hmg/ddr059] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allelic mutations in putative glycosyltransferase genes, fukutin and fukutin-related protein (fkrp), lead to a wide range of muscular dystrophies associated with hypoglycosylation of α-dystroglycan, commonly referred to as dystroglycanopathies. Defective glycosylation affecting dystroglycan–ligand interactions is considered to underlie the disease pathogenesis. We have modelled dystroglycanopathies in zebrafish using a novel loss-of-function dystroglycan allele and by inhibition of Fukutin family protein activities. We show that muscle pathology in embryos lacking Fukutin or FKRP is different from loss of dystroglycan. In addition to hypoglycosylated α-dystroglycan, knockdown of Fukutin or FKRP leads to a notochord defect and a perturbation of laminin expression before muscle degeneration. These are a consequence of endoplasmic reticulum stress and activation of the unfolded protein response (UPR), preceding loss of dystroglycan–ligand interactions. Together, our results suggest that Fukutin family proteins may play important roles in protein secretion and that the UPR may contribute to the phenotypic spectrum of some dystroglycanopathies in humans.
Collapse
Affiliation(s)
- Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | |
Collapse
|
8
|
Geranmayeh F, Clement E, Feng LH, Sewry C, Pagan J, Mein R, Abbs S, Brueton L, Childs AM, Jungbluth H, De Goede CG, Lynch B, Lin JP, Chow G, Sousa CD, O'Mahony O, Majumdar A, Straub V, Bushby K, Muntoni F. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul Disord 2010; 20:241-50. [PMID: 20207543 DOI: 10.1016/j.nmd.2010.02.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/09/2010] [Accepted: 02/01/2010] [Indexed: 11/25/2022]
Abstract
Merosin deficient congenital muscular dystrophy 1A (MDC1A) results from mutations in the LAMA2 gene. We report 51 patients with MDC1A and examine the relationship between degree of merosin expression, genotype and clinical features. Thirty-three patients had absence of merosin and 13 showed some residual merosin. Compared to the residual merosin group, patients with absent merosin had an earlier presentation (<7days) (P=0.0073), were more likely to lack independent ambulation (P=0.0215), or require enteral feeding (P=0.0099) and ventilatory support (P=0.0354). We identified 33 novel LAMA2 mutations; these were distributed throughout the gene in patients with absent merosin, with minor clusters in exon 27, 14, 25 and 26 (55% of mutations). Patients with residual merosin often carried at least one splice site mutation and less frequently frameshift mutations. This large study identified novel LAMA2 mutations and highlights the role of immunohistochemical studies for merosin status in predicting clinical severity of MDC1A.
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- Dubowitz Neuromuscular Centre, Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Siala O, Louhichi N, Triki C, Morinière M, Fakhfakh F, Baklouti F. LAMA2 mRNA processing alterations generate a complete deficiency of laminin-alpha2 protein and a severe congenital muscular dystrophy. Neuromuscul Disord 2007; 18:137-45. [PMID: 18053718 DOI: 10.1016/j.nmd.2007.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 11/19/2022]
Abstract
An increasing number of genomic variations are no more regarded as harmless changes in protein coding sequences or as genetic polymorphisms. Studying the impact of these variations on mRNA metabolism became a central issue to better understand the biological significance of disease. We describe here a severe congenital muscular dystrophy (CMD) with lumbar scoliosis and respiratory complications in a patient, who died at the age of 10. Despite a poor linkage to any form of CMD, total deficiency of laminin-alpha2 rather suggested the occurrence of an MDC1A form. Extensive analysis of LAMA2 gene revealed two novel mutations: a (8007delT) frameshift deletion in exon 57, and a de novo 7nt deletion in intron 17. Using an ex vivo approach, we provided strong evidence that the intron mutation is responsible for complete exon 17 skipping. The mutations are in trans and they each generate a nonsense mRNA potentially elicited to degradation by NMD. We further discuss the impact of mRNA alterations on the subtle phenotypic discrepancies.
Collapse
Affiliation(s)
- Olfa Siala
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Avenue Majida Baklouti-Boulila 3029 Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
10
|
Siala O, Louhichi N, Triki C, Morinière M, Rebai A, Richard P, Guicheney P, Baklouti F, Fakhfakh F. Severe MDC1A Congenital Muscular Dystrophy Due to a Splicing Mutation in theLAMA2Gene Resulting in Exon Skipping and Significant Decrease of mRNA Level. ACTA ACUST UNITED AC 2007; 11:199-207. [DOI: 10.1089/gte.2006.0517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Olfa Siala
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, 3029 Sfax, Tunisia
| | - Nacim Louhichi
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, 3029 Sfax, Tunisia
| | - Chahnez Triki
- Service de Neurologie, C H U Habib Bourguiba, 3029 Sfax, Tunisia
| | - Madeleine Morinière
- Equipe épissage alternatif et différenciation cellulaire, Centre de Génétique moléculaire et cellulaire, CNRS UMR 5534, Université Lyon 1, 69622 Villeurbanne Cedex, France
| | - Ahmed Rebai
- Centre de Biotechnologie de Sfax, Tunisia
- B P. “K” 3038 Sfax, Tunisia
| | - Pascale Richard
- INSERM U582, Institut de Myologie, groupe hôspitalier Salpêtrière, Paris 75651, France
- AP-HP, Groupe Hospitalier Pitié Salpêtrière, Service de Biochimie Métabolique, Paris, F-75013
| | - Pascale Guicheney
- INSERM U582, Institut de Myologie, groupe hôspitalier Salpêtrière, Paris 75651, France
- Université Pierre et Marie Curie, Paris, France
| | - Faouzi Baklouti
- Equipe épissage alternatif et différenciation cellulaire, Centre de Génétique moléculaire et cellulaire, CNRS UMR 5534, Université Lyon 1, 69622 Villeurbanne Cedex, France
| | - Faiza Fakhfakh
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, 3029 Sfax, Tunisia
| |
Collapse
|
11
|
Laval SH, Bushby KMD. Limb-girdle muscular dystrophies - from genetics to molecular pathology. Neuropathol Appl Neurobiol 2004; 30:91-105. [PMID: 15043707 DOI: 10.1111/j.1365-2990.2004.00555.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The limb-girdle muscular dystrophies are a diverse group of muscle-wasting disorders characteristically affecting the large muscles of the pelvic and shoulder girdles. Molecular genetic analyses have demonstrated causative mutations in the genes encoding a disparate collection of proteins involved in all aspects of muscle cell biology. Muscular dystrophy includes a spectrum of disorders caused by loss of the linkage between the extracellular matrix and the actin cytoskeleton. Within this are the forms of limb-girdle muscular dystrophy caused by deficiencies of the sarcoglycan complex and by aberrant glycosylation of alpha-dystroglycan caused by mutations in the fukutin-related protein gene. However, other forms of this disease have distinct pathophysiological mechanisms. For example, deficiency of dysferlin disrupts sarcolemmal membrane repair, whilst loss of calpain-3 may exert its pathological influence either by perturbation of the IkappaBalpha/NF-kappaB pathway, or through calpain-dependent cytoskeletal remodelling. Caveolin-3 is implicated in numerous cell-signalling pathways and involved in the biogenesis of the T-tubule system. Alterations in the nuclear lamina caused by mutations in laminA/C, sarcomeric changes in titin, telethonin or myotilin at the Z-disc, and subtle changes in the extracellular matrix proteins laminin-alpha2 or collagen VI can all lead to a limb-girdle muscular dystrophy phenotype, although the specific pathological mechanisms remain obscure. Differential diagnosis of these disorders requires the careful application of a broad range of disciplines: clinical assessment, immunohistochemistry and immunoblotting using a panel of antibodies and extensive molecular genetic analyses.
Collapse
Affiliation(s)
- S H Laval
- Institute of Human Genetics, International Centre for Life, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
12
|
Abstract
Muscular dystrophies are a heterogeneous group of genetically determined progressive disorders of the muscle with a primary or predominant involvement of the pelvic or shoulder girdle musculature. The clinical course is highly variable, ranging from severe congenital forms with rapid progression to milder forms with later onset and a slower course. In recent years, several proteins from the sarcolemmal muscle membrane (dystrophin, sarcoglycans, dysferlin, caveolin-3), from the extracellular matrix (alpha2-laminin, collagen VI), from the sarcomere (telethonin, myotilin, titin, nebulin), from the muscle cytosol (calpain 3, TRIM32), from the nucleus (emerin, lamin A/C, survival motor neuron protein), and from the glycosylation pathway (fukutin, fukutin-related protein) have been identified. Mutations in their respective genes are responsible for different forms of neuromuscular diseases. Protein analysis using Western blotting or immunohistochemistry with specific antibodies is of the utmost importance for the differential diagnosis and elucidation of the physiopathology of each genetic disorder involved. Recent molecular studies have shown clinical inter- and intra-familial variability in several genetic disorders highlighting the importance of other factors in determining phenotypic expression and the role of possible modifying genes and protein interactions. Developmental studies can help elucidate the mechanism of normal muscle formation and thus muscle regeneration. In the last fifteen years, our research has focused on muscle protein expression, localization and possible interactions in patients affected by different forms of muscular dystrophies. The main objective of this review is to summarize the most recent findings in the field and our own contribution.
Collapse
Affiliation(s)
- M Vainzof
- Centro de Estudos do Genoma Humano, Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil.
| | | |
Collapse
|
13
|
Guo LT, Zhang XU, Kuang W, Xu H, Liu LA, Vilquin JT, Miyagoe-Suzuki Y, Takeda S, Ruegg MA, Wewer UM, Engvall E. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. Neuromuscul Disord 2003; 13:207-15. [PMID: 12609502 DOI: 10.1016/s0960-8966(02)00266-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal models may be valuable for such genotype-phenotype analysis and for determining mechanism of disease as well as function of laminin. Here, we have analyzed protein expression in three lines of mice with mutations in the laminin alpha2 chain gene and in two lines of transgenic mice overexpressing the human laminin alpha2 chain gene in skeletal muscle. The dy(3K)/dy(3K) experimental mutant mice are completely deficient in laminin alpha2; the dy/dy spontaneous mutant mice have small amounts of apparently normal laminin; and the dy(W)/dy(W) mice express even smaller amounts of a truncated laminin alpha2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter substantially prevented the muscular dystrophy in these mice. However, dy(W)/dy(W) mice, expressing the human laminin alpha2 under the control of the striated muscle-specific portion of the desmin promoter, still developed muscular dystrophy. This failure to rescue is apparently because of insufficient production of laminin alpha2. This study provides additional evidence that the amount of laminin alpha2 is most critical for the prevention of muscular dystrophy. These data may thus be of significance for attempts to treat congenital muscular dystrophy in human patients.
Collapse
Affiliation(s)
- L T Guo
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tezak Z, Prandini P, Boscaro M, Marin A, Devaney J, Marino M, Fanin M, Trevisan CP, Park J, Tyson W, Finkel R, Garcia C, Angelini C, Hoffman EP, Pegoraro E. Clinical and molecular study in congenital muscular dystrophy with partial laminin alpha 2 (LAMA2) deficiency. Hum Mutat 2003; 21:103-11. [PMID: 12552556 DOI: 10.1002/humu.10157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Complete laminin alpha2 (LAMA2) deficiency causes approximately half of congenital muscular dystrophy (CMD) cases. Many loss-of-function mutations have been reported in these severe, neonatal-onset patients, but only single missense mutations have been found in milder CMD with partial laminin alpha2 deficiency. Here, we studied nine patients diagnosed with CMD who showed abnormal white-matter signal at brain MRI and partial deficiency of laminin alpha2 on immunofluorescence of muscle biopsy. We screened the entire 9.5 kb laminin alpha2 mRNA from patient muscle biopsy by direct capillary automated sequencing, single strand conformational polymorphism (SSCP), or denaturing high performance liquid chromatography (DHPLC) of overlapping RT-PCR products followed by direct sequencing of heteroduplexes. We identified laminin alpha2 sequence changes in six of nine CMD patients. Each of the gene changes identified, except one, was novel, including three missense changes and two splice-site mutations. The finding of partial laminin alpha2 deficiency by immunostaining is not specific for laminin alpha2 gene mutation carriers, with only two patients (22%) showing clear causative mutations, and an additional three patients (33%) showing possible mutations. The clinical presentation and disease progression was homogeneous in the laminin alpha2-mutation positive and negative CMD patients.
Collapse
Affiliation(s)
- Zivana Tezak
- Research Center for Genetic Medicine, Children's Research Hospital, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The number of new syndromes, loci, and genes responsible for CMD forms has dramatically increased in the last few years, and it has become increasingly evident that the classification of the different forms of CMD is a difficult task. A recent classification separated the forms of CMD that have been mapped (CMD diseases) from the ones with clearly defined clinical and pathologic features that have not been mapped yet (CMD syndromes). Eight CMD forms have been mapped up to now, and the genes responsible for three of them have been identified. This review describes an update of clinical, pathologic, and genetic findings in the different CMD forms.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Dubowitz Neuromuscular Centre, Department of Paediatrics, Imperial College Faculty of Medicine, Hammersmith Hospital, London, England
| | | | | | | |
Collapse
|
16
|
Deodato F, Sabatelli M, Ricci E, Mercuri E, Muntoni F, Sewry C, Naom I, Tonali P, Guzzetta F. Hypermyelinating neuropathy, mental retardation and epilepsy in a case of merosin deficiency. Neuromuscul Disord 2002; 12:392-8. [PMID: 12062258 DOI: 10.1016/s0960-8966(01)00312-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Children with a deficiency of laminin alpha 2 chain generally show an involvement of skeletal muscles, cerebral white matter and peripheral nerves. Among these patients, however, there is increasing evidence of molecular and phenotype heterogeneity. We report a 19-year-old girl with distal weakness, mental retardation and refractory epilepsy in whom elevated serum CK suggested a myopathy. Electrophysiological and neuroimaging examinations as well as studies of nerve and muscle biopsies were performed. Nerve conduction velocities were definitely reduced and brain MRI demonstrated a diffuse white matter involvement. The muscle biopsy showed both myopathic and neurogenic features. By immunohistochemistry laminin alpha 2 chain was mildly reduced in muscle and virtually absent in peripheral nerve. Teasing of sural nerve fibers showed a 'globular' hypermyelination characteristically located at the paranodal regions. A mild loss of myelinated fibers without any demyelination-remyelination changes was found. Haplotype analysis suggested linkage to the LAMA2 locus. Our case is peculiar as the putative mutation probably affects the expression of laminin alpha 2 chain is affected in a tissue specific manner: the protein is virtually absent in peripheral nerves but only mildly reduced in skeletal muscle. As to the disorder of nerve myelination, an absence or abnormal functioning of laminin alpha 2 chain can alter the feed-back control during myelinogenesis, leading to an over-ensheathment of axon. Alternatively, a compensatory up-regulation of other laminins can induce the hyperproduction of myelin sheaths. This case provides new evidence of the phenotypical heterogeneity of the LAMA2 gene and sheds light in understanding the role of laminin alpha 2 chain in myelination of peripheral nerve.
Collapse
Affiliation(s)
- F Deodato
- Child Neurology and Psychiatry Unit, Catholic University, Largo A. Gemelli 8, 00168, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Congenital myopathies and congenital myopathic dystrophies are distinct groups of inherited diseases of muscle, genetically heterogeneous, that manifest in early life or infancy. Congenital myopathic dystrophy is characterized by a dystrophic pattern, whereas no necrotic or degenerative changes are present in congenital myopathies. Much progress has been made in recent years in clarifying the classification of the congenital myopathies. This is a clinically and genetically heterogeneous group of conditions originally classified according to unique morphological changes seen in muscle. Not unlike the later-onset muscular dystrophies, the discovery of the genetic aetiology of many of the congenital myopathies has led to a revamping of how these conditions can now be diagnosed and this should enable physicians to give a more accurate prognosis to patients and their families. New mutations in the ryanodine receptor, slow tropomyosin, troponin T1, actin, and nebulin genes have been described in the last 2 years. Clinical and genetic guidelines for conditions like nemaline rod myopathy and central core disease have been suggested. The notion of minus and surplus protein myopathies has been developed. Several groups of congenital myopathic dystrophy have been identified. In the first category, without intellectual impairment or major structural brain abnormalities, half of the cases are merosin deficient due to mutations of the laminin alpha 2 chain gene. If generally the muscular phenotype is severe, mild allelic variants have been reported with early onset dystrophies and partial merosin deficiency. Among other pure congenital myopathic dystrophies unlinked to the laminin alpha 2 gene, one form has been assigned to chromosome 1q42. In the group of congenital myopathic dystrophies associated with mental retardation and structural brain abnormalities, two main entities are genetically characterized: (1) Fukuyama congenital myopathic dystrophy, affecting the Japanese population, is due to fukutin gene mutations, and (2) the muscle eye brain syndrome assigned to chromosome 1p32-34. In several cases, the gene localization remains unknown.
Collapse
Affiliation(s)
- N Tubridy
- Fédération de Neurologie, Institute of Myology and Inserm, La Pitié Salpêtrière, Paris, France
| | | | | |
Collapse
|
18
|
Abstract
The laminin protein family has diverse tissue expression patterns and is involved in the pathology of a number of organs, including skin, muscle, and nerve. In the skin, laminins 5 and 6 contribute to dermal-epidermal cohesion, and mutations in the constituent chains result in the blistering phenotype observed in patients with junctional epidermolysis bullosa (JEB). Allelic heterogeneity is observed in patients with JEB: mutations that results in premature stop codons produce a more severe phenotype than do missense mutations. Gene therapy approaches are currently being studied in the treatment of this disease. A blistering phenotype is also observed in patients with acquired cicatricial pemphigoid (CP). Autoantibodies targeted against laminins 5 and 6 destabilize epithelial adhesion and are pathogenic. In muscle cells, laminin alpha 2 is a component of the bridge that links the actin cytoskeleton to the extracellular matrix. In patients with laminin alpha 2 mutations, the bridge is disrupted and mature muscle cells apoptose. Congenital muscular dystrophy (CMD) results. The role of laminin in diseases of the nervous system is less well defined, but the extracellular protein has been shown to serve an important role in peripheral nerve regeneration. The adhesive molecule influences neurite outgrowth, neural differentiation, and synapse formation. The broad spatial distribution of laminin gene products suggests that laminin may be involved in a number of diseases for which pathogenic mechanisms are still being unraveled.
Collapse
Affiliation(s)
- K A McGowan
- Department of Genetics, M-344, School of Medicine, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
19
|
Brockington M, Sewry CA, Herrmann R, Naom I, Dearlove A, Rhodes M, Topaloglu H, Dubowitz V, Voit T, Muntoni F. Assignment of a form of congenital muscular dystrophy with secondary merosin deficiency to chromosome 1q42. Am J Hum Genet 2000; 66:428-35. [PMID: 10677302 PMCID: PMC1288095 DOI: 10.1086/302775] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We have previously reported an autosomal recessive form of congenital muscular dystrophy, characterized by proximal girdle weakness, generalized muscle hypertrophy, rigidity of the spine, and contractures of the tendo Achilles, in a consanguineous family from the United Arab Emirates. Early respiratory failure resulting from severe diaphragmatic involvement was present. Intellect and the results of brain imaging were normal. Serum creatine kinase levels were grossly elevated, and muscle-biopsy samples showed dystrophic changes. The expression of the laminin-alpha2 chain of merosin was reduced on several fibers, but linkage analysis excluded the LAMA2 locus on chromosome 6q22-23. Here, we report the results of genomewide linkage analysis of this family, by use of homozygosity mapping. In all four affected children, an identical homozygous region was identified on chromosome 1q42, spanning 6-15 cM between flanking markers D1S2860 and D1S2800. We have identified a second German family with two affected children having similar clinical and histopathological features; they are consistent with linkage to the same locus. The cumulative LOD score was 3.57 (straight theta=.00) at marker D1S213. This represents a novel locus for congenital muscular dystrophy. We suggest calling this disorder "CMD1B." The expression of three functional candidate genes in the CMD1B critical region was investigated, and no detectable changes in their level of expression were observed. The secondary reduction in laminin-alpha2 chain in these families suggests that the primary genetic defect resides in a gene coding for a protein involved in basal lamina assembly.
Collapse
Affiliation(s)
- Martin Brockington
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Caroline A. Sewry
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Ralf Herrmann
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Isam Naom
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Andrew Dearlove
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Michael Rhodes
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Haluk Topaloglu
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Victor Dubowitz
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Thomas Voit
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| | - Francesco Muntoni
- Neuromuscular Unit, Division of Paediatrics, Obstetrics, and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London; Department of Histopathology, Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom; Department of Paediatrics, University of Essen, Essen, Germany; Human Genome Mapping Project–Medical Research Council Resource Centre, Hinxton, Cambridge, United Kingdom; and Department of Paediatric Neurology, Hacettepe Children's Hospital, Ankara, Turkey
| |
Collapse
|