1
|
Sikora J, Dovero S, Kinet R, Arotcarena ML, Bohic S, Bezard E, Fernagut PO, Dehay B. Nigral ATP13A2 depletion induces Parkinson's disease-related neurodegeneration in a pilot study in non-human primates. NPJ Parkinsons Dis 2024; 10:141. [PMID: 39090150 PMCID: PMC11294619 DOI: 10.1038/s41531-024-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Lysosomal impairment is strongly implicated in Parkinson's disease (PD). Among the several PD-linked genes, the ATP13A2 gene, associated with the PARK9 locus, encodes a transmembrane lysosomal P5-type ATPase. Mutations in the ATP13A2 gene were primarily identified as the cause of Kufor-Rakeb syndrome (KRS), a juvenile-onset form of PD. Subsequently, an increasing list of several mutations has been described. These mutations result in truncation of the ATP13A2 protein, leading to a loss of function but surprisingly causing heterogeneity and variability in the clinical symptoms associated with different brain pathologies. In vitro studies show that its loss compromises lysosomal function, contributing to cell death. To understand the role of ATP13A2 dysfunction in disease, we disrupted its expression through a viral vector-based approach in nonhuman primates. Here, in this pilot study, we injected bilaterally into the substantia nigra of macaques, a lentiviral vector expressing an ATP13A2 small hairpin RNA. Animals were terminated five months later, and brains were harvested and compared with historical non-injected control brains to evaluate cerebral pathological markers known to be affected in KRS and PD. We characterised the pattern of dopaminergic loss in the striatum and the substantia nigra, the regional distribution of α-synuclein immunoreactivity in several brain structures, and its pathological status (i.e., S129 phosphorylation), the accumulation of heavy metals in nigral sections and occurrence of lysosomal dysfunction. This proof-of-concept experiment highlights the potential value of lentivirus-mediated ATP13A2 silencing to induce significant and ongoing degeneration in the nigrostriatal pathway, α-synuclein pathology, and iron accumulation in nonhuman primates.
Collapse
Affiliation(s)
- Joanna Sikora
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
- Univ. De Poitiers, INSERM, LNEC, Poitiers, France
| | | | - Rémi Kinet
- Univ. Bordeaux, CNRS, IMN, Bordeaux, France
| | | | - Sylvain Bohic
- Univ. Grenoble Alpes, Synchrotron Radiation for Biomedicine (STROBE), Grenoble, France
| | | | | | | |
Collapse
|
2
|
Yang Y, Zhang Z. α-Synuclein pathology from the body to the brain: so many seeds so close to the central soil. Neural Regen Res 2024; 19:1463-1472. [PMID: 38051888 PMCID: PMC10883481 DOI: 10.4103/1673-5374.387967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/24/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT α-Synuclein is a protein that mainly exists in the presynaptic terminals. Abnormal folding and accumulation of α-synuclein are found in several neurodegenerative diseases, including Parkinson's disease. Aggregated and highly phosphorylated α-synuclein constitutes the main component of Lewy bodies in the brain, the pathological hallmark of Parkinson's disease. For decades, much attention has been focused on the accumulation of α-synuclein in the brain parenchyma rather than considering Parkinson's disease as a systemic disease. Recent evidence demonstrates that, at least in some patients, the initial α-synuclein pathology originates in the peripheral organs and spreads to the brain. Injection of α-synuclein preformed fibrils into the gastrointestinal tract triggers the gut-to-brain propagation of α-synuclein pathology. However, whether α-synuclein pathology can occur spontaneously in peripheral organs independent of exogenous α-synuclein preformed fibrils or pathological α-synuclein leakage from the central nervous system remains under investigation. In this review, we aimed to summarize the role of peripheral α-synuclein pathology in the pathogenesis of Parkinson's disease. We also discuss the pathways by which α-synuclein pathology spreads from the body to the brain.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Mazzocco C, Genevois C, Li Q, Doudnikoff E, Dutheil N, Leste-Lasserre T, Arotcarena ML, Bezard E. In vivo bioluminescence imaging of the intracerebral fibroin-controlled AAV-α-synuclein diffusion for monitoring the central nervous system and peripheral expression. Sci Rep 2024; 14:9710. [PMID: 38678103 PMCID: PMC11055870 DOI: 10.1038/s41598-024-60613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.
Collapse
Affiliation(s)
- Claire Mazzocco
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Coralie Genevois
- VIVOPTIC-TBM-Core Univ Bordeaux, UAR 3427, 33000, Bordeaux, France
| | - Qin Li
- Motac Neuroscience, Manchester, M15 6WE, UK
| | - Evelyne Doudnikoff
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Nathalie Dutheil
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | | | - Marie-Laure Arotcarena
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, UMR 5293, Univ. de Bordeaux, 33000, Bordeaux, France.
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, 33000, Bordeaux, France.
- Motac Neuroscience, Manchester, M15 6WE, UK.
| |
Collapse
|
4
|
Vovard B, Bodin A, Gouju J, de Guilhem de Lataillade A, Derkinderen P, Etcharry-Bouyx F, Chauviré V, Guillet-Pichon V, Verny C, Letournel F, Lenaers G, Chevrollier A, Codron P. Stochastic Optical Reconstruction Microscopy Imaging of Multiple System Atrophy Inclusions Suggests Stepwise α-Synuclein Aggregation. Mov Disord 2024; 39:723-728. [PMID: 38357858 DOI: 10.1002/mds.29744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The architecture and composition of glial (GCI) and neuronal (NCI) α-synuclein inclusions observed in multiple system atrophy (MSA) remain to be precisely defined to better understand the disease. METHODS Here, we used stochastic optical reconstruction microscopy (STORM) to characterize the nanoscale organization of glial (GCI) and neuronal (NCI) α-synuclein inclusions in cryopreserved brain sections from MSA patients. RESULTS STORM revealed a dense cross-linked internal structure of α-synuclein in all GCI and NCI. The internal architecture of hyperphosphorylated α-synuclein (p-αSyn) inclusions was similar in glial and neuronal cells, suggesting a common aggregation mechanism. A similar sequence of p-αSyn stepwise intracellular aggregation was defined in oligodendrocytes and neurons, starting from the perinuclear area and growing inside the cells. Consistent with this hypothesis, we found a higher mitochondrial density in GCI and NCI compared to oligodendrocytes and neurons from unaffected donors (P < 0.01), suggesting an active recruitment of the organelles during the aggregation process. CONCLUSIONS These first STORM images of GCI and NCI suggest stepwise α-synuclein aggregation in MSA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Benoît Vovard
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, Angers, France
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Alexia Bodin
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, Angers, France
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Julien Gouju
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France
- MINT, UMR Inserm 1066, CNRS 6021, Angers, France
| | - Adrien de Guilhem de Lataillade
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- Service de Neurologie, CHU Nantes, Inserm U1235 Nantes, Nantes, France
| | - Pascal Derkinderen
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
- Service de Neurologie, CHU Nantes, Inserm U1235 Nantes, Nantes, France
| | - Frédérique Etcharry-Bouyx
- Service de Neurologie, centre mémoire de ressource et de recherche, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Valérie Chauviré
- Service de Neurologie, centre mémoire de ressource et de recherche, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Virginie Guillet-Pichon
- Service de Neurologie, centre mémoire de ressource et de recherche, Centre Hospitalier Universitaire d'Angers, Angers, France
- Service de Neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Christophe Verny
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, Angers, France
- Service de Neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Franck Letournel
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France
- MINT, UMR Inserm 1066, CNRS 6021, Angers, France
| | - Guy Lenaers
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, Angers, France
- Service de Neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Arnaud Chevrollier
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, Angers, France
| | - Philippe Codron
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, Angers, France
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| |
Collapse
|
5
|
Teil M, Dovero S, Bourdenx M, Arotcarena ML, Darricau M, Porras G, Thiolat ML, Trigo-Damas I, Perier C, Estrada C, Garcia-Carrillo N, Herrero MT, Vila M, Obeso JA, Bezard E, Dehay B. Cortical Lewy body injections induce long-distance pathogenic alterations in the non-human primate brain. NPJ Parkinsons Dis 2023; 9:135. [PMID: 37726343 PMCID: PMC10509171 DOI: 10.1038/s41531-023-00579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is the cornerstone of neurodegenerative diseases termed synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), and Multiple System Atrophy (MSA). These synucleinopathies are characterized by the deposit of aggregated α-syn in intracellular inclusions observable in neurons and glial cells. In PD and DLB, these aggregates, predominantly located in neurons, are called Lewy Bodies (LBs). These LBs are one of the pathological hallmarks of PD and DLB, alongside dopaminergic neuron loss in the substantia nigra. Previous studies have demonstrated the ability of PD patient-derived LB fractions to induce nigrostriatal neurodegeneration and α-syn pathology when injected into the striatum or the enteric nervous system of non-human primates. Here, we report the pathological consequences of injecting these LB fractions into the cortex of non-human primates. To this end, we inoculated mesencephalic PD patient-derived LB fractions into the prefrontal cortex of baboon monkeys terminated one year later. Extensive analyses were performed to evaluate pathological markers known to be affected in LB pathologies. We first assessed the hypothesized presence of phosphorylated α-syn at S129 (pSyn) in the prefrontal cortices. Second, we quantified the neuronal, microglial, and astrocytic cell survival in the same cortices. Third, we characterized these cortical LB injections' putative impact on the integrity of the nigrostriatal system. Overall, we observed pSyn accumulation around the injection site in the dorsal prefrontal cortex, in connected cortical regions, and further towards the striatum, suggesting α-syn pathological propagation. The pathology was also accompanied by neuronal loss in these prefrontal cortical regions and the caudate nucleus, without, however, loss of nigral dopamine neurons. In conclusion, this pilot study provides novel data demonstrating the toxicity of patient-derived extracts, their potential to propagate from the cortex to the striatum in non-human primates, and a possible primate model of DLB.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Sandra Dovero
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Mathieu Bourdenx
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | | | | | - Gregory Porras
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | | | - Inés Trigo-Damas
- HM CINAC, HM Puerta del Sur, Fundación HM Hospitales and CIBERNED and CEU-San Pablo University Madrid, E-28938, Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Celine Perier
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Nuria Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), Universidad de Murcia, Murcia, Spain
| | - María Trinidad Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Miquel Vila
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - José A Obeso
- HM CINAC, HM Puerta del Sur, Fundación HM Hospitales and CIBERNED and CEU-San Pablo University Madrid, E-28938, Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- CEU, San Pablo University Madrid, E-28938 Mostoles, Spain 2 HM CINAC, HM Puerta del Sur and CIBERNED and CEU-San Pablo University Madrid, E-, 28938, Mostoles, Spain
| | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
| |
Collapse
|
6
|
Graves NJ, Gambin Y, Sierecki E. α-Synuclein Strains and Their Relevance to Parkinson's Disease, Multiple System Atrophy, and Dementia with Lewy Bodies. Int J Mol Sci 2023; 24:12134. [PMID: 37569510 PMCID: PMC10418915 DOI: 10.3390/ijms241512134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Like many neurodegenerative diseases, Parkinson's disease (PD) is characterized by the formation of proteinaceous aggregates in brain cells. In PD, those proteinaceous aggregates are formed by the α-synuclein (αSyn) and are considered the trademark of this neurodegenerative disease. In addition to PD, αSyn pathological aggregation is also detected in atypical Parkinsonism, including Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA), as well as neurodegeneration with brain iron accumulation, some cases of traumatic brain injuries, and variants of Alzheimer's disease. Collectively, these (and other) disorders are referred to as synucleinopathies, highlighting the relation between disease type and protein misfolding/aggregation. Despite these pathological relationships, however, synucleinopathies cover a wide range of pathologies, present with a multiplicity of symptoms, and arise from dysfunctions in different neuroanatomical regions and cell populations. Strikingly, αSyn deposition occurs in different types of cells, with oligodendrocytes being mainly affected in MSA, while aggregates are found in neurons in PD. If multiple factors contribute to the development of a pathology, especially in the cases of slow-developing neurodegenerative disorders, the common presence of αSyn aggregation, as both a marker and potential driver of disease, is puzzling. In this review, we will focus on comparing PD, DLB, and MSA, from symptomatology to molecular description, highlighting the role and contribution of αSyn aggregates in each disorder. We will particularly present recent evidence for the involvement of conformational strains of αSyn aggregates and discuss the reciprocal relationship between αSyn strains and the cellular milieu. Moreover, we will highlight the need for effective methodologies for the strainotyping of aggregates to ameliorate diagnosing capabilities and therapeutic treatments.
Collapse
Affiliation(s)
| | | | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; (N.J.G.)
| |
Collapse
|
7
|
Darricau M, Katsinelos T, Raschella F, Milekovic T, Crochemore L, Li Q, Courtine G, McEwan WA, Dehay B, Bezard E, Planche V. Tau seeds from patients induce progressive supranuclear palsy pathology and symptoms in primates. Brain 2023; 146:2524-2534. [PMID: 36382344 PMCID: PMC10232263 DOI: 10.1093/brain/awac428] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive supranuclear palsy is a primary tauopathy affecting both neurons and glia and is responsible for both motor and cognitive symptoms. Recently, it has been suggested that progressive supranuclear palsy tauopathy may spread in the brain from cell to cell in a 'prion-like' manner. However, direct experimental evidence of this phenomenon, and its consequences on brain functions, is still lacking in primates. In this study, we first derived sarkosyl-insoluble tau fractions from post-mortem brains of patients with progressive supranuclear palsy. We also isolated the same fraction from age-matched control brains. Compared to control extracts, the in vitro characterization of progressive supranuclear palsy-tau fractions demonstrated a high seeding activity in P301S-tau expressing cells, displaying after incubation abnormally phosphorylated (AT8- and AT100-positivity), misfolded, filamentous (pentameric formyl thiophene acetic acid positive) and sarkosyl-insoluble tau. We bilaterally injected two male rhesus macaques in the supranigral area with this fraction of progressive supranuclear palsy-tau proteopathic seeds, and two other macaques with the control fraction. The quantitative analysis of kinematic features revealed that progressive supranuclear palsy-tau injected macaques exhibited symptoms suggestive of parkinsonism as early as 6 months after injection, remaining present until euthanasia at 18 months. An object retrieval task showed the progressive appearance of a significant dysexecutive syndrome in progressive supranuclear palsy-tau injected macaques compared to controls. We found AT8-positive staining and 4R-tau inclusions only in progressive supranuclear palsy-tau injected macaques. Characteristic pathological hallmarks of progressive supranuclear palsy, including globose and neurofibrillary tangles, tufted astrocytes and coiled bodies, were found close to the injection sites but also in connected brain regions that are known to be affected in progressive supranuclear palsy (striatum, pallidum, thalamus). Interestingly, while glial AT8-positive lesions were the most frequent near the injection site, we found mainly neuronal inclusions in the remote brain area, consistent with a neuronal transsynaptic spreading of the disease. Our results demonstrate that progressive supranuclear palsy patient-derived tau aggregates can induce motor and behavioural impairments in non-human primates related to the prion-like seeding and spreading of typical pathological progressive supranuclear palsy lesions. This pilot study paves the way for supporting progressive supranuclear palsy-tau injected macaque as a relevant animal model to accelerate drug development targeting this rare and fatal neurodegenerative disease.
Collapse
Affiliation(s)
- Morgane Darricau
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0AH Cambridge, UK
| | - Flavio Raschella
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - Tomislav Milekovic
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - Louis Crochemore
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Qin Li
- Motac Neuroscience, F-33000 Bordeaux, France
| | - Grégoire Courtine
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - William A McEwan
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0AH Cambridge, UK
| | - Benjamin Dehay
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Motac Neuroscience, F-33000 Bordeaux, France
| | - Vincent Planche
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CHU de Bordeaux, Pôle de Neurosciences Cliniques, Centre Mémoire de Ressources et de Recherche, F-33000 Bordeaux, France
| |
Collapse
|
8
|
Stefanova N, Wenning GK. Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 2023; 24:334-346. [PMID: 37085728 DOI: 10.1038/s41583-023-00697-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare oligodendroglial α-synucleinopathy characterized by neurodegeneration in striatonigral and olivopontocerebellar regions and autonomic brain centres. It causes complex cumulative motor and non-motor disability with fast progression and effective therapy is currently lacking. The difficulties in the diagnosis and treatment of MSA are largely related to the incomplete understanding of the pathogenesis of the disease. The MSA pathogenic landscape is complex, and converging findings from genetic and neuropathological studies as well as studies in experimental models of MSA have indicated the involvement of genetic and epigenetic changes; α-synuclein misfolding, aggregation and spreading; and α-synuclein strain specificity. These studies also indicate the involvement of myelin and iron dyshomeostasis, neuroinflammation, mitochondrial dysfunction and other cell-specific aspects that are relevant to the fast progression of MSA. In this Review, we discuss these findings and emphasize the implications of the complexity of the multifactorial pathogenic cascade for future translational research and its impact on biomarker discovery and treatment target definitions.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Audrey F, Alexis F, Sonia L, Sandra D, Luc B, Bellande T, Sophie L, Christophe J, Martine G, Caroline J, Pauline G, Benjamin D, Erwan B, Ronald M, Philippe H, Romina AB. Functional and neuropathological changes induced by injection of distinct alpha-synuclein strains: A pilot study in non-human primates. Neurobiol Dis 2023; 180:106086. [PMID: 36933673 DOI: 10.1016/j.nbd.2023.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The role of alpha-synuclein in Parkinson's disease has been heavily investigated since its discovery as a component of Lewy bodies. Recent rodent data demonstrate that alpha-synuclein strain structure is critical for differential propagation and toxicity. Based on these findings, we have compared, for the first time, in this pilot study, the capacity of two alpha-synuclein strains and patient-derived Lewy body extracts to model synucleinopathies after intra-putaminal injection in the non-human primate brain. Functional alterations triggered by these injections were evaluated in vivo using glucose positron emission tomography imaging. Post-mortem immunohistochemical and biochemical analyses were used to detect neuropathological alterations in the dopaminergic system and alpha-synuclein pathology propagation. In vivo results revealed a decrease in glucose metabolism more pronounced in alpha-synuclein strain-injected animals. Histology showed a decreased number of dopaminergic tyrosine hydroxylase-positive cells in the substantia nigra to different extents according to the inoculum used. Biochemistry revealed that alpha-synuclein-induced aggregation, phosphorylation, and propagation in different brain regions are strain-specific. Our findings show that distinct alpha-synuclein strains can induce specific patterns of synucleinopathy in the non-human primate, changes in the nigrostriatal pathway, and functional alterations that resemble early-stage Parkinson's disease.
Collapse
Affiliation(s)
- Fayard Audrey
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France.
| | - Fenyi Alexis
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Lavisse Sonia
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Dovero Sandra
- Univ. de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Bousset Luc
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Tracy Bellande
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Lecourtois Sophie
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Jouy Christophe
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Guillermier Martine
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Jan Caroline
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Gipchtein Pauline
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Dehay Benjamin
- Univ. de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Bezard Erwan
- Univ. de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Melki Ronald
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Hantraye Philippe
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| | - Aron Badin Romina
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses 92260, France
| |
Collapse
|
10
|
Watanabe H, Shima S, Mizutani Y, Ueda A, Ito M. Multiple System Atrophy: Advances in Diagnosis and Therapy. J Mov Disord 2023; 16:13-21. [PMID: 36537066 PMCID: PMC9978260 DOI: 10.14802/jmd.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/28/2022] [Indexed: 12/24/2022] Open
Abstract
This review summarizes improvements in understanding the pathophysiology and early clinical symptoms of multiple system atrophy (MSA) and advancements in diagnostic methods and disease-modifying therapies for the condition. In 2022, the Movement Disorder Society proposed new diagnostic criteria to develop disease-modifying therapies and promote clinical trials of MSA since the second consensus was proposed in 2008. Regarding pathogenesis, cutting-edge findings have accumulated on the interactions of α-synuclein, neuroinflammation, and oligodendroglia with neurons. In neuroimaging, introducing artificial intelligence, machine learning, and deep learning has notably improved diagnostic accuracy and individual analyses. Advancements in treatment have also been achieved, including immunotherapy therapy against α-synuclein and serotonin-targeted and mesenchymal stem cell therapies, which are thought to affect several aspects of the disease, including neuroinflammation. The accelerated progress in clarifying the pathogenesis of MSA over the past few years and the development of diagnostic techniques for detecting early-stage MSA are expected to facilitate the development of disease-modifying therapies for one of the most intractable neurodegenerative diseases.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, Fujita Health University, School of Medicine, Toyoake, Japan,Corresponding author: Hirohisa Watanabe, MD, PhD Department of Neurology, Fujita Health University, School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan / Tel: +81- 562-93-9295 / Fax: +81-562-93-1856 / E-mail:
| | - Sayuri Shima
- Department of Neurology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University, School of Medicine, Toyoake, Japan,Department of Neurology, Fujita Health University Okazaki Medical Center, Okazaki, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University, School of Medicine, Toyoake, Japan,Department of Neurology, Fujita Health University Bantane Hospital, Nagoya, Japan
| |
Collapse
|
11
|
Estaun-Panzano J, Arotcarena ML, Bezard E. Monitoring α-synuclein aggregation. Neurobiol Dis 2023; 176:105966. [PMID: 36527982 PMCID: PMC9875312 DOI: 10.1016/j.nbd.2022.105966] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and subsequent aggregation of alpha-synuclein (α-syn) that accumulates in cytoplasmic inclusions bodies in the cells of affected brain regions. Since the seminal report of likely-aggregated α-syn presence within the Lewy bodies by Spillantini et al. in 1997, the keyword "synuclein aggregation" has appeared in over 6000 papers (Source: PubMed October 2022). Studying, observing, describing, and quantifying α-syn aggregation is therefore of paramount importance, whether it happens in tubo, in vitro, in post-mortem samples, or in vivo. The past few years have witnessed tremendous progress in understanding aggregation mechanisms and identifying various polymorphs. In this context of growing complexity, it is of utmost importance to understand what tools we possess, what exact information they provide, and in what context they may be applied. Nonetheless, it is also crucial to rationalize the relevance of the information and the limitations of these methods for gauging the final result. In this review, we present the main techniques that have shaped the current views about α-syn structure and dynamics, with particular emphasis on the recent breakthroughs that may change our understanding of synucleinopathies.
Collapse
Affiliation(s)
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, United Kingdom.
| |
Collapse
|
12
|
Reddy K, Dieriks BV. Multiple system atrophy: α-Synuclein strains at the neuron-oligodendrocyte crossroad. Mol Neurodegener 2022; 17:77. [DOI: 10.1186/s13024-022-00579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe aberrant accumulation of α-Synuclein within oligodendrocytes is an enigmatic, pathological feature specific to Multiple system atrophy (MSA). Since the characterization of the disease in 1969, decades of research have focused on unravelling the pathogenic processes that lead to the formation of oligodendroglial cytoplasmic inclusions. The discovery of aggregated α-Synuclein (α-Syn) being the primary constituent of glial cytoplasmic inclusions has spurred several lines of research investigating the relationship between the pathogenic accumulation of the protein and oligodendrocytes. Recent developments have identified the ability of α-Syn to form conformationally distinct “strains” with varying behavioral characteristics and toxicities. Such “strains” are potentially disease-specific, providing insight into the enigmatic nature of MSA. This review discusses the evidence for MSA-specific α-Syn strains, highlighting the current methods for detecting and characterizing MSA patient-derived α-Syn. Given the differing behaviors of α-Syn strains, we explore the seeding and spreading capabilities of MSA-specific strains, postulating their influence on the aggressive nature of the disease. These ideas culminate into one key question: What causes MSA–specific strain formation? To answer this, we discuss the interplay between oligodendrocytes, neurons and α-Syn, exploring the ability of each cell type to contribute to the aggregate formation while postulating the effect of additional variables such as protein interactions, host characteristics and environmental factors. Thus, we propose the idea that MSA strain formation results from the intricate interrelation between neurons and oligodendrocytes, with deficits in each cell type required to initiate α-Syn aggregation and MSA pathogenesis.
Graphical Abstract
Collapse
|
13
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Collapse
|
14
|
Teil M, Doudnikoff E, Thiolat ML, Bohic S, Bezard E, Dehay B. The Zinc Ionophore Clioquinol Reduces Parkinson's Disease Patient-Derived Brain Extracts-Induced Neurodegeneration. Mol Neurobiol 2022; 59:6245-6259. [PMID: 35915387 DOI: 10.1007/s12035-022-02974-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is pathologically characterized by intracellular α-synuclein-rich protein aggregates, named Lewy bodies (LB), and by the progressive loss of dopaminergic neurons in the substantia nigra. Several heavy metals, including zinc (Zn), have been suggested to play a role in PD progression, although the exact role of Zn in neurodegeneration remains to be fully elucidated. To address this gap, we investigated the effects of Zn modulation on the progression of degeneration in mice injected with PD patient-derived LB-extracts carrying toxic α-synuclein aggregates. Zn modulation was achieved using either a clioquinol-enriched diet, a Zn ionophore that redistributes cellular Zn, or a Zn-enriched diet that increases Zn levels. Clioquinol treatment significantly prevented dopaminergic neurodegeneration and reduced α-synuclein-associated pathology in LB-injected mice, while no differences were observed with Zn supplementation. Biochemical analyses further demonstrate that the expression levels of vesicle-specific Zn transporter ZnT3 in the striatum of LB-injected mice treated with clioquinol were decreased, suggesting an intracellular redistribution of Zn. Additionally, we found that clioquinol modulates the autophagy-lysosomal pathway by enhancing lysosomal redistribution within the neuronal compartments. Collectively, we found that in vivo pharmacological chelation of Zn, by dampening Zn-mediated cytotoxicity, can result in an overall attenuation of PD-linked lysosomal alterations and dopaminergic neurodegeneration. The results support zinc chelation as a disease-modifying strategy for treating PD.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | | | | | - Sylvain Bohic
- Synchrotron Radiation for Biomedicine (STROBE), Univ. Grenoble Alpes, Inserm, UA7, 38000, Grenoble, France
| | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
- Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS UMR 5293, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.
| |
Collapse
|