1
|
Tomé SO, Gawor K, Thal DR. LATE-NC in Alzheimer's disease: Molecular aspects and synergies. Brain Pathol 2024; 34:e13213. [PMID: 37793659 PMCID: PMC11189776 DOI: 10.1111/bpa.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Alzheimer's disease (AD) is classically characterized by senile plaques and neurofibrillary tangles (NFTs). However, multiple copathologies can be observed in the AD brain and contribute to the development of cognitive decline. Limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC) accumulates in the majority of AD cases and leads to more severe cognitive decline compared with AD pathology alone. In this review, we focus on the synergistic relationship between LATE-NC and tau in AD, highlighting the aggravating role of TDP-43 aggregates on tau pathogenesis and its impact on the clinical picture and therapeutic strategies. Additionally, we discuss to what extent the molecular patterns of LATE-NC in AD differ from frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) neuropathological changes. Thus, we highlight the importance of tau and TDP-43 synergies for subtyping AD patients, which may respond differently to therapeutic interventions depending on the presence of comorbid LATE-NC.
Collapse
Grants
- 10810 Alzheimer Forschung Initiative (Germany)
- 13803 Alzheimer Forschung Initiative (Germany)
- 22-AAIIA-963171 Alzheimer's Association (USA)
- A2022019F BrightFocus Foundation (USA)
- TH-624-4-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 4-2 Deutsche Forschungsgemeinschaft (DFG, Germany)
- 6-1 Deutsche Forschungsgemeinschaft (DFG, Germany)
- G065721N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- G0F8516N Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- 2020/017 Stichting Alzheimer Onderzoek (SAO/FRA, Belgium)
- C3/20/057 Onderzoeksraad, KU Leuven (Belgium)
- PDMT2/21/069 Onderzoeksraad, KU Leuven (Belgium)
- IWT 135043 Vlaamse Impulsfinanciering voor Netwerken voor Dementie-onderzoek (Belgium)
- Alzheimer Forschung Initiative (Germany)
- Alzheimer's Association (USA)
- BrightFocus Foundation (USA)
- Deutsche Forschungsgemeinschaft (DFG, Germany)
- Fonds Wetenschappelijk Onderzoek (FWO, Belgium)
- Onderzoeksraad, KU Leuven (Belgium)
Collapse
Affiliation(s)
- Sandra O. Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospitals of LeuvenLeuvenBelgium
| |
Collapse
|
2
|
Schneider TR, Stöckli L, Felbecker A, Nirmalraj PN. Protein fibril aggregation on red blood cells: a potential biomarker to distinguish neurodegenerative diseases from healthy aging. Brain Commun 2024; 6:fcae180. [PMID: 38873003 PMCID: PMC11170662 DOI: 10.1093/braincomms/fcae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Neurodegenerative diseases like Alzheimer's disease are characterized by the accumulation of misfolded proteins into fibrils in the brain. Atomic force microscopy is a nanoscale imaging technique that can be used to resolve and quantify protein aggregates from oligomers to fibrils. Recently, we characterized protein fibrillar aggregates adsorbed on the surface of red blood cells with atomic force microscopy from patients with neurocognitive disorders, suggesting a novel Alzheimer's disease biomarker. However, the age association of fibril deposits on red blood cells has not yet been studied in detail in healthy adults. Here, we used atomic force microscopy to visualize and quantify fibril coverage on red blood cells in 50 healthy adults and 37 memory clinic patients. Fibrillar protein deposits sporadically appeared in healthy individuals but were much more prevalent in patients with neurodegenerative disease, especially those with Alzheimer's disease as confirmed by positive CSF amyloid beta 1-42/1-40 ratios. The prevalence of fibrils on the red blood cell surface did not significantly correlate with age in either healthy individuals or Alzheimer's disease patients. The overlap in fibril prevalence on red blood cells between Alzheimer's disease and amyloid-negative patients suggests that fibril deposition on red blood cells could occur in various neurodegenerative diseases. Quantifying red blood cell protein fibril morphology and prevalence on red blood cells could serve as a sensitive biomarker for neurodegeneration, distinguishing between healthy individuals and those with neurodegenerative diseases. Future studies that combine atomic force microscopy with immunofluorescence techniques in larger-scale studies could further identify the chemical nature of these fibrils, paving the way for a comprehensive, non-invasive biomarker platform for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Luisa Stöckli
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| | - Ansgar Felbecker
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| | - Peter Niraj Nirmalraj
- Transport at Nanoscale Interfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| |
Collapse
|
3
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
4
|
Maldonado-Díaz C, Hiya S, Yokoda RT, Farrell K, Marx GA, Kauffman J, Daoud EV, Gonzales MM, Parker AS, Canbeldek L, Kulumani Mahadevan LS, Crary JF, White CL, Walker JM, Richardson TE. Disentangling and quantifying the relative cognitive impact of concurrent mixed neurodegenerative pathologies. Acta Neuropathol 2024; 147:58. [PMID: 38520489 PMCID: PMC10960766 DOI: 10.1007/s00401-024-02716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.
Collapse
Affiliation(s)
- Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel A Marx
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Justin Kauffman
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mitzi M Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alicia S Parker
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Lakshmi Shree Kulumani Mahadevan
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - John F Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Malotaux V, Colmant L, Quenon L, Huyghe L, Gérard T, Dricot L, Ivanoiu A, Lhommel R, Hanseeuw B. Suspecting Non-Alzheimer's Pathologies and Mixed Pathologies: A Comparative Study Between Brain Metabolism and Tau Images. J Alzheimers Dis 2024; 97:421-433. [PMID: 38108350 PMCID: PMC10789317 DOI: 10.3233/jad-230696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) pathology can be disclosed in vivo using amyloid and tau imaging, unlike non-AD neuropathologies for which no specific markers exist. OBJECTIVE We aimed to compare brain hypometabolism and tauopathy to unveil non-AD pathologies. METHODS Sixty-one patients presenting cognitive complaints (age 48-90), including 32 with positive AD biomarkers (52%), performed [18F]-Fluorodeoxyglucose (FDG)-PET (brain metabolism) and [18F]-MK-6240-PET (tau). We normalized these images using data from clinically normal individuals (n = 30), resulting in comparable FDG and tau z-scores. We computed between-patients correlations to evaluate regional associations. For each patient, a predominant biomarker (i.e., Hypometabolism > Tauopathy or Hypometabolism≤Tauopathy) was determined in the temporal and frontoparietal lobes. We computed within-patient correlations between tau and metabolism and investigated their associations with demographics, cognition, cardiovascular risk factors (CVRF), CSF biomarkers, and white matter hypointensities (WMH). RESULTS We observed negative associations between tau and FDG in 37 of the 68 cortical regions-of-interest (average Pearson's r = -0.25), mainly in the temporal lobe. Thirteen patients (21%) had Hypometabolism > Tauopathy whereas twenty-five patients (41%) had Hypometabolism≤Tauopathy. Tau-predominant patients were more frequently females and had greater amyloid burden. Twenty-three patients (38%) had Hypometabolism≤Tauopathy in the temporal lobe, but Hypometabolism > Tauopathy in the frontoparietal lobe. This group was older and had higher CVRF than Tau-predominant patients. Patients with more negative associations between tau and metabolism were younger, had worse cognition, and greater amyloid and WMH burdens. CONCLUSIONS Tau-FDG comparison can help suspect non-AD pathologies in patients presenting cognitive complaints. Stronger Tau-FDG correlations are associated with younger age, worse cognition, and greater amyloid and WMH burdens.
Collapse
Affiliation(s)
- Vincent Malotaux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Lise Colmant
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Department of Neurology, Saint-Luc University Hospital, Brussels, Belgium
| | - Lisa Quenon
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Department of Neurology, Saint-Luc University Hospital, Brussels, Belgium
| | - Lara Huyghe
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Thomas Gérard
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Department of Nuclear Medicine, Saint-Luc University Hospital, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Adrian Ivanoiu
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Department of Neurology, Saint-Luc University Hospital, Brussels, Belgium
| | - Renaud Lhommel
- Department of Nuclear Medicine, Saint-Luc University Hospital, Brussels, Belgium
| | - Bernard Hanseeuw
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Department of Neurology, Saint-Luc University Hospital, Brussels, Belgium
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- WEL Research Institute, Welbio department, Wavre, Belgium
| |
Collapse
|
6
|
Silva-Rodríguez J, Labrador-Espinosa MA, Moscoso A, Schöll M, Mir P, Grothe MJ. Characteristics of amnestic patients with hypometabolism patterns suggestive of Lewy body pathology. Brain 2023; 146:4520-4531. [PMID: 37284793 PMCID: PMC10629761 DOI: 10.1093/brain/awad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
A clinical diagnosis of Alzheimer's disease dementia (ADD) encompasses considerable pathological and clinical heterogeneity. While Alzheimer's disease patients typically show a characteristic temporo-parietal pattern of glucose hypometabolism on 18F-fluorodeoxyglucose (FDG)-PET imaging, previous studies have identified a subset of patients showing a distinct posterior-occipital hypometabolism pattern associated with Lewy body pathology. Here, we aimed to improve the understanding of the clinical relevance of these posterior-occipital FDG-PET patterns in patients with Alzheimer's disease-like amnestic presentations. Our study included 1214 patients with clinical diagnoses of ADD (n = 305) or amnestic mild cognitive impairment (aMCI, n = 909) from the Alzheimer's Disease Neuroimaging Initiative, who had FDG-PET scans available. Individual FDG-PET scans were classified as being suggestive of Alzheimer's (AD-like) or Lewy body (LB-like) pathology by using a logistic regression classifier trained on a separate set of patients with autopsy-confirmed Alzheimer's disease or Lewy body pathology. AD- and LB-like subgroups were compared on amyloid-β and tau-PET, domain-specific cognitive profiles (memory versus executive function performance), as well as the presence of hallucinations and their evolution over follow-up (≈6 years for aMCI, ≈3 years for ADD). Around 12% of the aMCI and ADD patients were classified as LB-like. For both aMCI and ADD patients, the LB-like group showed significantly lower regional tau-PET burden than the AD-like subgroup, but amyloid-β load was only significantly lower in the aMCI LB-like subgroup. LB- and AD-like subgroups did not significantly differ in global cognition (aMCI: d = 0.15, P = 0.16; ADD: d = 0.02, P = 0.90), but LB-like patients exhibited a more dysexecutive cognitive profile relative to the memory deficit (aMCI: d = 0.35, P = 0.01; ADD: d = 0.85 P < 0.001), and had a significantly higher risk of developing hallucinations over follow-up [aMCI: hazard ratio = 1.8, 95% confidence interval = (1.29, 3.04), P = 0.02; ADD: hazard ratio = 2.2, 95% confidence interval = (1.53, 4.06) P = 0.01]. In summary, a sizeable group of clinically diagnosed ADD and aMCI patients exhibit posterior-occipital FDG-PET patterns typically associated with Lewy body pathology, and these also show less abnormal Alzheimer's disease biomarkers as well as specific clinical features typically associated with dementia with Lewy bodies.
Collapse
Affiliation(s)
- Jesús Silva-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Michael Schöll
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, 41345 Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, WC1ELondon, UK
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, 41345 Gothenburg, Sweden
| | | |
Collapse
|
7
|
Tomé SO, Tsaka G, Ronisz A, Ospitalieri S, Gawor K, Gomes LA, Otto M, von Arnim CAF, Van Damme P, Van Den Bosch L, Ghebremedhin E, Laureyssen C, Sleegers K, Vandenberghe R, Rousseau F, Schymkowitz J, Thal DR. TDP-43 pathology is associated with increased tau burdens and seeding. Mol Neurodegener 2023; 18:71. [PMID: 37777806 PMCID: PMC10544192 DOI: 10.1186/s13024-023-00653-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Most Alzheimer's Disease (AD) cases also exhibit limbic predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), besides amyloid-β plaques and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau (p-tau). LATE-NC is characterized by cytoplasmic aggregates positive for pathological TDP-43 and is associated with more severe clinical outcomes in AD, compared to AD cases lacking TDP-43 pathology TDP-43: AD(LATE-NC-). Accumulating evidence suggests that TDP-43 and p-tau interact and exhibit pathological synergy during AD pathogenesis. However, it is not yet fully understood how the presence of TDP-43 affects p-tau aggregation in symptomatic AD. METHODS In this study, we investigated the impact of TDP-43 proteinopathy on p-tau pathology with different approaches: histologically, in a human post-mortem cohort (n = 98), as well as functionally using a tau biosensor cell line and TDP-43A315T transgenic mice. RESULTS We found that AD cases with comorbid LATE-NC, AD(LATE-NC+), have increased burdens of pretangles and/or NFTs as well as increased brain levels of p-tau199, compared to AD(LATE-NC-) cases and controls. The burden of TDP-43 pathology was also correlated with the Braak NFT stages. A tau biosensor cell line treated with sarkosyl-insoluble, brain-derived homogenates from AD(LATE-NC+) cases displayed exacerbated p-tau seeding, compared to control and AD(LATE-NC-)-treated cells. Consistently, TDP-43A315T mice injected with AD(LATE-NC+)-derived extracts also exhibited a more severe hippocampal seeding, compared to the remaining experimental groups, albeit no TDP-43 aggregation was observed. CONCLUSIONS Our findings extend the current knowledge by supporting a functional synergy between TDP-43 and p-tau. We further demonstrate that TDP-43 pathology worsens p-tau aggregation in an indirect manner and increases its seeding potential, probably by increasing p-tau levels. This may ultimately contribute to tau-driven neurotoxicity and cell death. Because most AD cases present with comorbid LATE-NC, this study has an impact on the understanding of TDP-43 and tau pathogenesis in AD and LATE, which account for the majority of dementia cases worldwide. Moreover, it highlights the need for the development of a biomarker that detects TDP-43 during life, in order to properly stratify AD and LATE patients.
Collapse
Affiliation(s)
- Sandra O Tomé
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Grigoria Tsaka
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Alicja Ronisz
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Klara Gawor
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Luis Aragão Gomes
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, University of Halle, Halle, Germany
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Philip Van Damme
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Laboratory for Neurobiology - VIB-KU Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Laboratory for Neurobiology - VIB-KU Leuven, Leuven, Belgium
| | - Estifanos Ghebremedhin
- Institute for Clinical Neuroanatomy - Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Celeste Laureyssen
- Complex Genetics of Alzheimer's Disease Group, VIB-University of Antwerp Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-University of Antwerp Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rik Vandenberghe
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
- Laboratory of Experimental Neurology - Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology - Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, UZ Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Braun DJ, Frazier HN, Davis VA, Coleman MJ, Rogers CB, Van Eldik LJ. Early chronic suppression of microglial p38α in a model of Alzheimer's disease does not significantly alter amyloid-associated neuropathology. PLoS One 2023; 18:e0286495. [PMID: 37256881 PMCID: PMC10231773 DOI: 10.1371/journal.pone.0286495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
The p38 alpha mitogen-activated protein kinase (p38α) is linked to both innate and adaptive immune responses and is under investigation as a target for drug development in the context of Alzheimer's disease (AD) and other conditions with neuroinflammatory dysfunction. While preclinical data has shown that p38α inhibition can protect against AD-associated neuropathology, the underlying mechanisms are not fully elucidated. Inhibitors of p38α may provide benefit via modulation of microglial-associated neuroinflammatory responses that contribute to AD pathology. The present study tests this hypothesis by knocking out microglial p38α and assessing early-stage pathological changes. Conditional knockout of microglial p38α was accomplished in 5-month-old C57BL/6J wild-type and amyloidogenic AD model (APPswe/PS1dE9) mice using a tamoxifen-inducible Cre/loxP system under control of the Cx3cr1 promoter. Beginning at 7.5 months of age, animals underwent behavioral assessment on the open field, followed by a later radial arm water maze test and collection of cortical and hippocampal tissues at 11 months. Additional endpoint measures included quantification of proinflammatory cytokines, assessment of amyloid burden and plaque deposition, and characterization of microglia-plaque dynamics. Loss of microglial p38α did not alter behavioral outcomes, proinflammatory cytokine levels, or overall amyloid plaque burden. However, this manipulation did significantly increase hippocampal levels of soluble Aβ42 and reduce colocalization of Iba1 and 6E10 in a subset of microglia in close proximity to plaques. The data presented here suggest that rather than reducing inflammation per se, the net effect of microglial p38α inhibition in the context of early AD-type amyloid pathology is a subtle alteration of microglia-plaque interactions. Encouragingly from a therapeutic standpoint, these data suggest no detrimental effect of even substantial decreases in microglial p38α in this context. Additionally, these results support future investigations of microglial p38α signaling at different stages of disease, as well as its relationship to phagocytic processes in this particular cell-type.
Collapse
Affiliation(s)
- David J. Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hilaree N. Frazier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Verda A. Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Meggie J. Coleman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
9
|
Walker JM, Richardson TE. Cognitive resistance to and resilience against multiple comorbid neurodegenerative pathologies and the impact of APOE status. J Neuropathol Exp Neurol 2023; 82:110-119. [PMID: 36458951 PMCID: PMC9852945 DOI: 10.1093/jnen/nlac115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Alzheimer disease (AD) is currently the leading cause of cognitive decline and dementia worldwide. Recently, studies have suggested that other neurodegenerative comorbidities such as limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), Lewy body disease (LBD), and cerebrovascular disease frequently co-occur with Alzheimer disease neuropathologic change (ADNC) and may have significant cognitive effects both in isolation and synergistically with ADNC. Herein, we study the relative clinical impact of these multiple neurodegenerative pathologies in 704 subjects. Each of these pathologies is relatively common in the cognitively impaired population, while cerebrovascular pathology and ADNC are the most common in cognitively normal individuals. Moreover, while the number of concurrent neuropathologic entities rises with age and has a progressively deleterious effect on cognition, 44.3% of cognitively intact individuals are resistant to having any neurodegenerative proteinopathy (compared to 15.2% of cognitively impaired individuals) and 83.5% are resistant to having multiple concurrent proteinopathies (compared to 64.6% of cognitively impaired individuals). The presence of at least 1 APOE ε4 allele was associated with impaired cognition and the presence of multiple proteinopathies, while APOE ε2 was protective against cumulative proteinopathies. These results indicate that maintenance of normal cognition may depend on resistance to the development of multiple concurrent proteinopathies.
Collapse
Affiliation(s)
- Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Walker JM, Gonzales MM, Goette W, Farrell K, White CL, Crary JF, Richardson TE. Cognitive and Neuropsychological Profiles in Alzheimer's Disease and Primary Age-Related Tauopathy and the Influence of Comorbid Neuropathologies. J Alzheimers Dis 2023; 92:1037-1049. [PMID: 36847012 PMCID: PMC11138480 DOI: 10.3233/jad-230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND Alzheimer's disease neuropathologic change (ADNC) is defined by the progression of both hyperphosphorylated-tau (p-tau) and amyloid-β (Aβ) and is the most common underlying cause of dementia worldwide. Primary age-related tauopathy (PART), an Aβ-negative tauopathy largely confined to the medial temporal lobe, is increasingly being recognized as an entity separate from ADNC with diverging clinical, genetic, neuroanatomic, and radiologic profiles. OBJECTIVE The specific clinical correlates of PART are largely unknown; we aimed to identify cognitive and neuropsychological differences between PART, ADNC, and subjects with no tauopathy (NT). METHODS We compared 2,884 subjects with autopsy-confirmed intermediate-high stage ADNC to 208 subjects with definite PART (Braak stage I-IV, Thal phase 0, CERAD NP score "absent") and 178 NT subjects from the National Alzheimer's Coordinating Center dataset. RESULTS PART subjects were older than either ADNC or NT patients. The ADNC cohort had more frequent neuropathological comorbidities as well as APOE ɛ4 alleles than the PART or NT cohort, and less frequent APOE ɛ2 alleles than either group. Clinically, ADNC patients performed significantly worse than NT or PART subjects across cognitive measures, but PART subjects had selective deficits in measures of processing speed, executive function, and visuospatial function, although additional cognitive measures were further impaired in the presence of neuropathologic comorbidities. In isolated cases of PART with Braak stage III-IV, there are additional deficits in measures of language. CONCLUSION Overall, these findings demonstrate underlying cognitive features specifically associated with PART, and reinforce the concept that PART is a distinct entity from ADNC.
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John F. Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Liu Z, Guan R, Bu F, Pan L. Treatment of Alzheimer's disease by combination of acupuncture and Chinese medicine based on pathophysiological mechanism: A review. Medicine (Baltimore) 2022; 101:e32218. [PMID: 36626477 PMCID: PMC9750551 DOI: 10.1097/md.0000000000032218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neurodegeneration, nerve loss, neurofibrillary tangles, and Aβ plaques. In modern medical science, there has been a serious obstacle to the effective treatment of AD. At present, there is no clinically proven and effective western medicine treatment for AD. The reason is that the etiology of AD is not yet fully understood. In 2018, the international community put forward a purely biological definition of AD, but soon this view of biomarkers was widely questioned, because the so-called AD biomarkers are shared with other neurological diseases, the diagnostic accuracy is low, and they face various challenges in the process of clinical diagnosis and treatment. Nowadays, scholars increasingly regard AD as the result of multimechanism and multicenter interaction. Because there is no exact Western medicine treatment for AD, the times call for the comprehensive treatment of AD in traditional Chinese medicine (TCM). AD belongs to the category of "dull disease" in TCM. For thousands of years, TCM has accumulated a lot of relevant treatment experience in the process of diagnosis and treatment. TCM, acupuncture, and the combination of acupuncture and medicine all play an important role in the treatment of AD. Based on the research progress of modern medicine on the pathophysiology of AD, this paper discusses the treatment of this disease with the combination of acupuncture and medicine.
Collapse
Affiliation(s)
- Zhao Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Ruiqian Guan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Fan Bu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Limin Pan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
12
|
The central role of tau in Alzheimer’s disease: From neurofibrillary tangle maturation to the induction of cell death. Brain Res Bull 2022; 190:204-217. [DOI: 10.1016/j.brainresbull.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
|
13
|
Koper MJ, Tomé SO, Gawor K, Belet A, Van Schoor E, Schaeverbeke J, Vandenberghe R, Vandenbulcke M, Ghebremedhin E, Otto M, von Arnim CAF, Balusu S, Blaschko MB, De Strooper B, Thal DR. LATE-NC aggravates GVD-mediated necroptosis in Alzheimer's disease. Acta Neuropathol Commun 2022; 10:128. [PMID: 36057624 PMCID: PMC9441100 DOI: 10.1186/s40478-022-01432-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 12/26/2022] Open
Abstract
It has become evident that Alzheimer's Disease (AD) is not only linked to its hallmark lesions-amyloid plaques and neurofibrillary tangles (NFTs)-but also to other co-occurring pathologies. This may lead to synergistic effects of the respective cellular and molecular players, resulting in neuronal death. One of these co-pathologies is the accumulation of phosphorylated transactive-response DNA binding protein 43 (pTDP-43) as neuronal cytoplasmic inclusions, currently considered to represent limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), in up to 70% of symptomatic AD cases. Granulovacuolar degeneration (GVD) is another AD co-pathology, which also contains TDP-43 and other AD-related proteins. Recently, we found that all proteins required for necroptosis execution, a previously defined programmed form of neuronal cell death, are present in GVD, such as the phosphorylated necroptosis executioner mixed-lineage kinase domain-like protein (pMLKL). Accordingly, this protein is a reliable marker for GVD lesions, similar to other known GVD proteins. Importantly, it is not yet known whether the presence of LATE-NC in symptomatic AD cases is associated with necroptosis pathway activation, presumably contributing to neuron loss by cell death execution. In this study, we investigated the impact of LATE-NC on the severity of necroptosis-associated GVD lesions, phosphorylated tau (pTau) pathology and neuronal density. First, we used 230 human post-mortem cases, including 82 controls without AD neuropathological changes (non-ADNC), 81 non-demented cases with ADNC, i.e.: pathologically-defined preclinical AD (p-preAD) and 67 demented cases with ADNC. We found that Braak NFT stage and LATE-NC stage were good predictors for GVD expansion and neuronal loss in the hippocampal CA1 region. Further, we compared the impact of TDP-43 accumulation on hippocampal expression of pMLKL-positive GVD, pTau as well as on neuronal density in a subset of nine non-ADNC controls, ten symptomatic AD cases with (ADTDP+) and eight without LATE-NC (ADTDP-). Here, we observed increased levels of pMLKL-positive, GVD-exhibiting neurons in ADTDP+ cases, compared to ADTDP- and controls, which was accompanied by augmented pTau pathology. Neuronal loss in the CA1 region was increased in ADTDP+ compared to ADTDP- cases. These data suggest that co-morbid LATE-NC in AD impacts not only pTau pathology but also GVD-mediated necroptosis pathway activation, which results in an accelerated neuronal demise. This further highlights the cumulative and synergistic effects of comorbid pathologies leading to neuronal loss in AD. Accordingly, protection against necroptotic neuronal death appears to be a promising therapeutic option for AD and LATE.
Collapse
Affiliation(s)
- Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Annelies Belet
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Evelien Van Schoor
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
- Laboratory for Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Department of Geriatric Psychiatry, UZ Leuven, Leuven, Belgium
| | - Estifanos Ghebremedhin
- Institute of Anatomy - Anatomy I, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Neurology, University of Halle, Halle, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, Göttingen University, Göttingen, Germany
| | - Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Matthew B Blaschko
- Department of Electronics, Center for Processing Speech and Images, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Libard S, Giedraitis V, Kilander L, Ingelsson M, Alafuzoff I. Mixed Pathologies in a Subject with a Novel PSEN1 G206R Mutation. J Alzheimers Dis 2022; 90:1601-1614. [PMID: 36314207 PMCID: PMC9789486 DOI: 10.3233/jad-220655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND There are more than 300 presenilin-1 (PSEN1) mutations identified but a thorough postmortem neuropathological assessment of the mutation carriers is seldom performed. OBJECTIVE To assess neuropathological changes (NC) in a 73-year-old subject with the novel PSEN1 G206R mutation suffering from cognitive decline in over 20 years. To compare these findings with an age- and gender-matched subject with sporadic Alzheimer's disease (sAD). METHODS The brains were assessed macro- and microscopically and the proteinopathies were staged according to current recommendations. RESULTS The AD neuropathological change (ADNC) was more extensive in the mutation carrier, although both individuals reached a high level of ADNC. The transactive DNA binding protein 43 pathology was at the end-stage in the index subject, a finding not previously described in familial AD. This pathology was moderate in the sAD subject. The PSEN1 G206R subject displayed full-blown alpha-synuclein pathology, while this proteinopathy was absent in the sAD case. Additionally, the mutation carrier displayed pronounced neuroinflammation, not previously described in association with PSEN1 mutations. CONCLUSION Our findings are exceptional, as the PSEN1 G206R subject displayed an end-stage pathology of every common proteinopathy. It is unclear whether the observed alterations are caused by the mutation or are related to a cross-seeding mechanisms. The pronounced neuroinflammation in the index patient can be reactive to the extensive NC or a contributing factor to the proteinopathies. Thorough postmortem neuropathological and genetic assessment of subjects with familial AD is warranted, for further understanding of a dementing illness.
Collapse
Affiliation(s)
- Sylwia Libard
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Irina Alafuzoff
- Department of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|