1
|
Gao Q, Zhou Y, Chen Y, Hu W, Jin W, Zhou C, Yuan H, Li J, Lin Z, Lin W. Role of iron in brain development, aging, and neurodegenerative diseases. Ann Med 2025; 57:2472871. [PMID: 40038870 PMCID: PMC11884104 DOI: 10.1080/07853890.2025.2472871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
It is now understood that iron crosses the blood-brain barrier via a complex metabolic regulatory network and participates in diverse critical biological processes within the central nervous system, including oxygen transport, energy metabolism, and the synthesis and catabolism of myelin and neurotransmitters. During brain development, iron is distributed throughout the brain, playing a pivotal role in key processes such as neuronal development, myelination, and neurotransmitter synthesis. In physiological aging, iron can selectively accumulate in specific brain regions, impacting cognitive function and leading to intracellular redox imbalance, mitochondrial dysfunction, and lipid peroxidation, thereby accelerating aging and associated pathologies. Furthermore, brain iron accumulation may be a primary contributor to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Comprehending the role of iron in brain development, aging, and neurodegenerative diseases, utilizing iron-sensitive Magnetic Resonance Imaging (MRI) technology for timely detection or prediction of abnormal neurological states, and implementing appropriate interventions may be instrumental in preserving normal central nervous system function.
Collapse
Affiliation(s)
- Qiqi Gao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Hu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunting Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 PMCID: PMC11759035 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
3
|
Zeng H, Jin Z. The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review). Mol Med Rep 2025; 32:192. [PMID: 40341407 PMCID: PMC12076055 DOI: 10.3892/mmr.2025.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/27/2025] [Indexed: 05/10/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by insidious onset and progressive symptom deterioration. It extends beyond a simple aging process, involving irreversible and progressive neurological degeneration that impairs brain function through multiple etiologies. Iron dysregulation is implicated in the pathophysiology of AD; however, the precise mechanisms remain unclear. Additionally, vitamin E and selenium are key in regulating ferroptosis through their antioxidant properties. The present review examined the mechanistic pathways by which ferroptosis contributes to AD, the regulatory roles of vitamin E, selenium, ferrostatin‑1, N‑acetylcysteine and curcumin, and their potential as therapeutic agents to mitigate neurodegeneration.
Collapse
Affiliation(s)
- Heng Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhaohui Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Li Y, Yang C, Liu X, Shu J, Zhao N, Sun Z, Tabish MS, Hong Y, Liu E, Wei N, Sun M. Potential therapeutic targets for Alzheimer's disease: Fibroblast growth factors and their regulation of ferroptosis, pyroptosis and autophagy. Neuroscience 2025; 573:42-51. [PMID: 40096963 DOI: 10.1016/j.neuroscience.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) is a progressively worsening neurodegenerative disorder characterized primarily by the deposition of amyloid beta (Aβ) plaques in the brain and the abnormal aggregation of tau protein forming neurofibrillary tangles. These pathological changes lead to impaired neuronal function and cell death, subsequently affecting the structure and function of the brain. Fibroblast growth factors (FGFs) are a group of proteins that play crucial roles in various biological processes, including cell proliferation, differentiation, and survival. This article reviews the expression and regulation of FGFs in the central nervous system and how they affect neuronal survival, as well as the changes in FGF signaling pathways and its regulation of programmed cell death in AD. It particularly focuses on the impact of FGF1, FGF2, FGF21, other members of the FGF family, and FGFR on the pathophysiological mechanisms of AD. The potential of the PI3K/AKT/GSK-3β, Wnt/β-catenin, and NF-κB signaling pathways as targets for AD treatment is also discussed. Furthermore, the relationship between FGF-regulated ferroptosis, Pyroptosis and Autophagy and AD is explored, along with the role of these mechanisms in improving the progression of AD.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Zexin Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Muhammad Saud Tabish
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Yichen Hong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
5
|
Lee S, Lee S, Park I, Moon Y, Yim Y, Lee J, Kim JS, Moon W. Associations Between Cortical Iron Accumulation and Memory in Patients With Amnestic Mild Cognitive Impairment and in Cognitively Normal Individuals. Brain Behav 2025; 15:e70521. [PMID: 40384339 PMCID: PMC12086325 DOI: 10.1002/brb3.70521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 02/28/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND AND PURPOSE Brain iron accumulation is recognized as a cause and therapeutic target in Alzheimer's disease (AD). We investigated the differences in both volume and iron accumulation between cognitively normal (CN) older adults and patients with amnestic mild cognitive impairment (aMCI). Additionally, we assessed which combination of these measures best explains the group differences in visual and verbal memory performance. MATERIALS AND METHODS We retrospectively analyzed data from 48 patients with aMCI and 33 age-matched CN individuals. Structural differences were investigated using voxel-based comparisons of T1-weighted magnetic resonance images. Differences in iron accumulation were investigated using voxel-based comparisons of quantitative susceptibility mapping (QSM) images. Subsequently, significant clusters from these voxel-based analyses (amygdala, posterior cingulate cortex, precuneus, lateral occipital cortex, and pericalcarine cortex) were entered into a stepwise regression to predict verbal and visual memory scores, while accounting for age, sex, and education as covariates. RESULTS In comparison to CN, patients with aMCI had significantly lower scores in both verbal and visual memory tests (p < 0.001). The T1-weighted voxel-based morphometry (VBM) results showed significant hippocampal atrophy in the aMCI group relative to CN individuals. The QSM-VBM results showed increased iron accumulation in the amygdala, posterior cingulate cortex, precuneus, lateral occipital cortex, and pericalcarine cortex (FWE-corrected p < 0.05). Lower hippocampal volume (B = 2015.91, SE = 469.61, p < 0.001) and higher posterior cingulate cortex susceptibility (B = -189.63 SE = 89.11, p = 0.037) were significant predictors of verbal memory. For visual memory, higher lateral occipital susceptibility (B = -659. 96, SE = 253.03, p = 0.011) was significant imaging predictor. CONCLUSIONS These results suggest that iron accumulates in regions where atrophy has not yet occurred, suggesting that iron may serve as an earlier imaging marker of neurodegeneration compared to volume atrophy. Further studies are needed to investigate the longitudinal relationship between brain volume and iron accumulation during cognitive decline.
Collapse
Affiliation(s)
- Subin Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulSouth Korea
| | - Suhyeon Lee
- Department of RadiologyKonkuk University Medical Center, Konkuk University School of MedicineSeoulSouth Korea
| | - Ina Park
- Department of RadiologyKonkuk University Medical Center, Konkuk University School of MedicineSeoulSouth Korea
| | - Yeonsil Moon
- Department of NeurologyKonkuk University Medical Center, Konkuk University School of MedicineSeoulSouth Korea
| | - Younghee Yim
- Department of RadiologyChung‐Ang University College of Medicine, Chung‐Ang University HospitalSeoulSouth Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulSouth Korea
| | - June Sic Kim
- Clinical Research InstituteKonkuk University Medical CenterSeoulSouth Korea
| | - Won‐Jin Moon
- Department of RadiologyKonkuk University Medical Center, Konkuk University School of MedicineSeoulSouth Korea
- Research Institute of Medical ScienceKonkuk University of MedicineSeoulSouth Korea
| |
Collapse
|
6
|
Liu YJ, Jia GR, Zhang SH, Guo YL, Ma XZ, Xu HM, Xie JX. The role of microglia in neurodegenerative diseases: from the perspective of ferroptosis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01560-4. [PMID: 40307457 DOI: 10.1038/s41401-025-01560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/06/2025] [Indexed: 05/02/2025]
Abstract
Iron plays a pivotal role in numerous fundamental biological processes in the brain. Among the various cell types in the central nervous system, microglia are recognized as the most proficient cells in accumulating and storing iron. Nonetheless, iron overload can induce inflammatory phenotype of microglia, leading to the production of proinflammatory cytokines and contributing to neurodegeneration. A growing body of evidence shows that disturbances in iron homeostasis in microglia is associated with a range of neurodegenerative disorders. Recent research has revealed that microglia are highly sensitive to ferroptosis, a form of iron-dependent cell death. How iron overload influences microglial function? Whether disbiosis in iron metabolism and ferroptosis in microglia are involved in neurodegenerative disorders and the underlying mechanisms remain to be elucidated. In this review we focus on the recent advances in research on microglial iron metabolism as well as ferroptosis in microglia. Meanwhile, we provide a comprehensive overview of the involvement of microglial ferroptosis in neurodegenerative disorders from the perspective of crosstalk between microglia and neuron, with a focus on Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Ying-Juan Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Guo-Rui Jia
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Sheng-Han Zhang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yun-Liang Guo
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Xi-Zhen Ma
- College of Life Sciences and Health, University of Health and Rehabilitation Science, Qingdao, 266113, China.
| | - Hua-Min Xu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Abdukarimov N, Kokabi K, Kunz J. Ferroptosis and Iron Homeostasis: Molecular Mechanisms and Neurodegenerative Disease Implications. Antioxidants (Basel) 2025; 14:527. [PMID: 40427409 PMCID: PMC12108473 DOI: 10.3390/antiox14050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Iron dysregulation has emerged as a pivotal factor in neurodegenerative pathologies, especially through its capacity to promote ferroptosis, a unique form of regulated cell death driven by iron-catalyzed lipid peroxidation. This review synthesizes current evidence on the molecular underpinnings of ferroptosis, focusing on how disruptions in iron homeostasis interact with key antioxidant defenses, such as the system Xc--glutathione-GPX4 axis, to tip neurons toward lethal oxidative damage. Building on these mechanistic foundations, we explore how ferroptosis intersects with hallmark pathologies in Alzheimer's disease (AD) and Parkinson's disease (PD) and examine how iron accumulation in vulnerable brain regions may fuel disease-specific protein aggregation and neurodegeneration. We further surveyed the distinct components of ferroptosis, highlighting the role of lipid peroxidation enzymes, mitochondrial dysfunction, and recently discovered parallel pathways that either exacerbate or mitigate neuronal death. Finally, we discuss how these insights open new avenues for neuroprotective strategies, including iron chelation and lipid peroxidation inhibitors. By highlighting open questions, this review seeks to clarify the current state of knowledge and proposes directions to harness ferroptosis modulation for disease intervention.
Collapse
Affiliation(s)
| | | | - Jeannette Kunz
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan; (N.A.); (K.K.)
| |
Collapse
|
8
|
Xu J, Shen R, Qian M, Zhou Z, Xie B, Jiang Y, Yu Y, Dong W. Ferroptosis in Alzheimer's Disease: The Regulatory Role of Glial Cells. J Integr Neurosci 2025; 24:25845. [PMID: 40302253 DOI: 10.31083/jin25845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the formation of amyloid plaques, neurofibrillary tangles and progressive cognitive decline. Amyloid-beta peptide (Aβ) monoclonal antibody therapeutic clinical trials have nearly failed, raising significant concerns about other etiological hypotheses about AD. Recent evidence suggests that AD patients also exhibit persistent neuronal loss and neuronal death accompanied by brain iron deposition or overload-related oxidative stress. Ferroptosis is a type of cell death that depends on iron, unlike autophagy and apoptosis. Inhibiting neuronal ferroptosis function is effective in improving cognitive impairment in AD. Notably, new research shows that ferroptosis in AD is crucially dependent on glial cell activation. This review examines the relationship between the imbalance of iron metabolism, the regulation of iron homeostasis in glial cells and neuronal death in AD pathology. Finally, the review summarizes some current drug research in AD targeting iron homeostasis, many novel iron-chelating compounds and natural compounds showing potential AD-modifying properties that may provide therapeutic targets for treating AD.
Collapse
Affiliation(s)
- Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Rongjing Shen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Mengting Qian
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
9
|
Xu Z, Xiang X, Feng Y, Shi X, Cai L. Localized Intense Uptake in the Skull on 18F-Flortaucipir PET/CT. Clin Nucl Med 2025:00003072-990000000-01668. [PMID: 40263752 DOI: 10.1097/rlu.0000000000005848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/14/2025] [Indexed: 04/24/2025]
Abstract
18F-Flortaucipir, as a classical Tau protein visualizer, has been widely used in the diagnosis of neurodegenerative diseases, especially Alzheimer disease. This report describes a case of intense uptake of 18F-Flortaucipir at 2 sites of reduced bone mineral density in the skull, but no radioactivity uptake was seen on 18F-FDG and 18F-Florbetapir PET/CT imaging at the same lesion sites. The mechanism behind 18F-Flortaucipir uptake in focal osteopenia remains unclear. This study provides evidence for the mechanism of the above phenomenon.
Collapse
Affiliation(s)
- Zhenchun Xu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University
| | - Xiaojiao Xiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University
| | - Yue Feng
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University
| | - Xinlin Shi
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Cai
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
10
|
Zhao H, Zeng JM, Li Y, Ao CY, Liu D, Zhuo JP, Yu C, Ban JQ, Li J. Elemental Imbalances After Manganese Exposure and the Regulatory Potential of Curcumin. Biol Trace Elem Res 2025:10.1007/s12011-025-04586-1. [PMID: 40133721 DOI: 10.1007/s12011-025-04586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Long-term exposure to excess manganese can lead to a condition known as manganism, which is characterized by irreversible neuropsychiatric and extrapyramidal dysfunction resembling Parkinson's disease. Excessive exposure to manganese not only increases manganese levels in the body, but can also disrupt the homeostasis of other trace elements. Elemental imbalance has been reported as a risk factor for several neurodegenerative diseases, and restoring elemental homeostasis may be a potential strategy to combat these conditions. We investigated the relationship between trace element dysregulation and cognitive function following different doses of manganese exposure in multiple tissues. Our results indicated that manganese exposure resulted in decreased learning and memory abilities, as well as impaired balance in rats. Manganese imbalance disrupted elemental homeostasis in several tissues. Hippocampal elemental dysregulation was associated with cognitive performance, and changes in aluminum levels in tissues also appeared to be closely related to cognitive function. Curcumin intervention ameliorated manganese-induced behavioural abnormalities and partially reversed manganese-induced elemental dysregulation, demonstrating its potential as a regulator of elemental homeostasis.
Collapse
Affiliation(s)
- Hua Zhao
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jia-Min Zeng
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yao Li
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chun-Yan Ao
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Duo Liu
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jing-Peng Zhuo
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chun Yu
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jia-Qi Ban
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Jun Li
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
11
|
Qin Y, Chi J, Zhang W, Pan X, Liu Z, Chen X, Shi Y, Yang L, Zhang H, Qin A, Wang Y, Feng L. Influence of Endogenous Derivatives on the Chemical Sensing Performance of Carbonized Polymer Dots. J Phys Chem Lett 2025:2151-2159. [PMID: 39977454 DOI: 10.1021/acs.jpclett.4c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Endogenous derivatives, inevitably introduced during carbonized polymer dots (CPDs) synthesis, are considered to significantly influence their sensing performance. In this study, comparative studies on CPDs prepared via hydrothermal methods (CPDs-H2O) and airflow-assisted melt polymerization (CPDs-AMP) reveal that CPDs-H2O, containing abundant derivatives, exhibit superior stability and robustness in Fe3+ sensing in both solution and cells compared to derivative-deficient CPDs-AMP. Mechanistic investigations highlight the crucial role of endogenous derivatives in enhancing the intrinsic stability of CPDs polymer frameworks, challenging conventional perceptions and providing valuable insights for designing robust CPDs-based sensors for practical applications.
Collapse
Affiliation(s)
- Yingxi Qin
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, P. R. China
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Jie Chi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Wenkai Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xingxin Pan
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Ziwei Liu
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xize Chen
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yushu Shi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Lihua Yang
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, P. R. China
| | - Hongyu Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Aimiao Qin
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541000, P. R. China
| | - Yu Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
12
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
13
|
Liu Y, Lu Y, Hu L, Xu J, Liu X, Yang N, Chen S, Zhang Z. Structural and iron content changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and quantitative susceptibility mapping study. Brain Res Bull 2025; 220:111160. [PMID: 39638098 DOI: 10.1016/j.brainresbull.2024.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Further studies are necessary to investigate the neural mechanisms elemental of subcortical vascular mild cognitive impairment (svMCI), which is considered as precursor to vascular dementia (VaD). This objective of this research was to investigate the alterations in gray matter volume and brain iron deposition in patients with svMCI. METHODS This study involved 23 patients classified as health controls (HC) and 20 patients diagnosed with svMCI. All participants received cognitive assessments and magnetic resonance imaging (MRI). This research contains voxel-based morphometry (VBM), voxel-based quantitative susceptibility mapping (QSM) analysis, ROI-based QSM analysis, and correlation analysis. RESULTS svMCI patients showed more seriously cognitive impairment than HC patients. VBM analyses showed gray matter atrophy in the cingulate gyrus in the svMCI. Voxel-based QSM analyses showed increased susceptibilities in the right middle frontal gyrus, left paracentral lobule, as well as decreased susceptibility in the right postcentral gyrus in the svMCI. And ROI-based QSM analyses showed increased susceptibilities in left caudate nucleus and cerebellum in the svMCI. In addition, the susceptibility in left middle cingulate cortex and paracingulate gyrus was positively correlated associated with MoCA scores (r = 0.538 p < 0.001), and the susceptibility in the right middle frontal gyrus was negatively correlated with MoCA scores (r = -0.418 p < 0.007). CONCLUSIONS The results of our studies suggest that morphological alterations and iron burden in the brain may be related to cognitive dysfunction in svMCI patients, providing a new way to explore underlying neural mechanisms of cognitive dysfunction.
Collapse
Affiliation(s)
- Yushuang Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Guangzhou Geriatric Hospital, Guangzhou 510000, China
| | - Yingqi Lu
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen 518101, China; The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyu Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xingchen Liu
- Hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan 528400, China
| | - Nan Yang
- Hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan 528400, China.
| | - Shangjie Chen
- Department of Rehabilitation Medicine, The People's Hospital of Baoan Shenzhen, Shenzhen 518101, China; The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China.
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
14
|
Urbano T, Vinceti M, Carbone C, Wise LA, Malavolti M, Tondelli M, Bedin R, Vinceti G, Marti A, Chiari A, Zamboni G, Michalke B, Filippini T. Exposure to Cadmium and Other Trace Elements Among Individuals with Mild Cognitive Impairment. TOXICS 2024; 12:933. [PMID: 39771148 PMCID: PMC11679412 DOI: 10.3390/toxics12120933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND A limited number of studies have investigated the role of environmental chemicals in the etiology of mild cognitive impairment (MCI). We performed a cross-sectional study of the association between exposure to selected trace elements and the biomarkers of cognitive decline. METHODS During 2019-2021, we recruited 128 newly diagnosed patients with MCI from two Neurology Clinics in Northern Italy, i.e., Modena and Reggio Emilia. At baseline, we measured serum and cerebrospinal fluid (CSF) concentrations of cadmium, copper, iron, manganese, and zinc using inductively coupled plasma mass spectrometry. With immuno-enzymatic assays, we estimated concentrations of β-amyloid 1-40, β-amyloid 1-42, Total Tau and phosphorylated Tau181 proteins, neurofilament light chain (NfL), and the mini-mental state examination (MMSE) to assess cognitive status. We used spline regression to explore the shape of the association between exposure and each endpoint, adjusted for age at diagnosis, educational attainment, MMSE, and sex. RESULTS In analyses between the serum and CSF concentrations of trace metals, we found monotonic positive correlations between copper and zinc, while an inverse association was observed for cadmium. Serum cadmium concentrations were inversely associated with amyloid ratio and positively associated with Tau proteins. Serum iron concentrations showed the opposite trend, while copper, manganese, and zinc displayed heterogeneous non-linear associations with amyloid ratio and Tau biomarkers. Regarding CSF exposure biomarkers, only cadmium consistently showed an inverse association with amyloid ratio, while iron was positively associated with Tau. Cadmium concentrations in CSF were not appreciably associated with serum NfL levels, while we observed an inverted U-shaped association with CSF NfL, similar to that observed for copper. In CSF, zinc was the only trace element positively associated with NfL at high concentrations. CONCLUSIONS In this cross-sectional study, high serum cadmium concentrations were associated with selected biomarkers of cognitive impairment. Findings for the other trace elements were difficult to interpret, showing complex and inconsistent associations with the neurodegenerative endpoints examined.
Collapse
Affiliation(s)
- Teresa Urbano
- Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (M.M.); (T.F.)
| | - Marco Vinceti
- Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (M.M.); (T.F.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (M.T.); (R.B.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Lauren A. Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Marcella Malavolti
- Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (M.M.); (T.F.)
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (M.T.); (R.B.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Roberta Bedin
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (M.T.); (R.B.); (G.Z.)
| | - Giulia Vinceti
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Alessandro Marti
- Clinical Neuropsychology, Cognitive Disorders and Dyslexia Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Annalisa Chiari
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (M.T.); (R.B.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, 85764 Neuherberg, Germany;
| | - Tommaso Filippini
- Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (M.M.); (T.F.)
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
15
|
Winer JR, Vossler H, Young CB, Smith V, Romero A, Shahid-Besanti M, Abdelnour C, Wilson EN, Anders D, Pacheco Morales A, Andreasson KI, Yutsis MV, Henderson VW, Davidzon GA, Mormino EC, Poston KL. 18F-PI-2620 Tau PET is associated with cognitive and motor impairment in Lewy body disease. Brain Commun 2024; 7:fcae458. [PMID: 39741783 PMCID: PMC11686406 DOI: 10.1093/braincomms/fcae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/22/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Co-pathology is frequent in Lewy body disease, which includes clinical diagnoses of both Parkinson's disease and dementia with Lewy bodies. Measuring concomitant pathology in vivo can improve clinical and research diagnoses and prediction of cognitive trajectories. Tau PET imaging may serve a dual role in Lewy body disease by measuring cortical tau aggregation as well as assessing dopaminergic loss attributed to binding to neuromelanin within substantia nigra. We sought to characterize 18F-PI-2620, a next generation PET tracer, in individuals with Lewy body disease. We recruited 141 participants for 18F-PI-2620 PET scans from the Stanford Alzheimer's Disease Research Center and the Stanford Aging and Memory Study, most of whom also had β-amyloid status available (139/141) from PET or cerebrospinal fluid. We compared 18F-PI-2620 uptake within entorhinal cortex, inferior temporal cortex, precuneus and lingual gyrus, as well as substantia nigra, across participants with Lewy body disease [Parkinson's disease (n = 29), dementia with Lewy bodies (n = 14)] and Alzheimer's disease (n = 28), in addition to cognitively unimpaired healthy older adults (n = 70). Mean bilateral signal was extracted from cortical regions of interest in 18F-PI-2620 standard uptake value ratio (inferior cerebellar grey reference) images normalized to template space. A subset of participants received cognitive testing and/or the Movement Disorders Society Unified Parkinson's Disease Rating Scale Part III motor exam (off medication). 18F-PI-2620 uptake was low overall in Lewy body disease and correlated with β-amyloid PET in temporal lobe regions and precuneus. Moreover, inferior temporal 18F-PI-2620 uptake was significantly elevated in β-amyloid positive relative to β-amyloid negative participants with Lewy body disease. Temporal lobe 18F-PI-2620 signal was not associated with memory in Lewy body disease, but uptake within precuneus and lingual gyrus was associated with worse executive function and attention/working memory performance. Finally, substantia nigra 18F-PI-2620 signal was significantly reduced in participants with Parkinson's disease, and lower substantia nigra signal was associated with greater motor impairment. These findings suggest that although levels are lower than in Alzheimer's disease, small elevations in cortical tau are associated with cognitive function in Lewy body disease relevant domains, and that reduced 18F-PI-2620 binding in substantia nigra may represent loss of dopaminergic neurons. Cortical tau and neuromelanin binding within substantia nigra represent two unique signals in the same PET image that may be informative in the context of cognitive and motor deficits, respectively, in Lewy body disease.
Collapse
Affiliation(s)
- Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Hillary Vossler
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Viktorija Smith
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - America Romero
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Marian Shahid-Besanti
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - David Anders
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Aimara Pacheco Morales
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Maya V Yutsis
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94304, USA
| | - Guido A Davidzon
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94304, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
16
|
Ferretti S, Zanella I. The Underestimated Role of Iron in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:12987. [PMID: 39684697 DOI: 10.3390/ijms252312987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The term frontotemporal dementia (FTD) comprises a group of neurodegenerative disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain with language impairment and changes in cognitive, behavioral and executive functions, and in some cases motor manifestations. A high proportion of FTD cases are due to genetic mutations and inherited in an autosomal-dominant manner with variable penetrance depending on the implicated gene. Iron is a crucial microelement that is involved in several cellular essential functions in the whole body and plays additional specialized roles in the central nervous system (CNS) mainly through its redox-cycling properties. Such a feature may be harmful under aerobic conditions, since it may lead to the generation of highly reactive hydroxyl radicals. Dysfunctions of iron homeostasis in the CNS are indeed involved in several neurodegenerative disorders, although it is still challenging to determine whether the dyshomeostasis of this essential but harmful metal is a direct cause of neurodegeneration, a contributor factor or simply a consequence of other neurodegenerative mechanisms. Unlike many other neurodegenerative disorders, evidence of the dysfunction in brain iron homeostasis in FTD is still scarce; nonetheless, the recent literature intriguingly suggests its possible involvement. The present review aims to summarize what is currently known about the contribution of iron dyshomeostasis in FTD based on clinical, imaging, histological, biochemical and molecular studies, further suggesting new perspectives and offering new insights for future investigations on this underexplored field of research.
Collapse
Affiliation(s)
- Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Medical Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
17
|
Mayr E, Rotter J, Kuhrt H, Winter K, Stassart RM, Streit WJ, Bechmann I. Detection of molecular markers of ferroptosis in human Alzheimer's disease brains. J Alzheimers Dis 2024; 102:1133-1154. [PMID: 39529255 DOI: 10.1177/13872877241296563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND We have previously shown that droplet degeneration (DD) signifies the beginning of neuritic plaque formation during Alzheimer's disease (AD) pathogenesis. As microglia associated with neuritic plaques exhibited strong ferritin expression and Perl's iron staining showed iron in microglia, droplet spheres and neuritic plaque cores, we hypothesized that DD is a form of ferroptosis. OBJECTIVE Detection of molecular markers of ferroptosis in AD brains. METHODS Immunohistochemical detection of transferrin receptor (TfR) and ferritin as ferroptosis markers in prefrontal cortex of AD brains, investigation of spatial correlation of these with histopathological hallmarks of AD, visualization of ferroptotic marker genes by in situ hybridization, comparison of expression of ferroptosis genes with snRNAseq analyses and comparison of TfR and ferritin expression in different neurofibrillary tangle (NFT) stages. RESULTS TfR was found on neurons that appeared to be degenerating and exhibited typical features of droplet degeneration. Co-localization with hyperphosphorylated tau (p-tau) was a rare event. TfR-positive neurons increased with higher NFT stages as did ferritin expression in microglia. mRNA of genes linked to ferroptosis was detected in pretangles and p-tau negative neurons, less in DD. snRNAseq analyses support a link between AD, ferroptosis and TfR as a ferroptosis marker. CONCLUSIONS Increased expression of TfR and ferritin in high NFT stages, demonstration of ferroptotic marker genes in Alzheimer's lesions, as well as snRNAseq analyses strengthen our hypothesis that DD represents ferroptosis. Because of the morphological similarity between TfR-positive structures and DD, TfR might be an early ferroptosis marker expressed transiently during AD pathogenesis.
Collapse
Affiliation(s)
- Emily Mayr
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Jonas Rotter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Ruth Martha Stassart
- Paul Flechsig Institute of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
18
|
Gustavsson J, Ištvánfyová Z, Papenberg G, Falahati F, Laukka EJ, Lehtisalo J, Mangialasche F, Kalpouzos G. Lifestyle, biological, and genetic factors related to brain iron accumulation across adulthood. Neurobiol Aging 2024; 144:56-67. [PMID: 39277972 DOI: 10.1016/j.neurobiolaging.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Iron is necessary for many neurobiological mechanisms, but its overaccumulation can be harmful. Factors triggering age-related brain iron accumulation remain largely unknown and longitudinal data are insufficient. We examined associations between brain iron load and accumulation and, blood markers of iron metabolism, cardiovascular health, lifestyle factors (smoking, alcohol use, physical activity, diet), and ApoE status using longitudinal data from the IronAge study (n = 208, age = 20-79, mean follow-up time = 2.75 years). Iron in cortex and basal ganglia was estimated with magnetic resonance imaging using quantitative susceptibility mapping (QSM). Our results showed that (1) higher peripheral iron levels (i.e., composite score of blood iron markers) were related to greater iron load in the basal ganglia; (2) healthier diet was related to higher iron levels in the cortex and basal ganglia, although for the latter the association was significant only in younger adults (age = 20-39); (3) worsening cardiovascular health was related to increased iron accumulation; (4) younger ApoE ε4 carriers accumulated more iron in basal ganglia than younger non-carriers. Our results demonstrate that modifiable factors, including lifestyle, cardiovascular, and physiological ones, are linked to age-related brain iron content and accumulation, contributing novel information on potential targets for interventions in preventing brain iron-overload.
Collapse
Affiliation(s)
- Jonatan Gustavsson
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
| | - Zuzana Ištvánfyová
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Farshad Falahati
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Erika J Laukka
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Jenni Lehtisalo
- Finnish Institute for Health and Welfare, Helsinki, Finland; University of Eastern Finland, Kuopio, Finland
| | - Francesca Mangialasche
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| |
Collapse
|
19
|
Sabbir MG. Loss of calcium/calmodulin-dependent protein kinase kinase 2, transferrin, and transferrin receptor proteins in the temporal cortex of Alzheimer's patients postmortem is associated with abnormal iron homeostasis: implications for patient survival. Front Cell Dev Biol 2024; 12:1469751. [PMID: 39669708 PMCID: PMC11634808 DOI: 10.3389/fcell.2024.1469751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Iron is crucial for brain function, but excessive iron is neurotoxic. Abnormally high brain iron accumulation is one of the pathogenic factors in Alzheimer's disease (AD). Therefore, understanding the mechanistic basis of iron dyshomeostasis in AD is vital for disease mitigation. Calcium, another essential bioelement involved in cell signaling, also exhibits dysregulated homeostasis in AD. Calcium ion (Ca2+) signaling can influence iron homeostasis through multiple effectors. Our previous studies identified Ca2+/calmodulin (CAM)-dependent protein kinase kinase 2 (CAMKK2) as a regulator of transferrin (TF)-bound iron trafficking through the TF receptor (TFRC). Given CAMKK2's high expression in brain cells, it was hypothesized that abnormal CAMKK2-TF/TFRC signaling may underlie excessive iron deposition in AD brains. This study aims to retrospectively investigate CAMKK2, TF, TFRC proteins, and iron content in temporal cortex tissues from AD patients and cognitively normal (CN) individuals, postmortem. Methods Postmortem temporal cortex tissues from 74 AD patients, 27 Parkinson's disease (PD) patients, and 17 CN individuals were analyzed for CAMKK2, TF, and TFRC protein levels by Western blotting. Additionally, prefrontal/temporal cortex tissues from 30 CN individuals of various ages were examined for age-related effects. Iron content in cortical tissues was measured using a colorimetric assay. Results CAMKK2, TF, and TFRC levels were significantly decreased in AD patients' temporal cortices compared to CN individuals, independent of age or postmortem interval-related changes. PD patients' also exhibited similar reductions in CAMKK2/TF/TFRC levels. The increased iron content in AD brains was significantly correlated with reduced TF/TFRC protein levels. Discussion Building on the previous identification of CAMKK2 as a regulator of TF/TFRC trafficking and iron homeostasis, the findings from this study suggest that downregulation of CAMKK2 in AD cortices may disrupt TF/TFRC signaling and contribute to iron overloading and neurodegeneration through iron-induced toxicity. The decreased levels of TF/TFRC and increased iron in AD brains may result from enhanced clearance or post-trafficking degradation of TF/TFRC due to CAMKK2 downregulation. Restoring CAMKK2 levels in the AD brain could offer a novel therapeutic approach to reestablish iron homeostasis. Further studies are needed to explore the pathways linking CAMKK2 and iron dysregulation in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Department of Psychology and Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
- Alzo Biosciences Inc., SanDiego, CA, United States
| |
Collapse
|
20
|
Li R, Fan YR, Wang YZ, Lu HY, Li PX, Dong Q, Jiang YF, Chen XD, Cui M. Brain Iron in signature regions relating to cognitive aging in older adults: the Taizhou Imaging Study. Alzheimers Res Ther 2024; 16:211. [PMID: 39358805 PMCID: PMC11448274 DOI: 10.1186/s13195-024-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Recent magnetic resonance imaging (MRI) studies have established that brain iron accumulation might accelerate cognitive decline in Alzheimer's disease (AD) patients. Both normal aging and AD are associated with cerebral atrophy in specific regions. However, no studies have investigated aging- and AD-selective iron deposition-related cognitive changes during normal aging. Here, we applied quantitative susceptibility mapping (QSM) to detect iron levels in cortical signature regions and assessed the relationships among iron, atrophy, and cognitive changes in older adults. METHODS In this Taizhou Imaging Study, 770 older adults (mean age 62.0 ± 4.93 years, 57.5% women) underwent brain MRI to measure brain iron and atrophy, of whom 219 underwent neuropsychological tests nearly every 12 months for up to a mean follow-up of 2.68 years. Global cognition was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Domain-specific cognitive scores were obtained from MoCA subscore components. Regional analyses were performed for cortical regions and 2 signature regions where atrophy affected by aging and AD only: Aging (AG) -specific and AD signature meta-ROIs. The QSM and cortical morphometry means of the above ROIs were also computed. RESULTS Significant associations were found between QSM levels and cognitive scores. In particular, after adjusting for cortical thickness of regions of interest (ROIs), participants in the upper tertile of the cortical and AG-specific signature QSM exhibited worse ZMMSE than did those in the lower tertile [β = -0.104, p = 0.026;β = -0.118, p = 0.021, respectively]. Longitudinal analysis suggested that QSM values in all ROIs might predict decline in ZMoCA and key domains such as attention and visuospatial function (all p < 0.05). Furthermore, iron levels were negatively correlated with classic MRI markers of cortical atrophy (cortical thickness, gray matter volume, and local gyrification index) in total, AG-specific signature and AD signature regions (all p < 0.05). CONCLUSION AG- and AD-selective iron deposition was associated with atrophy and cognitive decline in elderly people, highlighting its potential as a neuroimaging marker for cognitive aging.
Collapse
Affiliation(s)
- Rui Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yi-Ren Fan
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Ying-Zhe Wang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - He-Yang Lu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Pei-Xi Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yan-Feng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xing-Dong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| | - Mei Cui
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
21
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
22
|
Robertson KV, Rodriguez AS, Cartailler JP, Shrestha S, Schleh MW, Schroeder KR, Valenti AM, Kramer AT, Harrison FE, Hasty AH. Knockdown of microglial iron import gene, Slc11a2, worsens cognitive function and alters microglial transcriptional landscape in a sex-specific manner in the APP/PS1 model of Alzheimer's disease. J Neuroinflammation 2024; 21:238. [PMID: 39334471 PMCID: PMC11438269 DOI: 10.1186/s12974-024-03238-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline and microglial transcriptional phenotype. METHODS In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-β-associated inflammation. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic Cx3cr1Cre-ERT2;Slc11a2flfl;APP/PS1+or - mice were generated and administered corn oil or tamoxifen to induce knockdown at 5-6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12-15 months of age). Hippocampal CD11b+ microglia were magnetically isolated from female mice (15-17 months) and bulk RNA-sequencing analysis was conducted. RESULTS DMT1 inhibition in vitro robustly decreased Aβ-induced inflammatory gene expression and cellular iron levels in conditions of excess iron. In vivo, Slc11a2KD APP/PS1 female, but not male, mice displayed a significant worsening of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity compared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2KD APP/PS1 females displayed significant increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2KD cells from APP/PS1 females also exhibited decreased expression of markers associated with subsets of disease-associated microglia (DAMs), such as Apoe, Ctsb, Ly9, Csf1, and Hif1α. CONCLUSIONS This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behavioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2KD APP/PS1 female mice. Overall, this work illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight into mechanisms behind disease-related sex differences.
Collapse
Affiliation(s)
- Katrina Volk Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Alec S Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | | | - Shristi Shrestha
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Nashville, TN, USA
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Kyle R Schroeder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Arianna M Valenti
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Alec T Kramer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, 7465 Medical Research Building IV, 2213 Garland Avenue, Nashville, TN, 37232, USA.
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
23
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
24
|
Fontes A, Jauch AT, Sailer J, Engler J, Azul AM, Zischka H. Metabolic Derangement of Essential Transition Metals and Potential Antioxidant Therapies. Int J Mol Sci 2024; 25:7880. [PMID: 39063122 PMCID: PMC11277342 DOI: 10.3390/ijms25147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adrian T. Jauch
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Judith Sailer
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Jonas Engler
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| |
Collapse
|
25
|
Langley J, Bennett IJ, Hu XP. Examining iron-related off-target binding effects of 18F-AV1451 PET in the cortex of Aβ+ individuals. Eur J Neurosci 2024; 60:3614-3628. [PMID: 38722153 DOI: 10.1111/ejn.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 07/06/2024]
Abstract
The presence of neurofibrillary tangles containing hyper-phosphorylated tau is a characteristic of Alzheimer's disease (AD) pathology. The positron emission tomography (PET) radioligand sensitive to tau neurofibrillary tangles (18F-AV1451) also binds with iron. This off-target binding effect may be enhanced in older adults on the AD spectrum, particularly those with amyloid-positive biomarkers. Here, we examined group differences in 18F-AV1451 PET after controlling for iron-sensitive measures from magnetic resonance imaging (MRI) and its relationships to tissue microstructure and cognition in 40 amyloid beta positive (Aβ+) individuals, 20 amyloid beta negative (Aβ-) with MCI and 31 Aβ- control participants. After controlling for iron, increased 18F-AV1451 PET uptake was found in the temporal lobe and hippocampus of Aβ+ participants compared to Aβ- MCI and control participants. Within the Aβ+ group, significant correlations were seen between 18F-AV1451 PET uptake and tissue microstructure and these correlations remained significant after controlling for iron. These findings indicate that off-target binding of iron to the 18F-AV1451 ligand may not affect its sensitivity to Aβ status or cognition in early-stage AD.
Collapse
Affiliation(s)
- Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, California, USA
| | - Ilana J Bennett
- Department of Psychology, University of California Riverside, Riverside, California, USA
| | - Xiaoping P Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, California, USA
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| |
Collapse
|
26
|
Robertson KV, Rodriguez AS, Cartailler JP, Shrestha S, Schroeder KR, Valenti AM, Harrison FE, Hasty AH. Knockdown of microglial iron import gene, DMT1, worsens cognitive function and alters microglial transcriptional landscape in a sex-specific manner in the APP/PS1 model of Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-4559940. [PMID: 38978579 PMCID: PMC11230470 DOI: 10.21203/rs.3.rs-4559940/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline and microglial transcriptional phenotype. Methods In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-β-associated inflammation. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic Cx3cr1 Cre - ERT2 ;Slc11a2 flfl;APP/PS1 + or - mice were generated and administered corn oil or tamoxifen to induce knockdown at 5-6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12-15 months of age). Hippocampal CD11b + microglia were magnetically isolated from female mice (15-17 months) and bulk RNA-sequencing analysis was conducted. Results DMT1 inhibition in vitro robustly decreased Aβ-induced inflammatory gene expression and cellular iron levels in conditions of excess iron. In vivo, Slc11a2 KD APP/PS1 female, but not male, mice displayed a significant worsening of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity compared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2 KD APP/PS1 females displayed significant increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2 KD cells from APP/PS1 females also exhibited decreased expression of markers associated with disease-associated microglia (DAMs), such as Apoe, Ctsb, Csf1, and Hif1α. Conclusions This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behavioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2 KD APP/PS1 female mice. Overall, this work illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight into mechanisms behind disease-related sex differences.
Collapse
|
27
|
Rajendran K, Krishnan UM. Mechanistic insights and emerging therapeutic stratagems for Alzheimer's disease. Ageing Res Rev 2024; 97:102309. [PMID: 38615895 DOI: 10.1016/j.arr.2024.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, Tamilnadu 613401, India.
| |
Collapse
|
28
|
Chai B, Wu Y, Yang H, Fan B, Cao S, Zhang X, Xie Y, Hu Z, Ma Z, Zhang Y, Pan W, Meng W, Meng J, Tian W, Zhang J, Li Y, Shao Y, Wang S. Tau Aggregation-Dependent Lipid Peroxide Accumulation Driven by the hsa_circ_0001546/14-3-3/CAMK2D/Tau Complex Inhibits Epithelial Ovarian Cancer Peritoneal Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310134. [PMID: 38634567 PMCID: PMC11186043 DOI: 10.1002/advs.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Intraperitoneal dissemination is the main method of epithelial ovarian cancer (EOC) metastasis, which is related to poor prognosis and a high recurrence rate. Circular RNAs (circRNAs) are a novel class of endogenous RNAs with covalently closed loop structures that are implicated in the regulation of tumor development. In this study, hsa_circ_0001546 is downregulated in EOC primary and metastatic tissues vs. control tissues and this phenotype has a favorable effect on EOC OS and DFS. hsa_circ_0001546 can directly bind with 14-3-3 proteins to act as a chaperone molecule and has a limited positive effect on 14-3-3 protein stability. This complex recruits CAMK2D to induce the Ser324 phosphorylation of Tau proteins, changing the phosphorylation status of Tau bound to 14-3-3 and ultimately forming the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex. The existence of this complex stimulates the production of Tau aggregation, which then induces the accumulation of lipid peroxides (LPOs) and causes LPO-dependent ferroptosis. In vivo, treatment with ferrostatin-1 and TRx0237 rescued the inhibitory effect of hsa_circ_0001546 on EOC cell spreading. Therefore, based on this results, ferroptosis caused by Tau aggregation occurs in EOC cells, which is not only in Alzheimer's disease- or Parkinson's disease-related cells and this kind of ferroptosis driven by the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex is LPO-dependent rather than GPX4-dependent is hypothesized.
Collapse
Affiliation(s)
- BinShu Chai
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Yong Wu
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - HengHui Yang
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
| | - BiaoFeng Fan
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
| | - SiYu Cao
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - XiaoFei Zhang
- Department of GynecologyShanghai First Maternity and Infant HospitalTongji University School of Medicine2699 West Gaoke RoadShanghai201204China
| | - YaQing Xie
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
| | - ZhiXiang Hu
- Department of Integrative OncologyFudan University Shanghai Cancer Centerand Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - ZhongLiang Ma
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - YunKui Zhang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Wei Pan
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Wei Meng
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Jiao Meng
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteFudan University Shanghai Cancer Center, and Shanghai Fifth People's HospitalShanghai200032China
| | - WenJuan Tian
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - JiaLi Zhang
- Cancer InstituteFudan University Shanghai Cancer Center, and Shanghai Fifth People's HospitalShanghai200032China
| | - YanLi Li
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Yang Shao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteFudan University Shanghai Cancer Center, and Shanghai Fifth People's HospitalShanghai200032China
| | - ShaoJia Wang
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
| |
Collapse
|
29
|
Padhi D, Baruah P, Ramesh M, Moorthy H, Govindaraju T. Hybrid molecules synergistically mitigate ferroptosis and amyloid-associated toxicities in Alzheimer's disease. Redox Biol 2024; 71:103119. [PMID: 38507972 PMCID: PMC10963859 DOI: 10.1016/j.redox.2024.103119] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the build-up of extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Ferroptosis, an iron (Fe)-dependent form of cell death plays a significant role in the multifaceted AD pathogenesis through generation of reactive oxygen species (ROS), mitochondrial damage, lipid peroxidation, and reduction in glutathione peroxidase 4 (GPX4) enzyme activity and levels. Aberrant liquid-liquid phase separation (LLPS) of tau drives the growth and maturation of NFTs contributing to AD pathogenesis. In this study, we strategically combined the structural and functional properties of gallic acid (GA) and cyclic dipeptides (CDPs) to synthesize hybrid molecules that effectively target both ferroptosis and amyloid toxicity in AD. This innovative approach marks a paradigm shift from conventional therapeutic strategies. This is the first report of a synthetic small molecule (GCTR) that effectively combats ferroptosis, simultaneously restoring enzymatic activity and enhancing cellular levels of its master regulator, GPX4. Further, GCTR disrupts Fe3+-induced LLPS of tau, and aids in attenuation of abnormal tau fibrillization. The synergistic action of GCTR in combating both ferroptosis and amyloid toxicity, bolstered by GPX4 enhancement and modulation of Fe3+-induced tau LLPS, holds promise for the development of small molecule-based novel therapeutics for AD.
Collapse
Affiliation(s)
- Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Prayasee Baruah
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India.
| |
Collapse
|
30
|
Lammers-Lietz F, Borchers F, Feinkohl I, Hetzer S, Kanar C, Konietschke F, Lachmann G, Chien C, Spies C, Winterer G, Zaborszky L, Zacharias N, Paul F. An exploratory research report on brain mineralization in postoperative delirium and cognitive decline. Eur J Neurosci 2024; 59:2646-2664. [PMID: 38379517 PMCID: PMC11108748 DOI: 10.1111/ejn.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Delirium is a severe postoperative complication associated with poor overall and especially neurocognitive prognosis. Altered brain mineralization is found in neurodegenerative disorders but has not been studied in postoperative delirium and postoperative cognitive decline. We hypothesized that mineralization-related hypointensity in susceptibility-weighted magnetic resonance imaging (SWI) is associated with postoperative delirium and cognitive decline. In an exploratory, hypothesis-generating study, we analysed a subsample of cognitively healthy patients ≥65 years who underwent SWI before (N = 65) and 3 months after surgery (N = 33). We measured relative SWI intensities in the basal ganglia, hippocampus and posterior basal forebrain cholinergic system (pBFCS). A post hoc analysis of two pBFCS subregions (Ch4, Ch4p) was conducted. Patients were screened for delirium until the seventh postoperative day. Cognitive testing was performed before and 3 months after surgery. Fourteen patients developed delirium. After adjustment for age, sex, preoperative cognition and region volume, only pBFCS hypointensity was associated with delirium (regression coefficient [90% CI]: B = -15.3 [-31.6; -0.8]). After adjustments for surgery duration, age, sex and region volume, perioperative change in relative SWI intensities of the pBFCS was associated with cognitive decline 3 months after surgery at a trend level (B = 6.8 [-0.9; 14.1]), which was probably driven by a stronger association in subregion Ch4p (B = 9.3 [2.3; 16.2]). Brain mineralization, particularly in the cerebral cholinergic system, could be a pathomechanism in postoperative delirium and cognitive decline. Evidence from our studies is limited because of the small sample and a SWI dataset unfit for iron quantification, and the analyses presented here should be considered exploratory.
Collapse
Affiliation(s)
- Florian Lammers-Lietz
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Insa Feinkohl
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
- Faculty of Health at Department of Medicine, Witten/Herdecke University, Witten, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cicek Kanar
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Konietschke
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gunnar Lachmann
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- BIH Academy, Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Georg Winterer
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- PI Health Solutions GmbH, Berlin, Germany
- Pharmaimage Biomarker Solutions Inc., Cambridge, Massachusetts, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Norman Zacharias
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Pharmaimage Biomarker Solutions Inc., Cambridge, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
31
|
LeVine SM. Exploring Potential Mechanisms Accounting for Iron Accumulation in the Central Nervous System of Patients with Alzheimer's Disease. Cells 2024; 13:689. [PMID: 38667304 PMCID: PMC11049304 DOI: 10.3390/cells13080689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Elevated levels of iron occur in both cortical and subcortical regions of the CNS in patients with Alzheimer's disease. This accumulation is present early in the disease process as well as in more advanced stages. The factors potentially accounting for this increase are numerous, including: (1) Cells increase their uptake of iron and reduce their export of iron, as iron becomes sequestered (trapped within the lysosome, bound to amyloid β or tau, etc.); (2) metabolic disturbances, such as insulin resistance and mitochondrial dysfunction, disrupt cellular iron homeostasis; (3) inflammation, glutamate excitotoxicity, or other pathological disturbances (loss of neuronal interconnections, soluble amyloid β, etc.) trigger cells to acquire iron; and (4) following neurodegeneration, iron becomes trapped within microglia. Some of these mechanisms are also present in other neurological disorders and can also begin early in the disease course, indicating that iron accumulation is a relatively common event in neurological conditions. In response to pathogenic processes, the directed cellular efforts that contribute to iron buildup reflect the importance of correcting a functional iron deficiency to support essential biochemical processes. In other words, cells prioritize correcting an insufficiency of available iron while tolerating deposited iron. An analysis of the mechanisms accounting for iron accumulation in Alzheimer's disease, and in other relevant neurological conditions, is put forward.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop 3043, Kansas City, KS 66160, USA
| |
Collapse
|
32
|
Joshi J, Yao M, Kakazu A, Ouyang Y, Duan W, Aggarwal M. Distinguishing microgliosis and tau deposition in the mouse brain using paramagnetic and diamagnetic susceptibility source separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588962. [PMID: 38659855 PMCID: PMC11042227 DOI: 10.1101/2024.04.11.588962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Tauopathies, including Alzheimer's disease (AD), are neurodegenerative disorders characterized by hyperphosphorylated tau protein aggregates in the brain. In addition to protein aggregates, microglia-mediated inflammation and iron dyshomeostasis are other pathological features observed in AD and other tauopathies. It is known that these alterations at the subcellular level occur much before the onset of macroscopic tissue atrophy or cognitive deficits. The ability to detect these microstructural changes with MRI therefore has substantive importance for improved characterization of disease pathogenesis. In this study, we demonstrate that quantitative susceptibility mapping (QSM) with paramagnetic and diamagnetic susceptibility source separation has the potential to distinguish neuropathological alterations in a transgenic mouse model of tauopathy. 3D multi-echo gradient echo data were acquired from fixed brains of PS19 (Tau) transgenic mice and age-matched wild-type (WT) mice (n = 5 each) at 11.7 T. The multi-echo data were fit to a 3-pool complex signal model to derive maps of paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS). Group-averaged signal fraction and composite susceptibility maps showed significant region-specific differences between the WT and Tau mouse brains. Significant bilateral increases in PCS and |DCS| were observed in specific hippocampal and cortical sub-regions of the Tau mice relative to WT controls. Comparison with immunohistological staining for microglia (Iba1) and phosphorylated-tau (AT8) further indicated that the PCS and DCS differences corresponded to regional microgliosis and tau deposition in the PS19 mouse brains, respectively. The results demonstrate that quantitative susceptibility source separation may provide sensitive imaging markers to detect distinct pathological alterations in tauopathies.
Collapse
Affiliation(s)
- Jayvik Joshi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Minmin Yao
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron Kakazu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Ouyang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Chen H, Yang A, Huang W, Du L, Liu B, Lv K, Luan J, Hu P, Shmuel A, Shu N, Ma G. Associations of quantitative susceptibility mapping with cortical atrophy and brain connectome in Alzheimer's disease: A multi-parametric study. Neuroimage 2024; 290:120555. [PMID: 38447683 DOI: 10.1016/j.neuroimage.2024.120555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.
Collapse
Affiliation(s)
- Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Lei Du
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Departments of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
34
|
Lee S, Kovacs GG. The Irony of Iron: The Element with Diverse Influence on Neurodegenerative Diseases. Int J Mol Sci 2024; 25:4269. [PMID: 38673855 PMCID: PMC11049980 DOI: 10.3390/ijms25084269] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Iron accumulation in the brain is a common feature of many neurodegenerative diseases. Its involvement spans across the main proteinopathies involving tau, amyloid-beta, alpha-synuclein, and TDP-43. Accumulating evidence supports the contribution of iron in disease pathologies, but the delineation of its pathogenic role is yet challenged by the complex involvement of iron in multiple neurotoxicity mechanisms and evidence supporting a reciprocal influence between accumulation of iron and protein pathology. Here, we review the major proteinopathy-specific observations supporting four distinct hypotheses: (1) iron deposition is a consequence of protein pathology; (2) iron promotes protein pathology; (3) iron protects from or hinders protein pathology; and (4) deposition of iron and protein pathology contribute parallelly to pathogenesis. Iron is an essential element for physiological brain function, requiring a fine balance of its levels. Understanding of disease-related iron accumulation at a more intricate and systemic level is critical for advancements in iron chelation therapies.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
35
|
Levi S, Ripamonti M, Moro AS, Cozzi A. Iron imbalance in neurodegeneration. Mol Psychiatry 2024; 29:1139-1152. [PMID: 38212377 PMCID: PMC11176077 DOI: 10.1038/s41380-023-02399-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Iron is an essential element for the development and functionality of the brain, and anomalies in its distribution and concentration in brain tissue have been found to be associated with the most frequent neurodegenerative diseases. When magnetic resonance techniques allowed iron quantification in vivo, it was confirmed that the alteration of brain iron homeostasis is a common feature of many neurodegenerative diseases. However, whether iron is the main actor in the neurodegenerative process, or its alteration is a consequence of the degenerative process is still an open question. Because the different iron-related pathogenic mechanisms are specific for distinctive diseases, identifying the molecular mechanisms common to the various pathologies could represent a way to clarify this complex topic. Indeed, both iron overload and iron deficiency have profound consequences on cellular functioning, and both contribute to neuronal death processes in different manners, such as promoting oxidative damage, a loss of membrane integrity, a loss of proteostasis, and mitochondrial dysfunction. In this review, with the attempt to elucidate the consequences of iron dyshomeostasis for brain health, we summarize the main pathological molecular mechanisms that couple iron and neuronal death.
Collapse
Affiliation(s)
- Sonia Levi
- Vita-Salute San Raffaele University, Milano, Italy.
- IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | | | - Andrea Stefano Moro
- Vita-Salute San Raffaele University, Milano, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Anna Cozzi
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
36
|
Miskovic R, Ljubicic J, Bonaci-Nikolic B, Petkovic A, Markovic V, Rankovic I, Djordjevic J, Stankovic A, Klaassen K, Pavlovic S, Stojanovic M. Case report: Rapidly progressive neurocognitive disorder with a fatal outcome in a patient with PU.1 mutated agammaglobulinemia. Front Immunol 2024; 15:1324679. [PMID: 38500873 PMCID: PMC10945545 DOI: 10.3389/fimmu.2024.1324679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction PU.1-mutated agammaglobulinemia (PU.MA) represents a recently described autosomal-dominant form of agammaglobulinemia caused by mutation of the SPI1 gene. This gene codes for PU.1 pioneer transcription factor important for the maturation of monocytes, B lymphocytes, and conventional dendritic cells. Only six cases with PU.MA, presenting with chronic sinopulmonary and systemic enteroviral infections, have been previously described. Accumulating literature evidence suggests a possible relationship between SPI1 mutation, microglial phagocytic dysfunction, and the development of Alzheimer's disease (AD). Case description We present a Caucasian female patient born from a non-consanguineous marriage, who was diagnosed with agammaglobulinemia at the age of 15 years when the immunoglobulin replacement therapy was started. During the following seventeen years, she was treated for recurrent respiratory and intestinal infections. At the age of 33 years, the diagnosis of celiac-like disease was established. Five years later progressive cognitive deterioration, unstable gait, speech disturbances, and behavioral changes developed. Comprehensive microbiological investigations were negative, excluding possible infective etiology. Brain MRI, 18FDG-PET-CT, and neuropsychological testing were suggestive for a diagnosis of a frontal variant of AD. Clinical exome sequencing revealed the presence of a novel frameshift heterozygous variant c.441dup in exon 4 of the SPI1 gene. Despite intensive therapy, the patient passed away a few months after the onset of the first neurological symptoms. Conclusion We describe the first case of PU.MA patient presenting with a rapidly progressive neurocognitive deterioration. The possible role of microglial dysfunction in patients with SPI1 mutation could explain their susceptibility to neurodegenerative diseases thus highlighting the importance of genetic testing in patients with inborn errors of immunity. Since PU.MA represents a newly described form of agammaglobulinemia, our case expands the spectrum of manifestations associated with SPI1 mutation.
Collapse
Affiliation(s)
- Rada Miskovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Ljubicic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branka Bonaci-Nikolic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Petkovic
- Diagnostic Department, Center of Sterotaxic Radiosurgery, Clinic of Neurosurgery, University Clinical Center of Serbia, Belgrade, Serbia
| | - Vladana Markovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic of Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivan Rankovic
- Department of Gastroenterology and Liver Unit, Royal Cornwall Hospitals NHS Trust, University of Exeter, Truro, United Kingdom
| | - Jelena Djordjevic
- Clinic of Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ana Stankovic
- Center for Radiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Stojanovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
38
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
39
|
Wang X, Li H, Sheng Y, He B, Liu Z, Li W, Yu S, Wang J, Zhang Y, Chen J, Qin L, Meng X. The function of sphingolipids in different pathogenesis of Alzheimer's disease: A comprehensive review. Biomed Pharmacother 2024; 171:116071. [PMID: 38183741 DOI: 10.1016/j.biopha.2023.116071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Sphingolipids (SPLs) represent a highly diverse and structurally complex lipid class. The discussion of SPL metabolism-related issues is of importance in understanding the neuropathological progression of Alzheimer's disease (AD). AD is characterized by the accumulation of extracellular deposits of the amyloid β-peptide (Aβ) and intraneuronal aggregates of the microtubule-associated protein tau. Critical roles of Aβ oligomer deposited and ganglioside GM1 could be formed as "seed" from insoluble GAβ polymer in initiating the pathogenic process, while tau might also mediate SPLs and their toxicity. The interaction between ceramide and α-Synuclein (α-Syn) accelerates the aggregation of ferroptosis and exacerbates the pathogenesis of AD. For instance, reducing the levels of SPLs can mitigate α-Syn accumulation and inhibit AD progression. Meanwhile, loss of SPLs may inhibit the expression of APOE4 and confer protection against AD, while the loss of APOE4 expression also disrupts SPLs homeostasis. Moreover, the heightened activation of sphingomyelinase promotes the ferroptosis signaling pathway, leading to exacerbated AD symptoms. Ferroptosis plays a vital role in the pathological progression of AD by influencing Aβ, tau, APOE, and α-Syn. Conversely, the development of AD also exacerbates the manifestation of ferroptosis and SPLs. We are compiling the emerging techniques (Derivatization and IM-MS) of sphingolipidomics, to overcome the challenges of AD diagnosis and treatment. In this review, we examined the intricate neuro-mechanistic interactions between SPLs and Aβ, tau, α-Syn, APOE, and ferroptosis, mediating the onset of AD. Furthermore, our findings highlight the potential of targeting SPLs as underexplored avenue for devising innovative therapeutic strategies against AD.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Bingqian He
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Zeying Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Wanli Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Shujie Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jiajing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, PR China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| |
Collapse
|
40
|
Merenstein JL, Zhao J, Overson DK, Truong TK, Johnson KG, Song AW, Madden DJ. Depth- and curvature-based quantitative susceptibility mapping analyses of cortical iron in Alzheimer's disease. Cereb Cortex 2024; 34:bhad525. [PMID: 38185996 PMCID: PMC10839848 DOI: 10.1093/cercor/bhad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
In addition to amyloid beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been associated with elevated iron in deep gray matter nuclei using quantitative susceptibility mapping (QSM). However, only a few studies have examined cortical iron, using more macroscopic approaches that cannot assess layer-specific differences. Here, we conducted column-based QSM analyses to assess whether AD-related increases in cortical iron vary in relation to layer-specific differences in the type and density of neurons. We obtained global and regional measures of positive (iron) and negative (myelin, protein aggregation) susceptibility from 22 adults with AD and 22 demographically matched healthy controls. Depth-wise analyses indicated that global susceptibility increased from the pial surface to the gray/white matter boundary, with a larger slope for positive susceptibility in the left hemisphere for adults with AD than controls. Curvature-based analyses indicated larger global susceptibility for adults with AD versus controls; the right hemisphere versus left; and gyri versus sulci. Region-of-interest analyses identified similar depth- and curvature-specific group differences, especially for temporo-parietal regions. Finding that iron accumulates in a topographically heterogenous manner across the cortical mantle may help explain the profound cognitive deterioration that differentiates AD from the slowing of general motor processes in healthy aging.
Collapse
Affiliation(s)
- Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Jiayi Zhao
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - Kim G Johnson
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Medical Physics Graduate Program, Duke University, Durham, NC 27708, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
41
|
Mandal PK, Maroon JC, Samkaria A, Arora Y, Sharma S, Pandey A. Iron Chelators and Alzheimer's Disease Clinical Trials. J Alzheimers Dis 2024; 100:S243-S249. [PMID: 39031369 DOI: 10.3233/jad-240605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder impacting millions of people with cognitive impairment and affecting activities of daily living. The deposition of neurofibrillary tangles of hyperphosphorylated tau proteins and accumulation of amyloid-β (Aβ) are the main pathological characteristics of AD. However, the actual causal process of AD is not yet identified. Oxidative stress occurs prior to amyloid Aβ plaque formation and tau phosphorylation in AD. The role of master antioxidant, glutathione, and metal ions (e.g., iron) in AD are the frontline area of AD research. Iron overload in specific brain regions in AD is associated with the rate of cognitive decline. We have presented the outcome from various interventional trials involving iron chelators intended to minimize the iron overload in AD. To date, however, no significant positive outcomes have been reported using iron chelators in AD and warrant further research.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, VIC, Australia
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- Department of Forensic Science, Chandigarh University, Mohali, Punjab, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- School of Computer Science Engineering and Technology, Bennett University, Greater Noida, UP, India
| | - Ashutosh Pandey
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
- Department of Medicine, NEIGRIHMS, Shillong, Meghalaya, India
| |
Collapse
|
42
|
Patanè GT, Putaggio S, Tellone E, Barreca D, Ficarra S, Maffei C, Calderaro A, Laganà G. Ferroptosis: Emerging Role in Diseases and Potential Implication of Bioactive Compounds. Int J Mol Sci 2023; 24:17279. [PMID: 38139106 PMCID: PMC10744228 DOI: 10.3390/ijms242417279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a form of cell death that is distinguished from other types of death for its peculiar characteristics of death regulated by iron accumulation, increase in ROS, and lipid peroxidation. In the past few years, experimental evidence has correlated ferroptosis with various pathological processes including neurodegenerative and cardiovascular diseases. Ferroptosis also is involved in several types of cancer because it has been shown to induce tumor cell death. In particular, the pharmacological induction of ferroptosis, contributing to the inhibition of the proliferative process, provides new ideas for the pharmacological treatment of cancer. Emerging evidence suggests that certain mechanisms including the Xc- system, GPx4, and iron chelators play a key role in the regulation of ferroptosis and can be used to block the progression of many diseases. This review summarizes current knowledge on the mechanism of ferroptosis and the latest advances in its multiple regulatory pathways, underlining ferroptosis' involvement in the diseases. Finally, we focused on several types of ferroptosis inducers and inhibitors, evaluating their impact on the cell death principal targets to provide new perspectives in the treatment of the diseases and a potential pharmacological development of new clinical therapies.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.T.P.); (D.B.); (S.F.); (C.M.); (A.C.); (G.L.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.T.P.); (D.B.); (S.F.); (C.M.); (A.C.); (G.L.)
| | | | | | | | | | | |
Collapse
|
43
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
44
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
45
|
Mateo D, Marquès M, Torrente M. Metals linked with the most prevalent primary neurodegenerative dementias in the elderly: A narrative review. ENVIRONMENTAL RESEARCH 2023; 236:116722. [PMID: 37487923 DOI: 10.1016/j.envres.2023.116722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The ageing population has been steadily increasing worldwide, leading to a higher risk of cognitive decline and dementia. Environmental toxicants, particularly metals, have been identified as modifiable risk factors for cognitive impairment. Continuous exposure to metals occurs mainly through dietary sources, with older adults being particularly vulnerable. However, imbalances in the gut microbiota, known as dysbiosis, have also been associated with dementia. A literature review was conducted to explore the potential role of metals in the development of cognitive decline and the most prevalent primary neurodegenerative dementias, as well as their interaction with the gut microbiota. High levels of iron (Fe) and copper (Cu) are associated with mild cognitive impairment (MCI) and Alzheimer's disease (AD), while low selenium (Se) levels are linked to poor cognitive status. Parkinson's disease dementia (PDD) is associated with elevated levels of iron (Fe), manganese (Mn), and zinc (Zn), but the role of copper (Cu) remains unclear. The relationship between metals and Lewy body dementia (LBD) requires further investigation. High aluminium (Al) exposure is associated with frontotemporal dementia (FTD), and elevated selenium (Se) levels may be linked to its onset. Challenges in comparing studies arise from the heterogeneity of metal analysis matrices and analytical techniques, as well as the limitations of small study cohorts. More research is needed to understand the influence of metals on cognition through the gut microbiota (GMB) and its potential relevance in the development of these diseases.
Collapse
Affiliation(s)
- David Mateo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain
| | - Margarita Torrente
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain; Department of Psychology, CRAMC (Research Center for Behaviour Assessment), Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, Crta. de Valls s/n, 43007, Tarragona, Catalonia, Spain; Institute Lerin Neurocognitive, Alzheimer and other Neurocognitive Disorders Association, Av. D'Antoni Planas i Marca, 13, 43205, Reus, Catalonia, Spain.
| |
Collapse
|
46
|
Kim HW, Lee S, Yang JH, Moon Y, Lee J, Moon WJ. Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study. Korean J Radiol 2023; 24:1131-1141. [PMID: 37899522 PMCID: PMC10613848 DOI: 10.3348/kjr.2023.0490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. MATERIALS AND METHODS This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). RESULTS Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. CONCLUSION Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.
Collapse
Affiliation(s)
- Hyeong Woo Kim
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Subin Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Yang
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Ahmed M, Chen J, Arani A, Senjem ML, Cogswell PM, Jack CR, Liu C. The diamagnetic component map from quantitative susceptibility mapping (QSM) source separation reveals pathological alteration in Alzheimer's disease-driven neurodegeneration. Neuroimage 2023; 280:120357. [PMID: 37661080 DOI: 10.1016/j.neuroimage.2023.120357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
A sensitive and accurate imaging technique capable of tracking the disease progression of Alzheimer's Disease (AD) driven amnestic dementia would be beneficial. A currently available method for pathology detection in AD with high accuracy is Positron Emission Tomography (PET) imaging, despite certain limitations such as low spatial resolution, off-targeting error, and radiation exposure. Non-invasive MRI scanning with quantitative magnetic susceptibility measurements can be used as a complementary tool. To date, quantitative susceptibility mapping (QSM) has widely been used in tracking deep gray matter iron accumulation in AD. The present work proposes that by compartmentalizing quantitative susceptibility into paramagnetic and diamagnetic components, more holistic information about AD pathogenesis can be acquired. Particularly, diamagnetic component susceptibility (DCS) can be a powerful indicator for tracking protein accumulation in the gray matter (GM), demyelination in the white matter (WM), and relevant changes in the cerebrospinal fluid (CSF). In the current work, voxel-wise group analysis of the WM and the CSF regions show significantly lower |DCS| (the absolute value of DCS) value for amnestic dementia patients compared to healthy controls. Additionally, |DCS| and τ PET standardized uptake value ratio (SUVr) were found to be associated in several GM regions typically affected by τ deposition in AD. Therefore, we propose that the separated diamagnetic susceptibility can be used to track pathological neurodegeneration in different tissue types and regions of the brain. With the initial evidence, we believe the usage of compartmentalized susceptibility demonstrates substantive potential as an MRI-based technique for tracking AD-driven neurodegeneration.
Collapse
Affiliation(s)
- Maruf Ahmed
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Jingjia Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Arvin Arani
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
49
|
Yan R, Lin B, Jin W, Tang L, Hu S, Cai R. NRF2, a Superstar of Ferroptosis. Antioxidants (Basel) 2023; 12:1739. [PMID: 37760042 PMCID: PMC10525540 DOI: 10.3390/antiox12091739] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ferroptosis is an iron-dependent and lipid peroxidation-driven cell death cascade, occurring when there is an imbalance of redox homeostasis in the cell. Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is key for cellular antioxidant responses, which promotes downstream genes transcription by binding to their antioxidant response elements (AREs). Numerous studies suggest that NRF2 assumes an extremely important role in the regulation of ferroptosis, for its various functions in iron, lipid, and amino acid metabolism, and so on. Many pathological states are relevant to ferroptosis. Abnormal suppression of ferroptosis is found in many cases of cancer, promoting their progression and metastasis. While during tissue damages, ferroptosis is recurrently promoted, resulting in a large number of cell deaths and even dysfunctions of the corresponding organs. Therefore, targeting NRF2-related signaling pathways, to induce or inhibit ferroptosis, has become a great potential therapy for combating cancers, as well as preventing neurodegenerative and ischemic diseases. In this review, a brief overview of the research process of ferroptosis over the past decade will be presented. In particular, the mechanisms of ferroptosis and a focus on the regulation of ferroptosis by NRF2 will be discussed. Finally, the review will briefly list some clinical applications of targeting the NRF2 signaling pathway in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuming Hu
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.Y.); (B.L.); (W.J.); (L.T.)
| |
Collapse
|
50
|
Schreiner OD, Schreiner TG. Iron chelators as a therapeutic option for Alzheimer's disease-A mini-review. FRONTIERS IN AGING 2023; 4:1234958. [PMID: 37602277 PMCID: PMC10433644 DOI: 10.3389/fragi.2023.1234958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative disorders, particularly Alzheimer's disease (AD), remain a great challenge regarding the finding of effective treatment, one main reason being the incomplete understanding of their etiology. With many intensely debated hypotheses, a newer approach based on the impact of iron imbalance in sustaining neurodegeneration in the central nervous system becomes increasingly popular. Altered iron homeostasis leads to increased iron accumulation in specific brain areas, explaining the clinical picture of AD patients. Moreover, growing evidence sustains the significant impact of iron metabolism in relationship to other pathological processes encountered in the AD-affected brain, such as the amyloidogenic pathway, chronic inflammation, or oxidative stress. In this context, this mini-review aims to summarize the novel data from the continuously expanding literature on this topic in a didactic manner. Thus, in the first part, the authors briefly highlight the most relevant aspects related to iron absorption, transport, regulation, and elimination at the cerebral level, focusing on the role of the blood-brain barrier and the newer concept of ferroptosis. Subsequently, currently available iron chelation therapies are discussed, including an overview of the most relevant clinical trials on this topic. In the final part, based on the latest results from in vitro and in vivo studies, new research directions are suggested to enhance the development of effective antidementia therapies.
Collapse
Affiliation(s)
- Oliver Daniel Schreiner
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Medical Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Thomas Gabriel Schreiner
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| |
Collapse
|