1
|
Shimazaki R, Saito Y, Awaya T, Minami N, Kurosawa R, Hosokawa M, Ohara H, Hayashi S, Takeuchi A, Hagiwara M, Hayashi YK, Noguchi S, Nishino I. Profiling of pathogenic variants in Japanese patients with sarcoglycanopathy. Orphanet J Rare Dis 2025; 20:1. [PMID: 39755676 DOI: 10.1186/s13023-024-03521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients. METHODS Clinical course and pathological findings were retrospectively reviewed in Japanese patients with SGP. Genetic analyses were performed using a combination of targeted resequencing with a hereditary muscle disease panel, whole genome sequencing, multiplex ligation-dependent probe amplification, and long-read sequencing. The structures of transcripts with aberrant splicing were also determined by RT-PCR, RNA-seq, and in silico prediction. RESULTS We identified biallelic variants in SGC genes in 53 families, including three families with LGMDR6, which had not been identified in Japan so far. SGCA was the most common causative gene, accounting for 56% of cases, followed by SGCG, SGCB, and SGCD, at 17%, 21%, and 6%, respectively. Missense variants in SGCA were very frequent at 78.3%, while they were relatively rare in SGCB, SGCG, and SGCD at 11.1%, 18.2%, and 16.6%, respectively. We also analyzed the haplotypes of alleles carrying three variants found in multiple cases: c.229C > T in SGCA, c.325C > T in SGCB, and exon 6 deletion in SGCG; two distinct haplotypes were found for c.229C > T in SGCA, while each of the latter two variants was on single haplotypes. CONCLUSIONS We present genetic profiles of Japanese patients with SGPs. Haplotype analysis indicated common ancestors of frequent variants. Our findings will support genetic diagnosis and gene therapy.
Collapse
Affiliation(s)
- Rui Shimazaki
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Narihiro Minami
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ryo Kurosawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoyasu Hosokawa
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Ohara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Akihide Takeuchi
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
- Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
2
|
Ouazzani HEL, Zouaidia F, Cherradi N, Karkouri M. Histopathological analysis of gamma sarcoglycanopathy in Moroccan patients: A case series. Int J Surg Case Rep 2024; 126:110733. [PMID: 39709673 DOI: 10.1016/j.ijscr.2024.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE In Morocco, diagnosing Gamma Sarcoglycanopathies mainly relies on histopathological analysis of muscle biopsies due to limited genetic and molecular research access. This study highlights the significance of muscle biopsies and explores potential predictive factors and possible correlation between histopathological abnormalities and clinical phenotypes. CASE PRESENTATION Muscle biopsies of six patients diagnosed with γ-sarcoglycanopathy were collected over two years. Pathological analysis was initially performed on slides stained with Hematoxylin-Eosin and Gomori Trichrome. Additionally, cryosections marked for dystrophin, alpha, beta, and gamma sarcoglycans were reviewed. In the second phase of the analysis, formalin-fixed sections from each biopsy were immunostained for various markers: "anti-CD68" for macrophagic cells, "anti-CD56" for satellite cells, and "anti-CD31" for vascular capillary. These stained sections were then carefully examined. CLINICAL DISCUSSION The clinical presentation of the disease was uniform and consistent with Duchenne-like dystrophy. However, the histological abnormalities were heterogeneous and did not correlate with the severity of the clinical phenotype. The Loss of expression of a Sarcoglycan and earlier age of onset appear to be the most significant predictive markers of disease progression. Immuno-staining patterns for CD68, CD56, and CD31 indicated an impairment in the muscle regeneration process, probably, at an early stage of the disease. CONCLUSION This study's findings are crucial for understanding pathogenesis and identifying new therapeutic targets. However, because of the small sample size, further confirmation through a larger cohort is necessary.
Collapse
Affiliation(s)
- Hafsa E L Ouazzani
- Department of Pathology HSR, Ibn Sina University Hospital Center, Rabat, Morocco; Mohammed V University in Rabat, Morocco.
| | - Fouad Zouaidia
- Department of Pathology Ibn Sina, Ibn Sina University Hospital Center, Rabat, Morocco; Mohammed V University in Rabat, Morocco
| | - Nadia Cherradi
- Department of Pathology HSR, Ibn Sina University Hospital Center, Rabat, Morocco; Mohammed V University in Rabat, Morocco
| | - Mahdi Karkouri
- Department of Pathology of Ibn Roched University Hospital Center, Casablanca, Morocco; Hassan II University in Casablanca, Morocco
| |
Collapse
|
3
|
Rahmuni Y, Kadiri YE, Lyahyai J, Sefiani A, Ratbi I. Molecular diagnosis of Alpha-sarcoglycanopathies by NGS in seven Moroccan families and report of two novel variants. Ir J Med Sci 2024; 193:3071-3076. [PMID: 39174842 DOI: 10.1007/s11845-024-03792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Limb-girdle muscular dystrophies constitute a heterogeneous group of neuromuscular diseases, both clinically and genetically. Limb-girdle muscular dystrophy by alpha-sarcoglycan deficiency or LGMD R3 α-sarcoglycan-related is a subtype of the autosomal recessive sarcoglycanopathies caused by variants in the alpha-sarcoglycan gene (SGCA) at 17q21.33. It appears in childhood by progressive weakness of pelvic and/or scapular girdle muscles and calf hypertrophy, with a wide range of clinical inter- and intra-familial clinical variability. AIMS Our report extends the molecular spectrum of SGCA gene with the identification of variant disease causing and will help for better management of patients and genetic counseling of families. METHODS In our study, seven unrelated families presented a clinical and paraclinical picture consistent with alpha-sarcoglycanopathy. A molecular study using Next-Generation Sequencing (NGS) was carried out on them. RESULTS Six different homozygous variants of the SGCA gene were identified in the patients analyzed, including four previously reported variants and two novel variants predicted to be deleterious by the prediction tools. CONCLUSIONS Our results expand the spectrum of variants in Moroccan patients with sarcoglycanopathy, specifically LGMDR3, most importantly as this form is not common in the Moroccan population.
Collapse
Affiliation(s)
- Yasmina Rahmuni
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, GENOPATH Center, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco.
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco.
| | - Youssef El Kadiri
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, GENOPATH Center, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Jaber Lyahyai
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, GENOPATH Center, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
| | - Abdelaziz Sefiani
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, GENOPATH Center, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Ilham Ratbi
- Research Team in Genomics and Molecular Epidemiology of Genetic Diseases, GENOPATH Center, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
| |
Collapse
|
4
|
Bulakh M, Polyakova D, Dadali E, Rudenskaya G, Sharkova I, Markova T, Murtazina A, Demina N, Kurbatov S, Nikitina N, Udalova V, Polyakov A, Ryzhkova O. Genetic spectrum of sarcoglycanopathies in a cohort of Russian patients. Gene 2024; 927:148680. [PMID: 38876406 DOI: 10.1016/j.gene.2024.148680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Sarcoglycanopathies encompass four distinct forms of limb-girdle muscular dystrophies (LGMD), denoted as LGMD R3-R6, arising from mutations within the SGCA, SGCB, SGCG, and SGCD genes. The global prevalence of sarcoglycanopathies is low, making it challenging to study these diseases. The principal objective of this study was to explore the spectrum of mutations in a cohort of Russian patients with sarcoglycanopathies and to ascertain the frequency of these conditions in the Russian Federation. We conducted a retrospective analysis of clinical and molecular genetic data from 49 Russian patients with sarcoglycan genes variants. The results indicated that variants in the SGCA gene were found in 71.4% of cases, with SGCB and SGCG genes each exhibiting variants in 12.2 % of patients. SGCD gene variants were detected in 4.1% of cases. Bi-allelic pathogenic and likely pathogenic variants were identified in 46 of the 49 cases of sarcoglycanopathies: LGMD R3 (n = 34), LGMD R4 (n = 4), LGMD R5 (n = 6), and LGMD R6 (n = 2). A total of 31 distinct variants were identified, comprising 25 previously reported and 6 novel variants. Two major variants, c.229C>T and c.271G>A, were detected within the SGCA, constituting 61.4% of all mutant alleles in Russian patients with LGMD R3. Both LGMD R6 cases were caused by the homozygous nonsense variant c.493C>T p.(Arg165Ter) in the SGCD gene. The incidence of sarcoglycanopathies in the Russian Federation was estimated to be at least 1 in 4,115,039, which is lower than the reported incidence in other populations.
Collapse
Affiliation(s)
- Maria Bulakh
- Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Elena Dadali
- Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Inna Sharkova
- Research Centre for Medical Genetics, Moscow, Russia.
| | | | | | - Nina Demina
- Research Centre for Medical Genetics, Moscow, Russia.
| | - Sergei Kurbatov
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University N.N. Burdenko, Voronezh, Russia; Saratov State Medical University, Saratov, Russia.
| | - Natalia Nikitina
- State Healthcare Institution of Sverdlovsk Region "Clinical Diagnostic Center "Mother's and Child Health Protection", Yekaterinburg, Russia.
| | | | | | | |
Collapse
|
5
|
Taneva A, Gresham D, Guergueltcheva V, Chamova T, Bojinova V, Gospodinova M, Katzarova M, Petkov R, Voit T, Aneva L, Asenov O, Georgieva B, Mihaylova V, Bichev S, Todorov T, Todorova A, Kalaydjieva L, Tournev I. Phenotypic Variability of LGMD 2C/R5 in a Genetically Homogenous Group of Bulgarian Muslim Roma. Genes (Basel) 2024; 15:1144. [PMID: 39336735 PMCID: PMC11431404 DOI: 10.3390/genes15091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Sarcoglycanopathies are among the most frequent and severe forms of autosomal recessive forms of limb-girdle muscular dystrophies (LGMDs) with childhood onset. Four subtypes are known: LGMDR3, LGMDR4, LGMDR5 and LGMDR6, which are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. We present the clinical variability of LGMD 2C/R5 among a genetically homogeneous group of 57 patients, belonging to 35 pedigrees. Molecular genetic analysis showed that all 57 patients were homozygous for the C283Y variant. The muscles of the pelvic girdle and the trunk were affected early and were more severely affected, followed by the shoulder girdle. Macroglossia, hypertrophy of the calves, scapular winging and lumbar hyperlordosis were common in the ambulatory phase. A great intra and interfamilial variability in the clinical presentation of LGMD 2C/R5 was observed, despite having the same underlying molecular defect. Females demonstrated a relatively milder clinical course compared to males. Mean creatine phosphokinase (CK) CK levels were 20 times above normal values. Muscle computer tomography (CT) CT or MRIs showed earlier and more severe involvement of the flexor proximal limb muscles in comparison to extensor muscles.
Collapse
Affiliation(s)
- Ani Taneva
- Department of Neurology, University Hospital "Alexandrovska", Medical University Sofia, 1431 Sofia, Bulgaria
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10012, USA
| | - Velina Guergueltcheva
- Department of Neurology, University Hospital Sofiamed, 1797 Sofia, Bulgaria
- Department of Neurology, Sofia University "St. Kliment Ohridski", 1504 Sofia, Bulgaria
| | - Teodora Chamova
- Department of Neurology, University Hospital "Alexandrovska", Medical University Sofia, 1431 Sofia, Bulgaria
| | - Veneta Bojinova
- Clinic of Child Neurology, University Hospital of Neurology and Psychiatry "St' Naum", 1113 Sofia, Bulgaria
| | - Mariana Gospodinova
- Diagnostic and Consultative Centre, University Hospital St Ivan Rilski, 1000 Sofia, Bulgaria
| | - Maria Katzarova
- Department of Orthopedy, USBALO "Prof. B. Boychev", Medical University Sofia, 1431 Sofia, Bulgaria
| | - Radoslav Petkov
- Department of Neurology, University Hospital Sofiamed, 1797 Sofia, Bulgaria
| | - Thomas Voit
- National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London WC1N 3JH, UK
| | - Lidia Aneva
- Clinical Laboratory, Regional Hospital-Blagoevgrad, 2700 Blagoevgrad, Bulgaria
| | - Ognyan Asenov
- Department of Neurology, University Hospital "Alexandrovska", Medical University Sofia, 1431 Sofia, Bulgaria
| | - Bilyana Georgieva
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | | - Stoyan Bichev
- National Genetics Laboratory, University Hospital of Obstetrics and Gynecology-"Maichin Dom", 1431 Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria
- Genetic Medico-Diagnostic Laboratory Genica, 1612 Sofia, Bulgaria
| | - Luba Kalaydjieva
- Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Ivailo Tournev
- Department of Neurology, University Hospital "Alexandrovska", Medical University Sofia, 1431 Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618 Sofia, Bulgaria
| |
Collapse
|
6
|
Scano M, Benetollo A, Dalla Barba F, Sandonà D. Advanced therapeutic approaches in sarcoglycanopathies. Curr Opin Pharmacol 2024; 76:102459. [PMID: 38713975 DOI: 10.1016/j.coph.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Sarcoglycanopathies are rare autosomal recessive diseases belonging to the family of limb-girdle muscular dystrophies. They are caused by mutations in the genes coding for α-, β-, γ-, and δ-sarcoglycan. The mutations impair the assembly of a key structural complex, which normally protects the sarcolemma of striated muscle from contraction-derived stress. Although heterogeneous, sarcoglycanopathies are characterized by progressive muscle degeneration, increased serum creatine kinase levels, loss of ambulation often during adolescence, and variable cardio-respiratory impairment. Genetic defects can impair sarcoglycan synthesis or produce a protein that is defective in folding. There is currently no effective treatment available; however, both gene replacement strategy and small molecule-based approaches show great promise and have entered or are starting to enter clinical trials.
Collapse
Affiliation(s)
- Martina Scano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Alberto Benetollo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Francesco Dalla Barba
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
7
|
Politano L. Is Cardiac Transplantation Still a Contraindication in Patients with Muscular Dystrophy-Related End-Stage Dilated Cardiomyopathy? A Systematic Review. Int J Mol Sci 2024; 25:5289. [PMID: 38791328 PMCID: PMC11121328 DOI: 10.3390/ijms25105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
8
|
Mendell JR, Pozsgai ER, Lewis S, Griffin DA, Lowes LP, Alfano LN, Lehman KJ, Church K, Reash NF, Iammarino MA, Sabo B, Potter R, Neuhaus S, Li X, Stevenson H, Rodino-Klapac LR. Gene therapy with bidridistrogene xeboparvovec for limb-girdle muscular dystrophy type 2E/R4: phase 1/2 trial results. Nat Med 2024; 30:199-206. [PMID: 38177855 PMCID: PMC10803256 DOI: 10.1038/s41591-023-02730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Limb-girdle muscular dystrophy 2E/R4 is caused by mutations in the β-sarcoglycan (SGCB) gene, leading to SGCB deficiency and consequent muscle loss. We developed a gene therapy approach based on functional replacement of the deficient SCB protein. Here we report interim results from a first-in-human, open-label, nonrandomized, phase 1/2 trial evaluating the safety and efficacy of bidridistrogene xeboparvovec, an adeno-associated virus-based gene therapy containing a codon-optimized, full-length human SGCB transgene. Patients aged 4-15 years with confirmed SGCB mutations at both alleles received one intravenous infusion of either 1.85 × 1013 vector genome copies kg-1 (Cohort 1, n = 3) or 7.41 × 1013 vector gene copies kg-1 (Cohort 2, n = 3). Primary endpoint was safety, and secondary endpoint was change in SGCB expression in skeletal muscle from baseline to Day 60. We report interim Year 2 results (trial ongoing). The most frequent treatment-related adverse events were vomiting (four of six patients) and gamma-glutamyl transferase increase (three of six patients). Serious adverse events resolved with standard therapies. Robust SGCB expression was observed: Day 60 mean (s.d.) percentage of normal expression 36.2% (2.7%) in Cohort 1 and 62.1% (8.7%) in Cohort 2. Post hoc exploratory analysis showed preliminary motor improvements using the North Star Assessment for Limb-girdle Type Muscular Dystrophies maintained through Year 2. The 2-year safety and efficacy of bidridistrogene xeboparvovec support clinical development advancement. Further studies are necessary to confirm the long-term safety and efficacy of this gene therapy. ClinicalTrials.gov registration: NCT03652259 .
Collapse
Affiliation(s)
- Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Sarah Lewis
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | - Linda P Lowes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lindsay N Alfano
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kelly J Lehman
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen Church
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Natalie F Reash
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Megan A Iammarino
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brenna Sabo
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Xiaoxi Li
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
9
|
Kang PB, Jorand-Fletcher M, Zhang W, McDermott SW, Berry R, Chambers C, Wong KN, Mohamed Y, Thomas S, Venkatesh YS, Westfield C, Whitehead N, Johnson NE. Genetic Patterns of Selected Muscular Dystrophies in the Muscular Dystrophy Surveillance, Tracking, and Research Network. Neurol Genet 2023; 9:e200113. [PMID: 38045992 PMCID: PMC10692796 DOI: 10.1212/nxg.0000000000200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/29/2023] [Indexed: 12/05/2023]
Abstract
Background and Objectives To report the genetic etiologies of Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy (LGMD), congenital muscular dystrophy (CMD), and distal muscular dystrophy (DD) in 6 geographically defined areas of the United States. Methods This was a cross-sectional, population-based study in which we studied the genes and variants associated with muscular dystrophy in individuals who were diagnosed with and received care for EDMD, LGMD, CMD, and DD from January 1, 2008, through December 31, 2016, in the 6 areas of the United States covered by the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). Variants of unknown significance (VUSs) from the original genetic test reports were reanalyzed for changes in interpretation. Results Among 243 individuals with definite or probable muscular dystrophy, LGMD was the most common diagnosis (138 cases), followed by CMD (62 cases), DD (22 cases), and EDMD (21 cases). There was a higher proportion of male individuals compared with female individuals, which persisted after excluding X-linked genes (EMD) and autosomal genes reported to have skewed gender ratios (ANO5, CAV3, and LMNA). The most common associated genes were FKRP, CAPN3, ANO5, and DYSF. Reanalysis yielded more definitive variant interpretations for 60 of 144 VUSs, with a mean interval between the original clinical genetic test of 8.11 years for all 144 VUSs and 8.62 years for the 60 reclassified variants. Ten individuals were found to have monoallelic pathogenic variants in genes known to be primarily recessive. Discussion This study is distinct for being an examination of 4 types of muscular dystrophies in selected geographic areas of the United States. The striking proportion of resolved VUSs demonstrates the value of periodic re-examinations of these variants. Such re-examinations will resolve some genetic diagnostic ambiguities before initiating repeat testing or more invasive diagnostic procedures such as muscle biopsy. The presence of monoallelic pathogenic variants in recessive genes in our cohort indicates that some individuals with muscular dystrophy continue to face incomplete genetic diagnoses; further refinements in genetic knowledge and diagnostic approaches will optimize diagnostic information for these individuals.
Collapse
Affiliation(s)
- Peter B Kang
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Magali Jorand-Fletcher
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Wanfang Zhang
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Suzanne W McDermott
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Reba Berry
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Chelsea Chambers
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Kristen N Wong
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Yara Mohamed
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Shiny Thomas
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Y Swamy Venkatesh
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Christina Westfield
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Nedra Whitehead
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Nicholas E Johnson
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| |
Collapse
|
10
|
Cheung A, Audhya IF, Szabo SM, Friesen M, Weihl CC, Gooch KL. Patterns of Clinical Progression Among Patients With Autosomal Recessive Limb-Girdle Muscular Dystrophy: A Systematic Review. J Clin Neuromuscul Dis 2023; 25:65-80. [PMID: 37962193 DOI: 10.1097/cnd.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES As the clinical course of autosomal recessive limb-girdle muscular dystrophy (LGMDR) is highly variable, this study characterized the frequency of loss of ambulation (LOA) among patients by subtype (LGMDR1, LGMDR2, LGMDR3-6, LGMDR9, LGMDR12) and progression to cardiac and respiratory involvement among those with and without LOA. METHODS Systematic literature review. RESULTS From 2929 abstracts screened, 418 patients were identified with ambulatory status data (LOA: 265 [63.4%]). Cardiac and/or respiratory function was reported for 142 patients (34.0%; all with LOA). Among these, respiratory involvement was most frequent in LGMDR3-6 (74.1%; mean [SD] age 23.9 [11.0] years) and cardiac in LGMDR9 (73.3%; mean [SD] age 23.7 [17.7] years). Involvement was less common in patients without LOA except in LGMDR9 (71.4% respiratory and 52.4% cardiac). CONCLUSIONS This study described the co-occurrence of LOA, cardiac, and respiratory involvement in LGMDR and provides greater understanding of the clinical progression of LGMDR.
Collapse
Affiliation(s)
| | | | | | | | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
11
|
Yang TL, Ting J, Lin MR, Chang WC, Shih CM. Identification of Genetic Variants Associated with Severe Myocardial Bridging through Whole-Exome Sequencing. J Pers Med 2023; 13:1509. [PMID: 37888120 PMCID: PMC10608235 DOI: 10.3390/jpm13101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Myocardial bridging (MB) is a congenital coronary artery anomaly and an important cause of angina. The genetic basis of MB is currently unknown. This study used a whole-exome sequencing technique and analyzed genotypic differences. Eight coronary angiography-confirmed cases of severe MB and eight age- and sex-matched control patients were investigated. In total, 139 rare variants that are potentially pathogenic for severe MB were identified in 132 genes. Genes with multiple rare variants or co-predicted by ClinVar and CADD/REVEL for severe MB were collected, from which heart-specific genes were selected under the guidance of tissue expression levels. Functional annotation indicated significant genetic associations with abnormal skeletal muscle mass, cardiomyopathies, and transmembrane ion channels. Candidate genes were reviewed regarding the functions and locations of each individual gene product. Among the gene candidates for severe MB, rare variants in DMD, SGCA, and TTN were determined to be the most crucial. The results suggest that altered anchoring proteins on the cell membrane and intracellular sarcomere unit of cardiomyocytes play a role in the development of the missed trajectory of coronary vessels. Additional studies are required to support the diagnostic application of cardiac sarcoglycan and dystroglycan complexes in patients with severe MB.
Collapse
Affiliation(s)
- Tsung-Lin Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Jafit Ting
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
| | - Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
- Master’ Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chun-Ming Shih
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Chung Tran N, Lien NTK, Ta TD, Nguyen VH, Tran HT, Van Tung N, Xuan NT, Huy Hoang N, Tran VK. Novel mutations in the SGCA gene in unrelated Vietnamese patients with limb-girdle muscular dystrophies disease. Front Genet 2023; 14:1248338. [PMID: 37900180 PMCID: PMC10611451 DOI: 10.3389/fgene.2023.1248338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Limb-girdle muscular dystrophy (LGMD) is a group of inherited neuromuscular disorders characterized by atrophy and weakness in the shoulders and hips. Over 30 subtypes have been described in five dominant (LGMD type 1 or LGMDD) and 27 recessive (LGMD type 2 or LGMDR). Each subtype involves a mutation in a single gene and has high heterogeneity in age of onset, expression, progression, and prognosis. In addition, the lack of understanding of the disease and the vague, nonspecific symptoms of LGMD subtypes make diagnosis difficult. Even as next-generation sequencing (NGS) genetic testing has become commonplace, some patients remain undiagnosed for many years. Methods: To identify LGMD-associated mutations, Targeted sequencing was performed in the patients and Sanger sequencing was performed in patients and family members. The in silico analysis tools such as Fathmm, M-CAP, Mutation Taster, PolyPhen 2, PROVEAN, REVEL, SIFT, MaxEntScan, Spliceailookup, Human Splicing Finder, NetGene2, and Fruitfly were used to predict the influence of the novel mutations. The pathogenicity of the mutation was interpreted according to the ACMG guidelines. Results: In this study, six patients from four different Vietnamese families were collected for genetic analysis at The Center for Gene and Protein Research and The Department of Molecular Pathology Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam. Based on clinical symptoms and serum creatine kinase (CK) levels, the patients were diagnosed with limb-girdle muscular dystrophies. Five mutations, including four (c.229C>T, p.Arg77Cys; exon one to three deletion; c.983 + 5G>C; and c.257_258insTGGCT, p.Phe88Leufs*125) in the SGCA gene and one (c.946-4_946-1delACAG) in the CAPN3 gene, were detected in six LGMD patients from four unrelated Vietnamese families. Two homozygous mutations (c.983 + 5G>C and c.257_258insTGGCT) in the SGCA gene were novel. These mutations were identified as the cause of the disease in the patients. Conclusion: Our results contribute to the general understanding of the etiology of the disease and provide the basis for definitive diagnosis and support genetic counseling and prenatal screening.
Collapse
Affiliation(s)
- Nam Chung Tran
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
- Hanoi Medical University, Hanoi, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Dat Ta
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
| | | | | | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Van Khanh Tran
- Center for Gene and Protein Research, Department of Molecular Pathology, Faculty of Medical Technology, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
13
|
Dalla Barba F, Soardi M, Mouhib L, Risato G, Akyürek EE, Lucon-Xiccato T, Scano M, Benetollo A, Sacchetto R, Richard I, Argenton F, Bertolucci C, Carotti M, Sandonà D. Modeling Sarcoglycanopathy in Danio rerio. Int J Mol Sci 2023; 24:12707. [PMID: 37628888 PMCID: PMC10454440 DOI: 10.3390/ijms241612707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and β-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease's pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies.
Collapse
Affiliation(s)
- Francesco Dalla Barba
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Michela Soardi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Leila Mouhib
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
- Randall Center for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK
| | - Giovanni Risato
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Martina Scano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Alberto Benetollo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Isabelle Richard
- Genethon, F-91002 Evry, France
- INSERM, U951, INTEGRARE Research Unit, F-91002 Evry, France
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| |
Collapse
|
14
|
Lewis S, Woroch A, Hatch MK, Lozano R. Autosomal Recessive Limb-Girdle Muscular Dystrophy-3: A Case Report of a Patient with Autism Spectrum Disorder. Genes (Basel) 2023; 14:1587. [PMID: 37628638 PMCID: PMC10454313 DOI: 10.3390/genes14081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Limb-girdle muscular dystrophies are a group of genetic disorders classically manifesting with progressive proximal muscle weakness. Affected individuals present with atrophy and weakness of the muscles of the shoulders and hips, and in some cases, intellectual disability or developmental delay has also been reported. Limb-girdle muscular dystrophy-3 is a recessive disorder caused by biallelic variants in the SGCA gene. Similarly, symptoms include proximal muscle weakness, elevated CPK, calf muscle pseudohypertrophy, and mobility issues. Cardiac symptoms and respiratory insufficiency are also common symptoms. This case report details a 3-year-old male with muscular weakness, elevated CK, and a neurodevelopmental disorder in whom a homozygous missense variant in c.229C>T (p.Arg77Cys) associated with limb-girdle muscular dystrophy-3 was found. This report shows the association between SGCA c.229C>T and neurodevelopmental disorders as observed in other muscular dystrophies.
Collapse
Affiliation(s)
- Sivan Lewis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (R.L.)
| | - Amy Woroch
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (R.L.)
| | - Mary Kate Hatch
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (R.L.)
| | - Reymundo Lozano
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (R.L.)
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Muni-Lofra R, Juanola-Mayos E, Schiava M, Moat D, Elseed M, Michel-Sodhi J, Harris E, McCallum M, Moore U, Richardson M, Trainor C, Wong K, Malinova M, Bolano-Diaz C, Keogh MJ, Ghimenton E, Verdu-Diaz J, Mayhew A, Guglieri M, Straub V, James MK, Marini-Bettolo C, Diaz-Manera J. Longitudinal Analysis of Respiratory Function of Different Types of Limb Girdle Muscular Dystrophies Reveals Independent Trajectories. Neurol Genet 2023; 9:e200084. [PMID: 37440793 PMCID: PMC10335843 DOI: 10.1212/nxg.0000000000200084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023]
Abstract
Background and Objectives The prevalence and progression of respiratory muscle dysfunction in patients with limb girdle muscular dystrophies (LGMDs) has been only partially described to date. Most reports include cross-sectional data on a limited number of patients making it difficult to gain a wider perspective on respiratory involvement throughout the course of the disease and to compare the most prevalent LGMD subtypes. Methods We reviewed the results of spirometry studies collected longitudinally in our cohort of patients in routine clinical visits from 2002 to 2020 along with additional clinical and genetic data. A linear mixed model was used to investigate the factors associated with the progression of respiratory dysfunction. Results We followed up 156 patients with 5 different forms of LGMDs for a median of 8 years (range 1-25 years). Of them, 53 patients had pathogenic variants in the Capn3 gene, 47 patients in the Dysf gene, 24 patients in the Fkrp gene, 19 in the Ano5 gene, and 13 in one of the sarcoglycan genes (SCG). At baseline, 58 patients (37.1%) had a forced vital capacity percentage predicted (FVCpp) below 80%, while 14 patients (8.9%) had peak cough flow (PCF) values below 270 L/min. As a subgroup, FKRP was the group with a higher number of patients having FVC <80% and/or PCF <270 L/min at initial assessment (66%). We observed a progressive decline in FVCpp and PCF measurements over time, being age, use of wheelchair, and LGMD subtype independent factors associated with this decline. Fkrp and sarcoglycan patients had a quicker decline in their FVC (Kaplan-Meier curve, F test, p < 0.001 and p = 0.02, respectively). Only 7 of the 58 patients with low FVCpp values reported symptoms of respiratory dysfunction, which are commonly reported by patients with FVCpp below 50%-60%. The number of patients ventilated increased from 2 to 8 during follow-up. Discussion Respiratory dysfunction is a frequent complication of patients with LGMDs that needs to be carefully studied and has direct implications in the care offered in daily clinics. Respiratory dysfunction is associated with disease progression because it is especially seen in patients who are full-time wheelchair users, being more frequent in patients with mutations in the Fkrp and sarcoglycan genes.
Collapse
Affiliation(s)
- Robert Muni-Lofra
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Eduard Juanola-Mayos
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Marianela Schiava
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Dionne Moat
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Maha Elseed
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Jassi Michel-Sodhi
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Elizabeth Harris
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Michelle McCallum
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Ursula Moore
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Mark Richardson
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Christina Trainor
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Karen Wong
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Monika Malinova
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Carla Bolano-Diaz
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Michael John Keogh
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Elisabetta Ghimenton
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Jose Verdu-Diaz
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Anna Mayhew
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Michela Guglieri
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Volker Straub
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Meredith K James
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Chiara Marini-Bettolo
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| | - Jordi Diaz-Manera
- From the John Walton Muscular Dystrophy Research Centre (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Translational and Clinical Research Institute, Newcastle University, UK; Highly Specialized Service for Rare Neuromuscular Disorders (R.M.-L., M.S., D.M., M.E., J.M.-S., E.H., M. McCallum, U.M., M.R., C.T., K.W., M. Malinova, C.B.-D., M.J.K., E.G., J.V.-D., A.M., M.G., V.S., M.K.J., C.M.-B., J.D.-M.), Limb Girdle Muscular Dystrophies, Genetics Department, Integrated Laboratory Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, United Kingdom; and Neuromuscular Diseases Unit, Neurology Department, Hospital Germans Tries I Pujol (E.J.-M.), Badalona, Spain
| |
Collapse
|
16
|
Palma-Flores C, Cano-Martínez LJ, Fernández-Valverde F, Torres-Pérez I, de Los Santos S, Hernández-Hernández JM, Hernández-Herrera AF, García S, Canto P, Zentella-Dehesa A, Coral-Vázquez RM. Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model. J Mol Histol 2023; 54:405-413. [PMID: 37358754 DOI: 10.1007/s10735-023-10136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of β-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.
Collapse
Affiliation(s)
- Carlos Palma-Flores
- Catedrático CONACYT, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Javier Cano-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Itzel Torres-Pérez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Sergio de Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Manuel Hernández-Hernández
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City, Mexico
| | - Adriana Fabiola Hernández-Herrera
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Silvia García
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Ramón Mauricio Coral-Vázquez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico.
- Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
17
|
Guan Y, Liang X, Li W, Lin W, Liang G, Xie H, Hou Y, Hu Y, Shang X. TRIM32 biallelic defects cause limb-girdle muscular dystrophy R8: identification of two novel mutations and investigation of genotype-phenotype correlation. Skelet Muscle 2023; 13:10. [PMID: 37217920 DOI: 10.1186/s13395-023-00319-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy R8 (LGMD R8) is a rare autosomal recessive muscle disease caused by TRIM32 gene biallelic defects. The genotype-phenotype correlation of this disease has been reported poorly. Here, we report a Chinese family with two female LGMD R8 patients. METHODS We performed whole-genome sequencing (WGS) and Sanger sequencing on the proband. Meanwhile, the function of mutant TRIM32 protein was analyzed by bioinformatics and experimental analysis. In addition, a summary of the reported TRIM32 deletions and point mutations and an investigation of genotype-phenotype correlation were performed through a combined analysis of the two patients and other cases reported in previous literature. RESULTS The two patients displayed typical symptoms of LGMD R8, which worsened during pregnancy. Genetic analysis by whole-genome sequencing (WGS) and Sanger sequencing showed that the patients were compound heterozygotes of a novel deletion (chr9.hg19:g.119431290_119474250del) and a novel missense mutation (TRIM32:c.1700A > G, p.H567R). The deletion encompassed 43 kb and resulted in the removal of the entire TRIM32 gene. The missense mutation altered the structure and further affected function by interfering with the self-association of the TRIM32 protein. Females with LGMD R8 showed less severe symptoms than males, and patients carrying two mutations in NHL repeats of the TRIM32 protein had earlier disease onset and more severe symptoms than other patients. CONCLUSIONS This research extended the spectrum of TRIM32 mutations and firstly provided useful data on the genotype-phenotype correlation, which is valuable for the accurate diagnosis and genetic counseling of LGMD R8.
Collapse
Affiliation(s)
- Yuqing Guan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiongda Liang
- Department of Medical Genetics, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanying Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanxia Liang
- Department of Medical Genetics, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hongting Xie
- Department of Medical Genetics, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China.
| |
Collapse
|
18
|
Johnston K, Casstevens C, Patel VP, Merikle E, Presnall C, Audhya I. Concept Elicitation Interviews and Conceptual Model to Understand the Patient Experience of Limb Girdle Muscular Dystrophy. Adv Ther 2023; 40:2296-2310. [PMID: 36917428 PMCID: PMC10130098 DOI: 10.1007/s12325-023-02463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Limb girdle muscular dystrophies (LGMDs) are a group of rare and heterogeneous disorders involving progressive wasting of shoulder and pelvic girdle musculature. This study aimed to generate qualitative evidence on patient and caregiver experiences with symptoms and impacts of LGMD on overall function and daily life for sarcoglycanopathy subtypes 2C/R5, 2D/R3, and 2E/R4. METHODS Twenty-three individuals with LGMD with (n = 5) or without (n = 18) a caregiver participated in 60-minute semi-structured video interviews. Interview transcripts were analyzed using thematic analysis. Differences in patient experience by ambulation status and LGMD subtype were examined. RESULTS Participants were ambulatory (n = 14) and non-ambulatory (n = 9), representing three subtypes: 2C/R5 (n = 4), 2D/R3 (n = 12), and 2E/R4 (n = 7), with mean age of 34.8 years (SD = 16.08). 56.5% identified as female. Conceptual saturation was achieved within 18/23 interviews. Ambulatory participants identified difficulty with complex physical activities, e.g., running (n = 11, 78.6%), physical strength (n = 14, 100%), and difficulty with transfers, e.g., difficulty getting off the floor (n = 10, 71.4%). All non-ambulatory participants discussed problems with activities of daily living (ADLs) and transfers, e.g., getting in/out of bed and upper extremity function, particularly reaching (n = 8, 88.9%) and fine motor skills (n = 6, 66.7%). Fatigue and pain were reported by the majority of participants (n = 16, 69.6% and n = 19, 82.6%, respectively). A conceptual disease model was developed illustrating symptoms and impacts and their relationships to disease stage, capturing the patient experience across LGMD disease trajectory. CONCLUSIONS This study contributes to the limited evidence describing the patient experience of living with LGMD. The conceptual model can inform patient-centered assessment in future LGMD clinical trials.
Collapse
|
19
|
Manjunath V, Thenral SG, Lakshmi BR, Nalini A, Bassi A, Karthikeyan KP, Piyusha K, Menon R, Malhotra A, Praveena LS, Anjanappa RM, Murugan SMS, Polavarapu K, Bardhan M, Preethish-Kumar V, Vengalil S, Nashi S, Sanga S, Acharya M, Raju R, Pai VR, Ramprasad VL, Gupta R. Large Region of Homozygous (ROH) Identified in Indian Patients with Autosomal Recessive Limb-Girdle Muscular Dystrophy with p.Thr182Pro Variant in SGCB Gene. Hum Mutat 2023. [DOI: 10.1155/2023/4362273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The sarcoglycanopathies are autosomal recessive limb-girdle muscular dystrophies (LGMDs) caused by the mutations in genes encoding the α, β, γ, and δ proteins which stabilizes the sarcolemma of muscle cells. The clinical phenotype is characterized by progressive proximal muscle weakness with childhood onset. Muscle biopsy findings are diagnostic in confirming dystrophic changes and deficiency of one or more sarcoglycan proteins. In this study, we summarized 1,046 LGMD patients for which a precise diagnosis was identified using targeted sequencing. The most frequent phenotypes identified in the patients are LGMDR1 (19.7%), LGMDR4 (19.0%), LGMDR2 (17.5%), and MMD1 (14.5%). Among the reported genes, each of CAPN3, SGCB, and DYSF variants was reported in more than 10% of our study cohort. The most common variant SGCB p.Thr182Pro was identified in 146 (12.5%) of the LGMD patients, and in 97.9% of these patients, the variant was found to be homozygous. To understand the genetic structure of the patients carrying SGCB p.Thr182Pro, we genotyped 68 LGMD patients using a whole genome microarray. Analysis of the array data identified a large ~1 Mb region of homozygosity (ROH) (chr4:51817441-528499552) suggestive of a shared genomic region overlapping the recurrent missense variant and shared across all 68 patients. Haplotype analysis identified 133 marker haplotypes that were present in ~85.3% of the probands as a double allele and absent in all random controls. We also identified 5 markers (rs1910739, rs6852236, rs13122418, rs13353646, and rs6554360) which were present in a significantly higher proportion in the patients compared to random control set (
) and the population database. Of note, admixture analysis was suggestive of greater proportion of West Eurasian/European ancestry as compared to random controls. Haplotype analysis and frequency in the population database indicate a probable event of founder effect. Further systematic study is needed to identify the communities and regions where the SGCB p.Thr182Pro variant is observed in higher proportions. After identifying these communities and//or region, a screening program is needed to identify carriers and provide them counselling.
Collapse
|
20
|
Benzi A, Baratto S, Astigiano C, Sturla L, Panicucci C, Mamchaoui K, Raffaghello L, Bruzzone S, Gazzerro E, Bruno C. Aberrant Adenosine Triphosphate Release and Impairment of P2Y2-Mediated Signaling in Sarcoglycanopathies. J Transl Med 2023; 103:100037. [PMID: 36925196 DOI: 10.1016/j.labinv.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Sarcoglycanopathies, limb-girdle muscular dystrophies (LGMD) caused by genetic loss-of-function of the membrane proteins sarcoglycans (SGs), are characterized by progressive degeneration of skeletal muscle. In these disorders, muscle necrosis is associated with immune-mediated damage, whose triggering and perpetuating molecular mechanisms are not fully elucidated yet. Extracellular adenosine triphosphate (eATP) seems to represent a crucial factor, with eATP activating purinergic receptors. Indeed, in vivo blockade of the eATP/P2X7 purinergic pathway ameliorated muscle disease progression. P2X7 inhibition improved the dystrophic process by restraining the activity of P2X7 receptors on immune cells. Whether P2X7 blockade can display a direct action on muscle cells is not known yet. In this study, we investigated eATP effects in primary cultures of myoblasts isolated from patients with LGMDR3 (α-sarcoglycanopathy) and in immortalized cells isolated from a patient with LGMDR5 (γ-sarcoglycanopathy). Our results demonstrated that, owing to a reduced ecto-ATPase activity and/or an enhanced release of ATP, patient cells are exposed to increased juxtamembrane concentrations of eATP and display a higher susceptivity to eATP signals. The purinoceptor P2Y2, which proved to be overexpressed in patient cells, was identified as a pivotal receptor responsible for the enhanced ATP-induced or UTP-induced Ca2+ increase in affected myoblasts. Moreover, P2Y2 stimulation in LDMDR3 muscle cells induced chemotaxis of immune cells and release of interleukin-8. In conclusion, a higher eATP concentration and sensitivity in primary human muscle cells carrying different α-SG or γ-SG loss-of-function mutations indicate that eATP/P2Y2 is an enhanced signaling axis in cells from patients with α-/γ-sarcoglycanopathy. Understanding the basis of the innate immune-mediated damage associated with the dystrophic process may be critical in overcoming the immunologic hurdles associated with emerging gene therapies for these disorders.
Collapse
Affiliation(s)
- Andrea Benzi
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Cecilia Astigiano
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine-DIMES, University of Genova, Genova, Italy.
| | - Elisabetta Gazzerro
- Unit of Muscle Research Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Berlin, Germany.
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and ChildHealth-DINOGMI, University of Genova, Genova, Italy
| |
Collapse
|
21
|
Tran N, Nguyen TA, Ta TD, Tran TH, Nguyen P, Vu CD, Nguyen V, Bui T, Ta TV, Tran VK. Targeted next-generation sequencing determined a novel SGCG variant that is associated with limb-girdle muscular dystrophy type 2C: A case report. Clin Case Rep 2023; 11:e7025. [PMID: 36992678 PMCID: PMC10041365 DOI: 10.1002/ccr3.7025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/24/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Limb-girdle muscular dystrophy-type 2C (LGMD2C) is caused by mutations in the SGCG gene. Here, we report a case of a 26-year-old male who had inactive walking due to proximal muscle weakness. Targeted next-generation sequencing found a novel variant c.412C > T (Q138*) in the SGCG gene.
Collapse
Affiliation(s)
- Nam‐Chung Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Hanoi Medical UniversityHanoiVietnam
- University of Medicine & PharmacyVietnam National UniversityHanoiVietnam
| | | | - Thanh Dat Ta
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Thinh Huy Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Hanoi Medical UniversityHanoiVietnam
| | - Phuoc‐Dung Nguyen
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Chi Dung Vu
- Department of Medical Genetics, Metabolism &EndocrinologyVietnam National Children's HospitalHanoiVietnam
| | | | - The‐Hung Bui
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Center for Molecular Medicine, Clinical Genetics Unit, Karolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Thanh Van Ta
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Hanoi Medical UniversityHanoiVietnam
| | - Van Khanh Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| |
Collapse
|
22
|
Jensen SM, Müller KI, Mellgren SI, Bindoff LA, Rasmussen M, Ørstavik K, Jonsrud C, Tveten K, Nilssen Ø, Van Ghelue M, Arntzen KA. Epidemiology and natural history in 101 subjects with FKRP-related limb-girdle muscular dystrophy R9. The Norwegian LGMDR9 cohort study (2020). Neuromuscul Disord 2023; 33:119-132. [PMID: 36522254 DOI: 10.1016/j.nmd.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
We aimed to investigate the epidemiology and natural history of FKRP-related limb-girdle muscular dystrophy R9 (LGMDR9) in Norway. We identified 153 genetically confirmed subjects making the overall prevalence 2.84/100,000, the highest reported figure worldwide. Of the 153 subjects, 134 (88 %) were homozygous for FKRP c.826C>A giving a carrier frequency for this variant of 1/101 in Norway. Clinical questionnaires and patient notes from 101 subjects, including 88 c.826C>A homozygotes, were reviewed, and 43/101 subjects examined clinically. Age of onset in c.826C>A homozygotes demonstrated a bimodal distribution. Female subjects showed an increased cumulative probability of wheelchair dependency and need for ventilatory support. Across the cohort, the need for ventilatory support preceded wheelchair dependency in one third of the cases, usually due to sleep apnea. In c.826C>A homozygotes, occurrence of cardiomyopathy correlated positively with male gender but not with age or disease stage. This study highlights novel gender differences in both loss of ambulation, need for ventilatory support and the development of cardiomyopathy. Our results confirm the need for vigilance in order to detect respiratory insufficiency and cardiac involvement, but indicate that these events affect males and females differently.
Collapse
Affiliation(s)
- Synnøve M Jensen
- National Neuromuscular Centre Norway and Department of Neurology, University Hospital of North Norway HF, Tromsø, PO Box 100, N-9038, Tromsø, Norway; Department of Clinical Medicine, University of Tromsø - The Artic University of Norway, PO Box 6050 Langnes, N-9037, Tromsø, Norway.
| | - Kai Ivar Müller
- National Neuromuscular Centre Norway and Department of Neurology, University Hospital of North Norway HF, Tromsø, PO Box 100, N-9038, Tromsø, Norway; Department of Clinical Medicine, University of Tromsø - The Artic University of Norway, PO Box 6050 Langnes, N-9037, Tromsø, Norway; Department of Neurology, Hospital of Southern Norway, PO box 416 Lundsiden, 4604, Kristiansand S, Norway
| | - Svein Ivar Mellgren
- National Neuromuscular Centre Norway and Department of Neurology, University Hospital of North Norway HF, Tromsø, PO Box 100, N-9038, Tromsø, Norway; Department of Clinical Medicine, University of Tromsø - The Artic University of Norway, PO Box 6050 Langnes, N-9037, Tromsø, Norway
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, N-5021, Bergen, Norway; Department of Neurology, Haukeland University Hospital, PO Box 1400, N-5021, Bergen, Norway; National Unit of Newborn Screening and Advanced Laboratory Diagnostics, Oslo University Hospital, PO Box 4950 Nydalen, N-0424, Oslo, Norway
| | - Magnhild Rasmussen
- Department of Clinical Neurosciences for Children, Oslo University Hospital, PO Box 4950 Nydalen, N-0424, Oslo, Norway; Unit for Congenital and Hereditary Neuromuscular Conditions (EMAN), Department of Neurology, Oslo University Hospital, PO Box 4950 Nydalen, N-0424, Oslo, Norway
| | - Kristin Ørstavik
- Unit for Congenital and Hereditary Neuromuscular Conditions (EMAN), Department of Neurology, Oslo University Hospital, PO Box 4950 Nydalen, N-0424, Oslo, Norway
| | - Christoffer Jonsrud
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway HF, PO Box 55, N-9038, Tromsø, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, PO Box 2900 Kjørbekk, N-3710, Skien, Norway
| | - Øivind Nilssen
- Department of Clinical Medicine, University of Tromsø - The Artic University of Norway, PO Box 6050 Langnes, N-9037, Tromsø, Norway; Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway HF, PO Box 55, N-9038, Tromsø, Norway
| | - Marijke Van Ghelue
- Department of Clinical Medicine, University of Tromsø - The Artic University of Norway, PO Box 6050 Langnes, N-9037, Tromsø, Norway; Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway HF, PO Box 55, N-9038, Tromsø, Norway
| | - Kjell Arne Arntzen
- National Neuromuscular Centre Norway and Department of Neurology, University Hospital of North Norway HF, Tromsø, PO Box 100, N-9038, Tromsø, Norway; Department of Clinical Medicine, University of Tromsø - The Artic University of Norway, PO Box 6050 Langnes, N-9037, Tromsø, Norway
| |
Collapse
|
23
|
Muscle MRI in immune-mediated necrotizing myopathy (IMNM): implications for clinical management and treatment strategies. J Neurol 2023; 270:960-974. [PMID: 36329184 PMCID: PMC9886642 DOI: 10.1007/s00415-022-11447-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Immune-mediated necrotizing myopathy (IMNM) is the most severe idiopathic inflammatory myopathy (IIM) and early aggressive poly-immunotherapy is often required to reduce long-term disability. The aim of this study is to investigate muscle MRI in IMNM as outcome measure for disease activity, severity, progression, response to treatment, and to better characterize the pattern of muscle involvement. METHODS This is a retrospective, observational, cross-sectional, and longitudinal study including 22 IMNM patients, divided into three groups based on timing of first MRI and if performed before or under treatment. T1 score and percentage of STIR positive muscles (STIR%) were considered and analyzed also in relation to demographic, clinical and laboratory characteristics. RESULTS STIR% was higher in untreated patients and in those who performed MRI earlier (p = 0.001). Pelvic girdle and thighs were in general more affected than legs. T1 score was higher in patients with MRI performed later in disease course (p = 0.004) with a prevalent involvement of the lumbar paraspinal muscles, gluteus medius and minimus, adductor magnus and hamstrings. 22% of STIR positive muscles showed fat replacement progression at second MRI. Higher STIR% at baseline correlated with higher risk of fat replacement at follow-up (p = 0.003); higher T1 score correlated with clinical disability at follow-up, with late treatment start and delayed treatment with IVIG (p = 0.03). INTERPRETATION Muscle MRI is a sensitive biomarker for monitoring disease activity and therapy response, especially when performed early in disease course and before treatment start, and could represent a supportive outcome measure and early prognostic index in IMNM.
Collapse
|
24
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Abstract
PURPOSE OF REVIEW The limb-girdle muscular dystrophies (LGMDs) are a group of inherited muscle disorders with a common feature of limb-girdle pattern of weakness, caused by over 29 individual genes. This article describes the classification scheme, common subtypes, and the management of individuals with LGMD. RECENT FINDINGS Advances in genetic testing and next-generation sequencing panels containing all of the LGMD genes have led to earlier genetic confirmation, but also to more individuals with variants of uncertain significance. The LGMDs include disorders with autosomal recessive inheritance, which are often due to loss-of-function mutations in muscle structural or repair proteins and typically have younger ages of onset and more rapidly progressive presentations, and those with autosomal dominant inheritance, which can have older ages of presentation and chronic progressive disease courses. All cause progressive disability and potential loss of ability to walk or maintain a job due to progressive muscle wasting. Certain mutations are associated with cardiac or respiratory involvement. No disease-altering therapies have been approved by the US Food and Drug Administration (FDA) for LGMDs and standard treatment uses a multidisciplinary clinic model, but recessive LGMDs are potentially amenable to systemic gene replacement therapies, which are already being tested in clinical trials for sarcoglycan and FKRP mutations. The dominant LGMDs may be amenable to RNA-based therapeutic approaches. SUMMARY International efforts are underway to better characterize LGMDs, help resolve variants of uncertain significance, provide consistent and improved standards of care, and prepare for future clinical trials.
Collapse
|
26
|
Findlay AR, Robinson SE, Poelker S, Seiffert M, Bengoechea R, Weihl CC. LGMDD1 natural history and phenotypic spectrum: Implications for clinical trials. Ann Clin Transl Neurol 2022; 10:181-194. [PMID: 36427278 PMCID: PMC9930420 DOI: 10.1002/acn3.51709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To delineate the full phenotypic spectrum and characterize the natural history of limb girdle muscular dystrophy type D1 (LGMDD1). METHODS We extracted age at clinical events of interest contributing to LGMDD1 disease burden via a systematic literature and chart review. Manual muscle testing and quantitative dynamometry data were used to estimate annualized rates of change. We also conducted a cross-sectional observational study using previously validated patient-reported outcome assessments (ACTIVLIM, PROMIS-57) and a new LGMDD1 questionnaire. Some individuals underwent repeat ACTIVLIM and LGMDD1 questionnaire assessments at 1.5 and 2.5 years. RESULTS A total of 122 LGMDD1 patients were included from 14 different countries. We identified two new variants (p.E54K, p.V99A). In vitro assays and segregation support their pathogenicity. The mean onset age was 29.7 years. Genotype appears to impact onset age, weakness pattern, and median time to loss of ambulation (34 years). Dysphagia was the most frequent abnormality (51.4%). Deltoids, biceps, grip, iliopsoas, and hamstrings strength decreased by (0.5-1 lb/year). Cross-sectional ACTIVLIM and LGMDD1 questionnaire scores correlated with years from disease onset. Longitudinally, only the LGMDD1 questionnaire detected significant progression at both 1.5 and 2.5 years. Treatment trials would require 62 (1.5 years) or 30 (2.5 years) patients to detect a 70% reduction in the progression of the LGMDD1 questionnaire. INTERPRETATION This study is the largest description of LGMDD1 patients to date and highlights potential genotype-dependent differences that need to be verified prospectively. Future clinical trials will need to account for variability in these key phenotypic features when selecting outcome measures and enrolling patients.
Collapse
Affiliation(s)
- Andrew R. Findlay
- Neuromuscular Division, Department of NeurologyWashington University Saint LouisSaint LouisMissouriUSA
| | - Sarah E. Robinson
- Neuromuscular Division, Department of NeurologyWashington University Saint LouisSaint LouisMissouriUSA
| | - Stephanie Poelker
- Neuromuscular Division, Department of NeurologyWashington University Saint LouisSaint LouisMissouriUSA
| | - Michelle Seiffert
- Neuromuscular Division, Department of NeurologyWashington University Saint LouisSaint LouisMissouriUSA
| | - Rocio Bengoechea
- Neuromuscular Division, Department of NeurologyWashington University Saint LouisSaint LouisMissouriUSA
| | - Conrad C. Weihl
- Neuromuscular Division, Department of NeurologyWashington University Saint LouisSaint LouisMissouriUSA
| |
Collapse
|
27
|
Alonso-Pérez J, Carrasco-Rozas A, Borrell-Pages M, Fernández-Simón E, Piñol-Jurado P, Badimon L, Wollin L, Lleixà C, Gallardo E, Olivé M, Díaz-Manera J, Suárez-Calvet X. Nintedanib Reduces Muscle Fibrosis and Improves Muscle Function of the Alpha-Sarcoglycan-Deficient Mice. Biomedicines 2022; 10:2629. [PMID: 36289891 PMCID: PMC9599168 DOI: 10.3390/biomedicines10102629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sarcoglycanopathies are a group of recessive limb-girdle muscular dystrophies, characterized by progressive muscle weakness. Sarcoglycan deficiency produces instability of the sarcolemma during muscle contraction, leading to continuous muscle fiber injury eventually producing fiber loss and replacement by fibro-adipose tissue. Therapeutic strategies aiming to reduce fibro-adipose expansion could be effective in muscular dystrophies. We report the positive effect of nintedanib in a murine model of alpha-sarcoglycanopathy. We treated 14 Sgca-/- mice, six weeks old, with nintedanib 50 mg/kg every 12 h for 10 weeks and compared muscle function and histology with 14 Sgca-/- mice treated with vehicle and six wild-type littermate mice. Muscle function was assessed using a treadmill and grip strength. A cardiac evaluation was performed by echocardiography and histological study. Structural analysis of the muscles, including a detailed study of the fibrotic and inflammatory processes, was performed using conventional staining and immunofluorescence. In addition, proteomics and transcriptomics studies were carried out. Nintedanib was well tolerated by the animals treated, although we observed weight loss. Sgca-/- mice treated with nintedanib covered a longer distance on the treadmill, compared with non-treated Sgca-/- mice, and showed higher strength in the grip test. Moreover, nintedanib improved the muscle architecture of treated mice, reducing the degenerative area and the fibrotic reaction that was associated with a reversion of the cytokine expression profile. Nintedanib improved muscle function and muscle architecture by reducing muscle fibrosis and degeneration and reverting the chronic inflammatory environment suggesting that it could be a useful therapy for patients with alpha-sarcoglycanopathy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Esther Fernández-Simón
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Patricia Piñol-Jurado
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Lina Badimon
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Lutz Wollin
- Boehringer Ingelheim, 88400 Biberach, Germany
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Montse Olivé
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| |
Collapse
|
28
|
Pluta N, Hoffjan S, Zimmer F, Köhler C, Lücke T, Mohr J, Vorgerd M, Nguyen HHP, Atlan D, Wolf B, Zaum AK, Rost S. Homozygous Inversion on Chromosome 13 Involving SGCG Detected by Short Read Whole Genome Sequencing in a Patient Suffering from Limb-Girdle Muscular Dystrophy. Genes (Basel) 2022; 13:genes13101752. [PMID: 36292638 PMCID: PMC9601614 DOI: 10.3390/genes13101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
New techniques in molecular genetic diagnostics now allow for accurate diagnosis in a large proportion of patients with muscular diseases. Nevertheless, many patients remain unsolved, although the clinical history and/or the muscle biopsy give a clear indication of the involved genes. In many cases, there is a strong suspicion that the cause must lie in unexplored gene areas, such as deep-intronic or other non-coding regions. In order to find these changes, next-generation sequencing (NGS) methods are constantly evolving, making it possible to sequence entire genomes to reveal these previously uninvestigated regions. Here, we present a young woman who was strongly suspected of having a so far genetically unsolved sarcoglycanopathy based on her clinical history and muscle biopsy. Using short read whole genome sequencing (WGS), a homozygous inversion on chromosome 13 involving SGCG and LINC00621 was detected. The breakpoint in intron 2 of SGCG led to the absence of γ-sarcoglycan, resulting in the manifestation of autosomal recessive limb-girdle muscular dystrophy 5 (LGMDR5) in the young woman.
Collapse
Affiliation(s)
- Natalie Pluta
- Institute of Human Genetics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
- Correspondence:
| | - Frederic Zimmer
- Institute of Human Genetics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Cornelia Köhler
- Department of Neuropaediatrics, University Children’s Hospital, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Thomas Lücke
- Department of Neuropaediatrics, University Children’s Hospital, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Jennifer Mohr
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | | | - David Atlan
- Phenosystems SA, 1440 Braine le Chateau, Belgium
| | - Beat Wolf
- iCoSys, University of Applied Sciences Western Switzerland, 1700 Fribourg, Switzerland
| | - Ann-Kathrin Zaum
- Institute of Human Genetics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Simone Rost
- Institute of Human Genetics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Medical Genetics Center (MGZ), 80335 Munich, Germany
| |
Collapse
|
29
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|
30
|
Zanotti S, Magri F, Poggetti F, Ripolone M, Velardo D, Fortunato F, Ciscato P, Moggio M, Corti S, Comi GP, Sciacco M. Immunofluorescence signal intensity measurements as a semi-quantitative tool to assess sarcoglycan complex expression in muscle biopsy. Eur J Histochem 2022; 66. [PMID: 36047345 PMCID: PMC9471914 DOI: 10.4081/ejh.2022.3418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Sarcoglycanopathies are highly heterogeneous in terms of disease progression, muscular weakness, loss of ambulation and cardiac/respiratory involvement. Their clinical severity usually correlates with the residual protein amount, which makes protein quantification extremely relevant. Sarcoglycanopathy diagnosis is genetic, but skeletal muscle analysis - by both immunohistochemistry and Western blot (WB) - is still mandatory to establish the correct diagnostic process. Unfortunately, however, WB analysis cannot be performed if the bioptic specimen is scarce. This study provides a sensitive tool for semi-quantification of residual amount of sarcoglycans in patients affected by sarcoglycanopathies, based on immunofluorescence staining on skeletal muscle sections, image acquisition and software elaboration. We applied this method to eleven sarcoglycanopathies, seven Becker muscular dystrophies, as pathological control group, and four age-matched controls. Fluorescence data showed a significantly reduced expression of the mutated sarcoglycan in all patients when compared to their respective age-matched healthy controls, and a variable reduction of the other sarcoglycans. The reduction is due to the effect of gene mutation and not to the increasing age of controls. Fluorescence normalized data analyzed in relation to the age of onset of the disease, showed a negative correlation of a-sarcoglycan fluorescence signal vs fibrosis in patients with an early age of onset and a negative correlation between d-sarcoglycan signal and fibrosis in both intermediate and late age of onset groups. The availability of a method that allows objective quantification of the sarcolemmal proteins, faster and less consuming than WB analysis and able to detect low residual sarcoglycan expression with great sensitivity, proves useful also in view of possible inferences on disease prognosis. The proposed method could be employed also to monitor the efficacy of therapeutic interventions and during clinical trials.
Collapse
Affiliation(s)
- Simona Zanotti
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Francesca Poggetti
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Michela Ripolone
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Daniele Velardo
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Francesco Fortunato
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Patrizia Ciscato
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Maurizio Moggio
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Stefania Corti
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Giacomo Pietro Comi
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - Monica Sciacco
- Neuromuscular and Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| |
Collapse
|
31
|
Antisense Morpholino-Based In Vitro Correction of a Pseudoexon-Generating Variant in the SGCB Gene. Int J Mol Sci 2022; 23:ijms23179817. [PMID: 36077211 PMCID: PMC9456520 DOI: 10.3390/ijms23179817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are clinically and genetically heterogenous presentations displaying predominantly proximal muscle weakness due to the loss of skeletal muscle fibers. Beta-sarcoglycanopathy (LGMDR4) results from biallelic molecular defects in SGCB and features pediatric onset with limb-girdle involvement, often complicated by respiratory and heart dysfunction. Here we describe a patient who presented at the age of 12 years reporting high creatine kinase levels and onset of cramps after strenuous exercise. Instrumental investigations, including a muscle biopsy, pointed towards a diagnosis of beta-sarcoglycanopathy. NGS panel sequencing identified two variants in the SGCB gene, one of which (c.243+1548T>C) was found to promote the inclusion of a pseudoexon between exons 2 and 3 in the SGCB transcript. Interestingly, we detected the same genotype in a previously reported LGMDR4 patient, deceased more than twenty years ago, who had escaped molecular diagnosis so far. After the delivery of morpholino oligomers targeting the pseudoexon in patient-specific induced pluripotent stem cells, we observed the correction of the physiological splicing and partial restoration of protein levels. Our findings prompt the analysis of the c.243+1548T>C variant in suspected LGMDR4 patients, especially those harbouring monoallelic SGCB variants, and provide a further example of the efficacy of antisense technology for the correction of molecular defects resulting in splicing abnormalities.
Collapse
|
32
|
Clinical, genetic profile and disease progression of sarcoglycanopathies in a large cohort from India: high prevalence of SGCB c.544A > C. Neurogenetics 2022; 23:187-202. [DOI: 10.1007/s10048-022-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
33
|
Audhya IF, Cheung A, Szabo SM, Flint E, Weihl CC, Gooch KL. Progression to Loss of Ambulation Among Patients with Autosomal Recessive Limb-girdle Muscular Dystrophy: A Systematic Review. J Neuromuscul Dis 2022; 9:477-492. [PMID: 35527561 PMCID: PMC9398075 DOI: 10.3233/jnd-210771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The impact of age at autosomal recessive limb girdle muscular dystrophy (LGMDR) onset on progression to loss of ambulation (LOA) has not been well established, particularly by subtype. Objectives: To describe the characteristics of patients with adult-, late childhood-, and early childhood-onset LGMDR by subtype and characterize the frequency and timing of LOA. Methods: A systematic review was conducted in MEDLINE, Embase and the Cochrane library. Frequency and timing of LOA in patients with LGMDR1, LGMDR2/Miyoshi myopathy (MM), LGMDR3-6, LGMDR9, and LGMDR12 were synthesized from published data. Results: In 195 studies, 695 (43.4%) patients had adult-, 532 (33.2%) had late childhood-, and 376 (23.5%) had early childhood-onset of disease across subtypes among those with a reported age at onset (n = 1,603); distribution of age at onset varied between subtypes. Among patients with LOA (n = 228), adult-onset disease was uncommon in LGMDR3-6 (14%) and frequent in LGMDR2/MM (42%); LGMDR3-6 cases with LOA primarily had early childhood-onset (74%). Mean (standard deviation [SD]) time to LOA varied between subtypes and was shortest for patients with early childhood-onset LGMDR9 (12.0 [4.9] years, n = 19) and LGMDR3-6 (12.3 [10.7], n = 56) and longest for those with late childhood-onset LGMDR2/MM (21.4 [11.5], n = 36). Conclusions: This review illustrated that patients with early childhood-onset disease tend to have faster progression to LOA than those with late childhood- or adult-onset disease, particularly in LGMDR9. These findings provide a greater understanding of progression to LOA by LGMDR subtype, which may help inform clinical trial design and provide a basis for natural history studies.
Collapse
Affiliation(s)
| | | | | | - Emma Flint
- Broadstreet HEOR, Vancouver, BC, V6A 1A4 Canada
| | - Conrad C Weihl
- Washington University School of Medicine, St.Louis, MO, USA
| | | |
Collapse
|
34
|
Muscle MRI characteristic pattern for late-onset TK2 deficiency diagnosis. J Neurol 2022; 269:3550-3562. [PMID: 35286480 PMCID: PMC9217784 DOI: 10.1007/s00415-021-10957-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022]
Abstract
Background and objective TK2 deficiency (TK2d) is a rare mitochondrial disorder that manifests predominantly as a progressive myopathy with a broad spectrum of severity and age of onset. The rate of progression is variable, and the prognosis is poor due to early and severe respiratory involvement. Early and accurate diagnosis is particularly important since a specific treatment is under development. This study aims to evaluate the diagnostic value of lower limb muscle MRI in adult patients with TK2d. Methods We studied a cohort of 45 genetically confirmed patients with mitochondrial myopathy (16 with mutations in TK2, 9 with mutations in other nuclear genes involved in mitochondrial DNA [mtDNA] synthesis or maintenance, 10 with single mtDNA deletions, and 10 with point mtDNA mutations) to analyze the imaging pattern of fat replacement in lower limb muscles. We compared the identified pattern in patients with TK2d with the MRI pattern of other non-mitochondrial genetic myopathies that share similar clinical characteristics. Results We found a consistent lower limb muscle MRI pattern in patients with TK2d characterized by involvement of the gluteus maximus, gastrocnemius medialis, and sartorius muscles. The identified pattern in TK2 patients differs from the known radiological involvement of other resembling muscle dystrophies that share clinical features. Conclusions By analyzing the largest cohort of muscle MRI from patients with mitochondrial myopathies studied to date, we identified a characteristic and specific radiological pattern of muscle involvement in patients with TK2d that could be useful to speed up its diagnosis. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10957-0.
Collapse
|
35
|
P2X7 Receptor Antagonist Reduces Fibrosis and Inflammation in a Mouse Model of Alpha-Sarcoglycan Muscular Dystrophy. Pharmaceuticals (Basel) 2022; 15:ph15010089. [PMID: 35056146 PMCID: PMC8777980 DOI: 10.3390/ph15010089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023] Open
Abstract
Limb-girdle muscular dystrophy R3, a rare genetic disorder affecting the limb proximal muscles, is caused by mutations in the α-sarcoglycan gene (Sgca) and aggravated by an immune-mediated damage, finely modulated by the extracellular (e)ATP/purinoceptors axis. Currently, no specific drugs are available. The aim of this study was to evaluate the therapeutic effectiveness of a selective P2X7 purinoreceptor antagonist, A438079. Sgca knockout mice were treated with A438079 every two days at 3 mg/Kg for 24 weeks. The P2X7 antagonist improved clinical parameters by ameliorating mice motor function and decreasing serum creatine kinase levels. Histological analysis of muscle morphology indicated a significant reduction of the percentage of central nuclei, of fiber size variability and of the extent of local fibrosis and inflammation. A cytometric characterization of the muscle inflammatory infiltrates showed that A438079 significantly decreased innate immune cells and upregulated the immunosuppressive regulatory T cell subpopulation. In α-sarcoglycan null mice, the selective P2X7 antagonist A438079 has been shown to be effective to counteract the progression of the dystrophic phenotype and to reduce the inflammatory response. P2X7 antagonism via selective inhibitors could be included in the immunosuppressant strategies aimed to dampen the basal immune-mediated damage and to favor a better engraftment of gene-cell therapies.
Collapse
|
36
|
Xie Z, Sun C, Liu C, Chu X, Gang Q, Yu M, Zheng Y, Meng L, Li F, Xia D, Wang L, Li Y, Deng J, Lv H, Wang Z, Zhang W, Yuan Y. First Identification of Rare Exonic and Deep Intronic Splice-Altering Variants in Patients With Beta-Sarcoglycanopathy. Front Pediatr 2022; 10:900280. [PMID: 35813381 PMCID: PMC9257024 DOI: 10.3389/fped.2022.900280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The precise genetic diagnosis of a sarcoglycanopathy or dystrophinopathy is sometimes extremely challenging, as pathogenic non-coding variants and/or complex structural variants do exist in DMD or sarcoglycan genes. This study aimed to determine the genetic diagnosis of three patients from two unrelated families with a suspected sarcoglycanopathy or dystrophinopathy based on their clinical, radiological, and pathological features, for whom routine genomic detection approaches failed to yield a definite genetic diagnosis. METHODS Muscle-derived reverse transcription-polymerase chain reaction analysis and/or TA cloning of DMD, SGCA, SGCB, SGCD, and SGCG mRNA were performed to identify aberrant transcripts. Genomic Sanger sequencing around the aberrant transcripts was performed to detect possible splice-altering variants. Bioinformatic and segregation studies of the detected genomic variants were performed in both families. RESULTS In patients F1-II1 and F1-II2, we identified two novel pathogenic compound heterozygous variants in SGCB. One is a deep intronic splice-altering variant (DISV), c.243 + 1558C > T in intron 2 causing the activation of an 87-base pair (bp) pseudoexon, and the other one is a non-canonical splicing site variant, c.243 + 6T > A leading to the partial intron inclusion of 10-bp sequence. A novel DISV, c.243 + 1576C > G causing a 106-bp pseudoexon activation, and a nonsense variant in SGCB were identified in compound heterozygous state in patient F2-II1. Unexpectedly, the predicted nonsense variant, c.334C > T in exon 3, created a new donor splice site in exon 3 that was stronger than the natural one, resulting in a 97-bp deletion of exon 3 (r.333_429del). CONCLUSION This is the first identification of rare exonic and DISVs in the SGCB gene.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chengyue Sun
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Chang Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xujun Chu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Dongliang Xia
- Science and Technology, Running Gene Inc., Beijing, China
| | - Li Wang
- Science and Technology, Running Gene Inc., Beijing, China
| | - Ying Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
37
|
Garibaldi M, Nicoletti T, Bucci E, Fionda L, Leonardi L, Morino S, Tufano L, Alfieri G, Lauletta A, Merlonghi G, Perna A, Rossi S, Ricci E, Tartaglione T, Petrucci A, Pennisi EM, Salvetti M, Cutter G, Díaz-Manera J, Silvestri G, Antonini G. Muscle MRI in Myotonic Dystrophy type 1 (DM1): refining muscle involvement and implications for clinical trials. Eur J Neurol 2021; 29:843-854. [PMID: 34753219 PMCID: PMC9299773 DOI: 10.1111/ene.15174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only few studies reported muscle imaging data on small cohorts of patients with Myotonic dystrophy type 1 (DM1). We aimed to investigate the muscle involvement in a large cohort of patients, to refine the pattern of muscle involvement, to better understand the pathophysiological mechanisms of muscle weakness and to identify potential imaging biomarkers for disease activity and severity. METHODS 134 DM1 patients underwent a cross-sectional muscle MRI study. STIR and T1- sequences in lower and upper body were analysed. Fat replacement, muscle atrophy and STIR positivity were evaluated using three different scales. Correlations between MRI scores, clinical features and genetic background were investigated. RESULTS The most frequent pattern of muscle involvement in T1 consisted of fat replacement of the tongue, sternocleidomastoideus, paraspinalis, gluteus minimus, distal quadriceps and gastrocnemius medialis. Degree of fat replacement at MRI correlated with clinical severity and disease duration, but not with CTG expansion. Fat replacement was also detected in milder/asymptomatic patients. More than 80% of patients had STIR positive signal in muscles. Most DM1 patients also showed a variable degree of muscle atrophy regardless MRI signs of fat replacement. A subset of patients (20%) showed a "marbled" muscle appearance. CONCLUSIONS muscle MRI is a sensitive biomarker of disease severity also for the milder spectrum of disease. STIR hyperintensty seems to precede fat replacement in T1. Beyond fat replacement, STIR positivity, muscle atrophy and "marbled" appearance suggest further mechanisms of muscle wasting and weakness in DM1, representing additional outcome measures and therapeutical targets for forthcoming clinical trials.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Tommaso Nicoletti
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| | - Alessia Perna
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Salvatore Rossi
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Enzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, 00167, Rome, Italy
| | - Antonio Petrucci
- Neurology Unit, San Camillo-Forlanini Hospital, 00152, Rome, Italy
| | | | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, Italy
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, 35233, Birmingham, AL, USA
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Hospitals NHS Foundation Trust, NE1 3BZ, Newcastle upon Tyne, United Kingdom.,Neuromuscular Disorders Unit. Neurology Department, Universitat Autònoma de Barcelona. Hospital de la Santa Creu I Sant Pau, 08041, Barcelona, UK.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 08041, Spain
| | - Gabriella Silvestri
- UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, 00168, Rome, Italy.,Department of Neurosciences, Università Cattolica del Sacro Cuore, Facoltà di Medicina e Chirurgia, 00168, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, 00189, Rome, Italy
| |
Collapse
|
38
|
Alonso-Pérez J, González-Quereda L, Bruno C, Panicucci C, Alavi A, Nafissi S, Nilipour Y, Zanoteli E, de Augusto Isihi LM, Melegh B, Hadzsiev K, Muelas N, Vílchez JJ, Dourado ME, Kadem N, Kutluk G, Umair M, Younus M, Pegorano E, Bello L, Crawford TO, Suárez-Calvet X, Töpf A, Guglieri M, Marini-Bettolo C, Gallano P, Straub V, Díaz-Manera J. Clinical and genetic spectrum of a large cohort of patients with δ-sarcoglycan muscular dystrophy. Brain 2021; 145:596-606. [PMID: 34515763 PMCID: PMC9014751 DOI: 10.1093/brain/awab301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict diseasés severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 pediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty seven percent of the patients had consanguineous parents. Ninety one percent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in 5 patients (21.7%) and 4 patients (17.4%) required non-invasive ventilation. Sixty percent of patients were wheelchair-bound since early teens (median age of 12.0 years old). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Lidia González-Quereda
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 13871, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular research center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 14117, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, 14117, Iran
| | - Edmar Zanoteli
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Lucas Michielon de Augusto Isihi
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Béla Melegh
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, 46026, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Juan J Vílchez
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Mario Emilio Dourado
- Department of Integrative Medicine, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59012-300 Natal, RN, Brazil
| | - Naz Kadem
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Gultekin Kutluk
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 14611, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing 100871, China
| | - Elena Pegorano
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Pia Gallano
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
39
|
Scano M, Benetollo A, Nogara L, Bondì M, Barba FD, Soardi M, Furlan S, Akyurek EE, Caccin P, Carotti M, Sacchetto R, Blaauw B, Sandonà D. CFTR corrector C17 is effective in muscular dystrophy, in vivo proof of concept in LGMDR3. Hum Mol Genet 2021; 31:499-509. [PMID: 34505136 PMCID: PMC8863415 DOI: 10.1093/hmg/ddab260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Limb-girdle muscular dystrophy R3 (LGMDR3) is caused by mutations in the SGCA gene coding for α-sarcoglycan (SG). Together with β- γ- and δ-SG, α-SG forms a tetramer embedded in the dystrophin associated protein complex crucial for protecting the sarcolemma from mechanical stresses elicited by muscle contraction. Most LGMDR3 cases are due to missense mutations, which result in non-properly folded, even though potentially functional α-SG. These mutants are prematurely discarded by the cell quality control. Lacking one subunit, the SG-complex is disrupted. The resulting loss of function leads to sarcolemma instability, muscle fiber damage and progressive limb muscle weakness. LGMDR3 is severely disabling and, unfortunately, still incurable. Here, we propose the use of small molecules, belonging to the class of cystic fibrosis transmembrane regulator (CFTR) correctors, for recovering mutants of α-SG defective in folding and trafficking. Specifically, CFTR corrector C17 successfully rerouted the SG-complex containing the human R98H-α-SG to the sarcolemma of hind-limb muscles of a novel LGMDR3 murine model. Notably, the muscle force of the treated model animals was fully recovered. To our knowledge, this is the first time that a compound designated for cystic fibrosis is successfully tested in a muscular dystrophy and may represent a novel paradigm of treatment for LGMDR3 as well as different other indications in which a potentially functional protein is prematurely discarded as folding-defective. Furthermore, the use of small molecules for recovering the endogenous mutated SG has an evident advantage over complex procedures such as gene or cell transfer.
Collapse
Affiliation(s)
- Martina Scano
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Leonardo Nogara
- Venetian Institute of Molecular Medicine, University of Padova, Italy
| | - Michela Bondì
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Michela Soardi
- Department of Biomedical Sciences, University of Padova, Italy
| | - Sandra Furlan
- Neuroscience Institute - Italian National Research Council (CNR), Italy
| | - Eylem Emek Akyurek
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Paola Caccin
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Italy.,Venetian Institute of Molecular Medicine, University of Padova, Italy
| | | |
Collapse
|
40
|
Vainzof M, Souza LS, Gurgel-Giannetti J, Zatz M. Sarcoglycanopathies: an update. Neuromuscul Disord 2021; 31:1021-1027. [PMID: 34404573 DOI: 10.1016/j.nmd.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Sarcoglycanopathies are the most severe forms of autosomal recessive limb-girdle muscular dystrophies (LGMDs), constituting about 10-25% of LGMDs. The clinical phenotype is variable, but onset is usually in the first decade of life. Patients present muscle hypertrophy, elevated CK, variable muscle weaknesses, and progressive loss of ambulation. Four subtypes are known: LGMDR3, LGMDR4, LGMDR5 and LGMDR6, caused, respectively, by mutations in the SGCA, SGCB,SGCG and SGCD genes. Their four coded proteins, α-SG, ß-SG, λ-SG and δ-SG are part of the dystrophin-glycoprotein complex (DGC) present in muscle sarcolemma, which acts as a linker between the cytoskeleton of the muscle fiber and the extracellular matrix, providing mechanical support to the sarcolemma during myofiber contraction. Many different mutations have already been identified in all the sarcoglycan genes, with a predominance of some mutations in different populations. The diagnosis is currently based on the molecular screening for these mutations. Therapeutic approaches include the strategy of gene replacement mediated by a vector derived from adeno-associated virus (AAV). Pre-clinical studies have shown detectable levels of SG proteins in the muscle, and some improvement in the phenotype, in animal models. Therapeutic trials in humans are ongoing.
Collapse
Affiliation(s)
- Mariz Vainzof
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Lucas S Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Juliana Gurgel-Giannetti
- Department of Pediatrics, Service of Neuropediatrics from Federal, University of Minas Gerais, Belo Horizonte, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Marchetti GB, Valenti L, Torrente Y. Clinical Determinants of Disease Progression in Patients With Beta-Sarcoglycan Gene Mutations. Front Neurol 2021; 12:657949. [PMID: 34276533 PMCID: PMC8280524 DOI: 10.3389/fneur.2021.657949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Limb-girdle muscular dystrophy 2E (LGMD 2E), recently renamed as autosomal recessive limb-girdle muscular dystrophy-4 (LGMDR4), is characterized by the lack of beta-sarcoglycan, normally expressed in skeletal muscles and cardiomyocytes. We hypothesized that progressive respiratory and left ventricular (LV) failure in LGMDR4 could be associated with the age and interrelated phenomena of the disease's natural history. Methods: We conducted a retrospective review of the records of 26 patients with LGMDR4. Our primary objective was to compare the rates of decline among creatine phosphokinase (CPK) values, pulmonary function test (PFT) measures, and echocardiographic estimates and to relate them to patients' age. Results: The rates of decline/year of CPK, PFTs, and LV function estimates are significatively bound to age, with the LV ejection fraction (EF) being the strongest independent variable describing disease progression. Moreover, the rate of decline of CPK, PFTs, and LV differed in patients grouped according to their genetic mutations, demonstrating a possible genotype–phenotype correlation. The parallel trend of decline in CPK, PFT, and EF values demonstrates the presence in LGMDR4 of a simultaneous and progressive deterioration in muscular, respiratory, and cardiac function. Conclusions: This study expands the current knowledge regarding the trend of CPK values and cardiac and respiratory impairment in patients with LGMDR4, to optimize the monitoring of these patients, to improve their quality of life, and to provide clinical indices capable of quantifying the effects of any new gene or drug therapy.
Collapse
Affiliation(s)
- Giulia Bruna Marchetti
- Unit of Neurology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Department of Transfusion Medicine and Hematology, Translational Medicine, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda, Milan, Italy
| | - Yvan Torrente
- Unit of Neurology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| |
Collapse
|
42
|
Abstract
The limb-girdle muscular dystrophies (LGMD) are a collection of genetic diseases united in their phenotypical expression of pelvic and shoulder area weakness and wasting. More than 30 subtypes have been identified, five dominant and 26 recessive. The increase in the characterization of new genotypes in the family of LGMDs further adds to the heterogeneity of the disease. Meanwhile, better understanding of the phenotype led to the reconsideration of the disease definition, which resulted in eight old subtypes to be no longer recognized officially as LGMD and five new diseases to be added to the LGMD family. The unique variabilities of LGMD stem from genetic mutations, which then lead to protein and ultimately muscle dysfunction. Herein, we review the LGMD pathway, starting with the genetic mutations that encode proteins involved in muscle maintenance and repair, and including the genotype–phenotype relationship of the disease, the epidemiology, disease progression, burden of illness, and emerging treatments.
Collapse
|
43
|
Escobar H, Krause A, Keiper S, Kieshauer J, Müthel S, de Paredes MG, Metzler E, Kühn R, Heyd F, Spuler S. Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight 2021; 6:145994. [PMID: 33848270 PMCID: PMC8262330 DOI: 10.1172/jci.insight.145994] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
Skeletal muscle can regenerate from muscle stem cells and their myogenic precursor cell progeny, myoblasts. However, precise gene editing in human muscle stem cells for autologous cell replacement therapies of untreatable genetic muscle diseases has not yet been reported. Loss-of-function mutations in SGCA, encoding α-sarcoglycan, cause limb-girdle muscular dystrophy 2D/R3, an early-onset, severe, and rapidly progressive form of muscular dystrophy affecting both male and female patients. Patients suffer from muscle degeneration and atrophy affecting the limbs, respiratory muscles, and heart. We isolated human muscle stem cells from 2 donors, with the common SGCA c.157G>A mutation affecting the last coding nucleotide of exon 2. We found that c.157G>A is an exonic splicing mutation that induces skipping of 2 coregulated exons. Using adenine base editing, we corrected the mutation in the cells from both donors with > 90% efficiency, thereby rescuing the splicing defect and α-sarcoglycan expression. Base-edited patient cells regenerated muscle and contributed to the Pax7+ satellite cell compartment in vivo in mouse xenografts. Here, we provide the first evidence to our knowledge that autologous gene–repaired human muscle stem cells can be harnessed for cell replacement therapies of muscular dystrophies.
Collapse
Affiliation(s)
- Helena Escobar
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anne Krause
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sandra Keiper
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Janine Kieshauer
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefanie Müthel
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Manuel García de Paredes
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany
| | - Eric Metzler
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany.,Charité Universitätsmedizin Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Germany
| |
Collapse
|
44
|
Bădilă E, Lungu II, Grumezescu AM, Scafa Udriște A. Diagnosis of Cardiac Abnormalities in Muscular Dystrophies. ACTA ACUST UNITED AC 2021; 57:medicina57050488. [PMID: 34066119 PMCID: PMC8151418 DOI: 10.3390/medicina57050488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023]
Abstract
Muscular disorders are mainly characterized by progressive skeletal muscle weakness. There are several aspects that can be monitored, which are used to differentiate between the types of muscular disorders, ranging from the targeted muscle up to the mutated gene. An aspect that holds critical importance when managing muscular dystrophies is that most of them exhibit cardiac abnormalities. Therefore, cardiac imaging is an essential part of muscular disorder monitoring and management. In the first section of the review, several cardiac abnormalities are introduced; afterward, different muscular dystrophies' pathogenesis is presented. Not all muscular dystrophies necessarily present cardiac involvement; however, the ones that do are linked with the cardiac abnormalities described in the first section. Moreover, studies from the last 3 years on muscular disorders are presented alongside imaging techniques used to determine cardiac abnormalities.
Collapse
Affiliation(s)
- Elisabeta Bădilă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (A.S.U.)
- Internal Medicine Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Iulia Ioana Lungu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Correspondence: ; Tel.: +40-21-402-39-97
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Scafa Udriște
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (E.B.); (A.S.U.)
- Cardiology Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
45
|
Fernández-Eulate G, Querin G, Moore U, Behin A, Masingue M, Bassez G, Leonard-Louis S, Laforêt P, Maisonobe T, Merle PE, Spinazzi M, Solé G, Kuntzer T, Bedat-Millet AL, Salort-Campana E, Attarian S, Péréon Y, Feasson L, Graveleau J, Nadaj-Pakleza A, Leturcq F, Gorokhova S, Krahn M, Eymard B, Straub V, Evangelista T, Stojkovic T. Deep phenotyping of an international series of patients with late-onset dysferlinopathy. Eur J Neurol 2021; 28:2092-2102. [PMID: 33715265 DOI: 10.1111/ene.14821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND To describe the clinical, pathological, and molecular characteristics of late-onset (LO) dysferlinopathy patients. METHODS Retrospective series of patients with LO dysferlinopathy, defined by an age at onset of symptoms ≥30 years, from neuromuscular centers in France and the International Clinical Outcome Study for dysferlinopathy (COS). Patients with early-onset (EO) dysferlinopathy (<30 years) were randomly selected from the COS study as a control group, and the North Star Assessment for Dysferlinopathy (NSAD) and Activity Limitation (ACTIVLIM) scores were used to assess functionality. Muscle biopsies obtained from 11 LO and 11 EO patients were revisited. RESULTS Forty-eight patients with LO dysferlinopathy were included (28 females). Median age at onset of symptoms was 37 (range 30-57) years and most patients showed a limb-girdle (n = 26) or distal (n = 10) phenotype. However, compared with EO dysferlinopathy patients (n = 48), LO patients more frequently showed atypical phenotypes (7 vs. 1; p = 0.014), including camptocormia, lower creatine kinase levels (2855 vs. 4394 U/L; p = 0.01), and higher NSAD (p = 0.008) and ACTIVLIM scores (p = 0.016). Loss of ambulation in LO patients tended to occur later (23 ± 4.4 years after disease onset vs. 16.3 ± 6.8 years; p = 0.064). Muscle biopsy of LO patients more frequently showed an atypical pattern (unspecific myopathic changes) as well as significantly less necrosis regeneration and inflammation. Although LO patients more frequently showed missense variants (39.8% vs. 23.9%; p = 0.021), no differences in dysferlin protein expression were found on Western blot. CONCLUSIONS Late-onset dysferlinopathy patients show a higher frequency of atypical presentations, are less severely affected, and show milder dystrophic changes in muscle biopsy.
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Giorgia Querin
- Plateforme I-Motion Adultes, Service de Neuromyologie, Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Ursula Moore
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anthony Behin
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Marion Masingue
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Guillaume Bassez
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Sarah Leonard-Louis
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Pascal Laforêt
- Nord-Est/Ile-de-France Neuromuscular Reference Center, FHU PHENIX, Neurology Department, Raymond-Poincaré Hospital, Versailles Saint-Quentin-en-Yvelines - Paris Saclay University, Garches, France
| | - Thierry Maisonobe
- Department of Clinical Neurophysiology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | | | - Marco Spinazzi
- Neuromuscular Reference Center, Angers University Hospital, Angers, France
| | - Guilhem Solé
- Referral Center for Neuromuscular Diseases 'AOC', Nerve-Muscle Unit, Bordeaux University Hospitals (Pellegrin Hospital), Bordeaux, France
| | - Thierry Kuntzer
- Nerve-Muscle Unit, Department of Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Emmanuelle Salort-Campana
- PACA Réunion Rhone Alpes Neuromuscular Reference Center, APHM, La Timone University Hospital, Marseille, France
| | - Shahram Attarian
- PACA Réunion Rhone Alpes Neuromuscular Reference Center, APHM, La Timone University Hospital, Marseille, France
| | - Yann Péréon
- Reference Center for Neuromuscular Diseases Atlantique-Occitanie-Caraïbes, Nantes University Hospital, Nantes, France
| | - Leonard Feasson
- Neuromuscular Reference Center, Unit of Myology, Inter-University Laboratory of Human Movement Biology, Saint-Etienne University Hospital, Saint-Étienne, France
| | - Julie Graveleau
- Neuromuscular Reference Center, Saint-Nazaire Hospital, Saint-Nazaire, France
| | - Aleksandra Nadaj-Pakleza
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Department of Neurology, Strasbourg University Hospital, Strasbourg, France
| | - France Leturcq
- Genetics and Molecular Biology Laboratory, Cochin University Hospital, Paris, France
| | - Svetlana Gorokhova
- Inserm, U1251-MMG, Marseille Medical Genetics, Aix-Marseille University, Marseille, France.,Département de Génétique Médicale, Hôpital Timone Enfants, APHM, Marseille, France
| | - Martin Krahn
- Inserm, U1251-MMG, Marseille Medical Genetics, Aix-Marseille University, Marseille, France.,Département de Génétique Médicale, Hôpital Timone Enfants, APHM, Marseille, France
| | - Bruno Eymard
- Nord-Est/Ile-de-France Neuromuscular Reference Center, Neurology Department, Raymond-Poincaré Hospital, Sorbonne University, Garches, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Teresinha Evangelista
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Tanya Stojkovic
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| |
Collapse
|
46
|
Muscle Diversity, Heterogeneity, and Gradients: Learning from Sarcoglycanopathies. Int J Mol Sci 2021; 22:ijms22052502. [PMID: 33801487 PMCID: PMC7958856 DOI: 10.3390/ijms22052502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle, the most abundant tissue in the body, is heterogeneous. This heterogeneity forms the basis of muscle diversity, which is reflected in the specialized functions of muscles in different parts of the body. However, these different parts are not always clearly delimitated, and this often gives rise to gradients within the same muscle and even across the body. During the last decade, several studies on muscular disorders both in mice and in humans have observed particular distribution patterns of muscle weakness during disease, indicating that the same mutation can affect muscles differently. Moreover, these phenotypical differences reveal gradients of severity, existing alongside other architectural gradients. These two factors are especially prominent in sarcoglycanopathies. Nevertheless, very little is known about the mechanism(s) driving the phenotypic diversity of the muscles affected by these diseases. Here, we will review the available literature on sarcoglycanopathies, focusing on phenotypic differences among affected muscles and gradients, characterization techniques, molecular signatures, and cell population heterogeneity, highlighting the possibilities opened up by new technologies. This review aims to revive research interest in the diverse disease phenotype affecting different muscles, in order to pave the way for new therapeutic interventions.
Collapse
|
47
|
Tariq M, Latif M, Inam M, Jan A, Bibi N, Mohamoud HSA, Ali I, Ahmad H, Khan A, Nasir J, Wadood A, Jelani M. Whole exome sequencing reveals a homozygous SGCB variant in a Pakhtun family with limb girdle muscular dystrophy (LGMDR4) phenotype. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Warman-Chardon J, Jasmin BJ, Kothary R, Parks RJ. Report on the 5th Ottawa International Conference on Neuromuscular Disease & Biology -October 17-19, 2019, Ottawa, Canada. J Neuromuscul Dis 2021; 8:323-334. [PMID: 33492242 DOI: 10.3233/jnd-219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| |
Collapse
|
49
|
De Wel B, Willaert S, Nadaj-Pakleza A, Aubé-Nathier AC, Testelmans D, Buyse B, Claeys KG. Respiratory decline in adult patients with Becker muscular dystrophy: A longitudinal study. Neuromuscul Disord 2021; 31:174-182. [PMID: 33454189 DOI: 10.1016/j.nmd.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Becker muscular dystrophy (BMD) is a rare hereditary neuromuscular disease, caused by a genetic defect in the Duchenne Muscular Dystrophy (DMD) gene. We studied the natural history of respiratory function and its affecting factors in 23 adult BMD patients. These important data are needed for (future) clinical trials in BMD but are largely lacking. Patients had a median age of 51 years (28-78y) and median follow-up duration of 14 years (2-25y). We analysed 190 pulmonary function measurements with a median interval of one year (1-17y) and measured a 1.00% decline of Forced Vital Capacity percent predicted (FVC%pred) per year (p = 0.004). Loss of ambulation significantly increased the annual rate of FVC decline and was dependent of patient's body mass index (BMI; p = 0.015), with increases in BMI correlating with an even more rapid deterioration of FVC. A decline in Medical Research Council (MRC) sum score was significantly correlated with a decline in FVC (p = 0.003). We conclude that adult BMD patients experience a significant but mild respiratory decline. However, this decline is significantly more rapid and clinically relevant after loss of ambulation, which warrants a more vigilant follow-up of respiratory function in this subgroup.
Collapse
Affiliation(s)
- Bram De Wel
- Department of Neurology, Neuromuscular Reference Centre, University Hospitals Leuven, Leuven, Belgium; Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Aleksandra Nadaj-Pakleza
- Department of Neurology, Neuromuscular Reference Centre Nord/Est/IdF, CHU Strasbourg, Strasbourg, France
| | | | - Dries Testelmans
- Department of Pulmonology, Leuven University Centre for Sleep and Wake Disorders, University Hospitals Leuven, Leuven, Belgium
| | - Bertien Buyse
- Department of Pulmonology, Leuven University Centre for Sleep and Wake Disorders, University Hospitals Leuven, Leuven, Belgium
| | - Kristl G Claeys
- Department of Neurology, Neuromuscular Reference Centre, University Hospitals Leuven, Leuven, Belgium; Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
50
|
Fernández-Eulate G, Leturcq F, Laforêt P, Richard I, Stojkovic T. [Sarcoglycanopathies: state of the art and therapeutic perspectives]. Med Sci (Paris) 2021; 36 Hors série n° 2:22-27. [PMID: 33427632 DOI: 10.1051/medsci/2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sarcoglycanopathies are the third most common cause of autosomal recessive limb girdle muscular dystrophies (LGMD). They are the result of a deficiency in one of the sarcoglycans a, b, g, or d. The usual clinical presentation is that of a symmetrical involvement of the muscles of the pelvic and scapular girdles as well as of the trunk, associated with more or less severe cardio-respiratory impairment and a marked increase of serum CK levels. The first symptoms appear during the first decade, the loss of ambulation occurring often during the second decade. Lesions observed on the muscle biopsy are dystrophic. This is associated with a decrease or an absence of immunostaining of the sarcoglycan corresponding to the mutated gene and, to a lesser degree, of the other three sarcoglycans. Many mutations have been reported in the four incriminated genes and some of them are prevalent in certain populations. To date, there is no curative treatment, which does not prevent the development of many clinical trials, especially in gene therapy.
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - France Leturcq
- Laboratoire de biochimie génétique. APHP, Hôpital Cochin, Paris, France
| | - Pascal Laforêt
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France. APHP, CHU Raymond Poincaré, Garches. Université Paris-Saclay, France
| | - Isabelle Richard
- Généthon, 91000, Évry, France - Université Paris-Saclay, Université d'Evry, Inserm, Généthon, unité de recherche Integrare UMR_S951, 91000, Évry, France
| | - Tanya Stojkovic
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|