1
|
Jin Y, Du Q, Song M, Kang R, Zhou J, Zhang H, Ding Y. Amyloid-β-targeting immunotherapies for Alzheimer's disease. J Control Release 2024; 375:346-365. [PMID: 39271059 DOI: 10.1016/j.jconrel.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Recent advances in clinical passive immunotherapy have provided compelling evidence that eliminating amyloid-β (Aβ) slows cognitive decline in Alzheimer's disease (AD). However, the modest benefits and side effects observed in clinical trials indicate that current immunotherapy therapy is not a panacea, highlighting the need for a deeper understanding of AD mechanisms and the significance of early intervention through optimized immunotherapy or immunoprevention. This review focuses on the centrality of Aβ pathology in AD and summarizes recent clinical progress in passive and active immunotherapies targeting Aβ, discussing their lessons and failures to inform future anti-Aβ biotherapeutics design. Various delivery strategies to optimize Aβ-targeting immunotherapies are outlined, highlighting their benefits and drawbacks in overcoming challenges such as poor stability and limited tissue accessibility of anti-Aβ biotherapeutics. Additionally, the perspectives and challenges of immunotherapy and immunoprevention targeting Aβ are concluded in the end, aiming to guide the development of next-generation anti-Aβ immunotherapeutic agents towards improved efficacy and safety.
Collapse
Affiliation(s)
- Yi Jin
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qiaofei Du
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mingjie Song
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Kang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jianping Zhou
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Huaqing Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yang Ding
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Sun S, Chen X. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024; 40:295. [PMID: 39122871 DOI: 10.1007/s11274-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacterial antibiotic resistance has been recognized as a global threat to public health. It challenges the antibiotics currently used in clinical practice and causes severe and often fatal infectious diseases. Fighting against antibiotic-resistant bacteria (ARB) is growing more urgent. While understanding the molecular mechanisms that underlie resistance is a prerequisite, several major mechanisms have been previously proposed including bacterial efflux systems, reduced cell membrane permeability, antibiotic inactivation by enzymes, target modification, and target protection. In this context, this review presents a panel of promising and potential strategies to combat antibiotic resistance/resistant bacteria. Different types of direct-acting and indirect resistance breakers, such as efflux pump inhibitors, antibiotic adjuvants, and oxidative treatments are discussed. In addition, the emerging multi-omics approaches for rapid resistance identification and promising alternatives to existing antibiotics are highlighted. Overall, this review suggests that continued effort and investment in research are required to develop new antibiotics and alternatives to existing antibiotics and translate them into environmental and clinical applications.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
3
|
Konen FF, Jendretzky KF, Ratuszny D, Schuppner R, Sühs KW, Pawlitzki M, Ruck T, Meuth SG, Skripuletz T. Ravulizumab in myasthenic crisis: the first case report. J Neurol 2024; 271:2898-2901. [PMID: 38388927 PMCID: PMC11055754 DOI: 10.1007/s00415-024-12234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | | | - Dominica Ratuszny
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Ramona Schuppner
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Kurt-Wolfram Sühs
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Zimmer L. Recent applications of positron emission tomographic (PET) imaging in psychiatric drug discovery. Expert Opin Drug Discov 2024; 19:161-172. [PMID: 37948046 DOI: 10.1080/17460441.2023.2278635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Psychiatry is one of the medical disciplines that suffers most from a lack of innovation in its therapeutic arsenal. Many failures in drug candidate trials can be explained by pharmacological properties that have been poorly assessed upstream, in terms of brain passage, brain target binding and clinical outcomes. Positron emission tomography can provide pharmacokinetic and pharmacodynamic data to help select candidate-molecules for further clinical trials. AREAS COVERED This review aims to explain and discuss the various methods using positron-emitting radiolabeled molecules to trace the cerebral distribution of the drug-candidate or indirectly measure binding to its therapeutic target. More than an exhaustive review of PET studies in psychopharmacology, this article highlights the contributions this technology can make in drug discovery applied to psychiatry. EXPERT OPINION PET neuroimaging is the only technological approach that can, in vivo in humans, measure cerebral delivery of a drug candidate, percentage and duration of target binding, and even the pharmacological effects. PET studies in a small number of subjects in the early stages of the development of a psychotropic drug can therefore provide the pharmacokinetic/pharmacodynamic data required for subsequent clinical evaluation. While PET technology is demanding in terms of radiochemical, radiopharmacological and nuclear medicine expertise, its integration into the development process of new drugs for psychiatry has great added value.
Collapse
Affiliation(s)
- Luc Zimmer
- Lyon Neuroscience Research Center, Université Claude Bernard, Lyon, France
- CERMEP, Hospices Civils de Lyon, Lyon, France
- Institut National des Sciences et Technologies Nucléaire, Saclay, France
| |
Collapse
|
5
|
Vashisth K, Sharma S, Ghosh S, Babu MA, Ghosh S, Iqbal D, Kamal M, Almutary AG, Jha SK, Ojha S, Bhaskar R, Jha NK, Sinha JK. Immunotherapy in Alzheimer's Disease: Current Status and Future Directions. J Alzheimers Dis 2024; 101:S23-S39. [PMID: 39422934 DOI: 10.3233/jad-230603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder characterized by memory loss, cognitive decline, and behavioral changes. Immunotherapy aims to harness the immune system to target the underlying pathology of AD and has shown promise as a disease-modifying treatment for AD. By focusing on the underlying disease pathogenesis and encouraging the removal of abnormal protein aggregates in the brain, immunotherapy shows promise as a potential treatment for AD. The development of immunotherapy for AD began with early attempts to use antibodies to target beta-amyloid. The amyloid hypothesis which suggests that the accumulation of beta-amyloid in the brain triggers the pathological cascade that leads to AD has been a driving force behind the development of immunotherapy for AD. However, recent clinical trials of monoclonal antibodies targeting amyloid-β have shown mixed results, highlighting the need for further research into alternative immunotherapy approaches. Additionally, the safety and efficacy of immunotherapy for AD remain an area of active investigation. Some immunotherapeutic approaches have shown promise, while others have been associated with significant side effects, including inflammation of the brain. Sleep has a significant impact on various physiological processes, including the immune system, and has been linked to the pathogenesis of AD. Thus, improving sleep quality and duration may benefit the immune system and potentially enhance the effectiveness of immunotherapeutic approaches for AD. In this review, we discussed the promises of immunotherapy as a disease-modifying treatment for AD as well as possible methods to improve the efficacy and safety of immunotherapy to achieve better therapeutic outcomes.
Collapse
Affiliation(s)
| | - Shivani Sharma
- Department of Pharmaceutics, R.K.S.D. College of Pharmacy, Kaithal, Haryana, India
| | - Shampa Ghosh
- GloNeuro, Noida, India
- ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Korea
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | |
Collapse
|
6
|
Davydova TV, Vetrile LA, Zakharova IA. Effect of Glutamate Antibody F(ab)2 Fragments on Memory Changes in Aged C57BL/6 Mice. Bull Exp Biol Med 2023; 175:762-764. [PMID: 37987943 DOI: 10.1007/s10517-023-05941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 11/21/2023]
Abstract
Intranasal administration of F(ab)2 fragments of anti-glutamate antibodies to 12-month-old C57BL/6 mice improves passive avoidance conditioning and have no effect on horizontal and vertical locomotor activity in the open-field test. In contrast to full-length antibodies to glutamate, their F(ab)2 fragments significantly increase the number of animals developed a conditioned passive avoidance reflex.
Collapse
Affiliation(s)
- T V Davydova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - L A Vetrile
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I A Zakharova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
7
|
von Baumgarten L, Stauss HJ, Lünemann JD. Synthetic Cell-Based Immunotherapies for Neurologic Diseases. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200139. [PMID: 37385738 PMCID: PMC10474853 DOI: 10.1212/nxi.0000000000200139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023]
Abstract
The therapeutic success and widespread approval of genetically engineered T cells for a variety of hematologic malignancies spurred the development of synthetic cell-based immunotherapies for CNS lymphoma, primary brain tumors, and a growing spectrum of nononcologic disease conditions of the nervous system. Chimeric antigen receptor effector T cells bear the potential to deplete target cells with higher efficacy, better tissue penetration, and greater depth than antibody-based cell depletion therapies. In multiple sclerosis and other autoimmune disorders, engineered T-cell therapies are being designed and currently tested in clinical trials for their safety and efficacy to eliminate pathogenic B-lineage cells. Chimeric autoantibody receptor T cells expressing a disease-relevant autoantigen as cell surface domains are designed to selectively deplete autoreactive B cells. Alternative to cell depletion, synthetic antigen-specific regulatory T cells can be engineered to locally restrain inflammation, support immune tolerance, or efficiently deliver neuroprotective factors in brain diseases in which current therapeutic options are very limited. In this article, we illustrate prospects and bottlenecks for the clinical development and implementation of engineered cellular immunotherapies in neurologic diseases.
Collapse
Affiliation(s)
- Louisa von Baumgarten
- From the Department of Neurosurgery (L.v.B.), University Hospital, Ludwig-Maximilians-Universität Munich, Germany; Division of Infection & Immunity (H.J.S.), UCL Institute of Immunity & Transplantation, London, UK; and Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany
| | - Hans J Stauss
- From the Department of Neurosurgery (L.v.B.), University Hospital, Ludwig-Maximilians-Universität Munich, Germany; Division of Infection & Immunity (H.J.S.), UCL Institute of Immunity & Transplantation, London, UK; and Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany
| | - Jan D Lünemann
- From the Department of Neurosurgery (L.v.B.), University Hospital, Ludwig-Maximilians-Universität Munich, Germany; Division of Infection & Immunity (H.J.S.), UCL Institute of Immunity & Transplantation, London, UK; and Department of Neurology with Institute of Translational Neurology (J.D.L.), University Hospital Münster, Germany.
| |
Collapse
|
8
|
Krämer J, Bar-Or A, Turner TJ, Wiendl H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat Rev Neurol 2023; 19:289-304. [PMID: 37055617 PMCID: PMC10100639 DOI: 10.1038/s41582-023-00800-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.
Collapse
Affiliation(s)
- Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
9
|
Mader S, Ho S, Wong HK, Baier S, Winklmeier S, Riemer C, Rübsamen H, Fernandez IM, Gerhards R, Du C, Chuquisana O, Lünemann JD, Lux A, Nimmerjahn F, Bradl M, Kawakami N, Meinl E. Dissection of complement and Fc-receptor-mediated pathomechanisms of autoantibodies to myelin oligodendrocyte glycoprotein. Proc Natl Acad Sci U S A 2023; 120:e2300648120. [PMID: 36943883 PMCID: PMC10068779 DOI: 10.1073/pnas.2300648120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) have recently been established to define a new disease entity, MOG-antibody-associated disease (MOGAD), which is clinically overlapping with multiple sclerosis. MOG-specific antibodies (Abs) from patients are pathogenic, but the precise effector mechanisms are currently still unknown and no therapy is approved for MOGAD. Here, we determined the contributions of complement and Fc-receptor (FcR)-mediated effects in the pathogenicity of MOG-Abs. Starting from a recombinant anti-MOG (mAb) with human IgG1 Fc, we established MOG-specific mutant mAbs with differential FcR and C1q binding. We then applied selected mutants of this MOG-mAb in two animal models of experimental autoimmune encephalomyelitis. First, we found MOG-mAb-induced demyelination was mediated by both complement and FcRs about equally. Second, we found that MOG-Abs enhanced activation of cognate MOG-specific T cells in the central nervous system (CNS), which was dependent on FcR-, but not C1q-binding. The identification of complement-dependent and -independent pathomechanisms of MOG-Abs has implications for therapeutic strategies in MOGAD.
Collapse
Affiliation(s)
- Simone Mader
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Samantha Ho
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Hoi Kiu Wong
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Selia Baier
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Carolina Riemer
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, 91058Erlangen, Germany
| | - Heike Rübsamen
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Iris Marti Fernandez
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Ramona Gerhards
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Cuilian Du
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149Münster, Germany
| | - Jan D. Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149Münster, Germany
| | - Anja Lux
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, 91058Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, 91058Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen91058, Germany
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090Vienna, Austria
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Spatola M, Chuquisana O, Jung W, Lopez JA, Wendel EM, Ramanathan S, Keller CW, Hahn T, Meinl E, Reindl M, Dale RC, Wiendl H, Lauffenburger DA, Rostásy K, Brilot F, Alter G, Lünemann JD. Humoral signatures of MOG-antibody-associated disease track with age and disease activity. Cell Rep Med 2023; 4:100913. [PMID: 36669487 PMCID: PMC9975090 DOI: 10.1016/j.xcrm.2022.100913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
Myelin oligodendrocyte glycoprotein (MOG)-antibody (Ab)-associated disease (MOGAD) is an inflammatory demyelinating disease of the CNS. Although MOG is encephalitogenic in different mammalian species, the mechanisms by which human MOG-specific Abs contribute to MOGAD are poorly understood. Here, we use a systems-level approach combined with high-dimensional characterization of Ab-associated immune features to deeply profile humoral immune responses in 123 patients with MOGAD. We show that age is a major determinant for MOG-antibody-related immune signatures. Unsupervised clustering additionally identifies two dominant immunological endophenotypes of MOGAD. The pro-inflammatory endophenotype characterized by increased binding affinities for activating Fcγ receptors (FcγRs), capacity to activate innate immune cells, and decreased frequencies of galactosylated and sialylated immunoglobulin G (IgG) glycovariants is associated with clinically active disease. Our data support the concept that FcγR-mediated effector functions control the pathogenicity of MOG-specific IgG and suggest that FcγR-targeting therapies should be explored for their therapeutic potential in MOGAD.
Collapse
Affiliation(s)
- Marianna Spatola
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA.
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph A Lopez
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eva-Maria Wendel
- Department of Pediatric Neurology, Olgahospital/Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Concord Hospital, Sydney, NSW 2139, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians-Universität München, 82152 Munich, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Kevin Rostásy
- Department of Pediatric Neurology, Children's Hospital Datteln, University Witten/Herdecke, 45711 Datteln, Germany
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Specialty of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard Medical School, Cambridge, MA 02139, USA
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, WWU, Münster 48149, Germany.
| |
Collapse
|
11
|
Masanneck L, Räuber S, Schroeter CB, Lehnerer S, Ziemssen T, Ruck T, Meuth SG, Pawlitzki M. Driving time-based identification of gaps in specialised care coverage: An example of neuroinflammatory diseases in Germany. Digit Health 2023; 9:20552076231152989. [PMID: 36762020 PMCID: PMC9903011 DOI: 10.1177/20552076231152989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Objective Due to the growing complexity in monitoring and treatment of many disorders, disease-specific care and research networks offer patients certified healthcare. However, the networks' ability to provide health services close to patients' homes usually remains vague. Digital Health Technologies (DHTs) help to provide better care, especially if implemented in a targeted manner in regions undersupplied by specialised networks. Therefore, we used a car travel time-based isochrone approach to identify care gaps using the example of the neuroinflammation-focused German healthcare and research networks for multiple sclerosis (MS), myasthenia gravis (MG), myositis and immune-mediated neuropathy. Methods Excellence centres were mapped, and isochrones for 30, 60, 90 and 120 minutes were calculated. The resulting geometric figures were aggregated and used to mask the global human settlement population grid 2019 to estimate German inhabitants that can reach centres within the given periods. Results While 96.48% of Germans can drive to an MS-focused centre within one hour, coverage is lower for the rare disease networks for MG (48.3%), myositis (43.1%) and immune-mediated neuropathy (56.7%). Within 120 minutes, more than 80% of Germans can reach a centre of any network. Besides the generally worse covered rural regions such as North-Eastern Germany, the rare disease networks also show network-specific regional underrepresentation. Conclusion An isochrone-based approach helps identify regions where specialised care is hard to reach, which might be especially troublesome in the case of an often disabled patient collective. Patient care could be improved by focusing deployments of disease-specific DHTs on these areas.
Collapse
Affiliation(s)
- Lars Masanneck
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany,Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sophie Lehnerer
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, Berlin, Germany,Centre for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Tjalf Ziemssen
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty University Hospital Düsseldorf, Düsseldorf, Germany,Marc Pawlitzki, Department of Neurology, Heinrich-Heine University Duesseldorf, Moorenstraße 5, D-40225 Duesseldorf, Germany.
| |
Collapse
|
12
|
Advances in Antibody-Based Therapeutics for Cerebral Ischemia. Pharmaceutics 2022; 15:pharmaceutics15010145. [PMID: 36678774 PMCID: PMC9866586 DOI: 10.3390/pharmaceutics15010145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral ischemia is an acute disorder characterized by an abrupt reduction in blood flow that results in immediate deprivation of both glucose and oxygen. The main types of cerebral ischemia are ischemic and hemorrhagic stroke. When a stroke occurs, several signaling pathways are activated, comprising necrosis, apoptosis, and autophagy as well as glial activation and white matter injury, which leads to neuronal cell death. Current treatments for strokes include challenging mechanical thrombectomy or tissue plasminogen activator, which increase the danger of cerebral bleeding, brain edema, and cerebral damage, limiting their usage in clinical settings. Monoclonal antibody therapy has proven to be effective and safe in the treatment of a variety of neurological disorders. In contrast, the evidence for stroke therapy is minimal. Recently, Clone MTS510 antibody targeting toll-like receptor-4 (TLR4) protein, ASC06-IgG1 antibody targeting acid sensing ion channel-1a (ASIC1a) protein, Anti-GluN1 antibodies targeting N-methyl-D-aspartate (NMDA) receptor associated calcium influx, GSK249320 antibody targeting myelin-associated glycoprotein (MAG), anti-High Mobility Group Box-1 antibody targeting high mobility group box-1 (HMGB1) are currently under clinical trials for cerebral ischemia treatment. In this article, we review the current antibody-based pharmaceuticals for neurological diseases, the use of antibody drugs in stroke, strategies to improve the efficacy of antibody therapeutics in cerebral ischemia, and the recent advancement of antibody drugs in clinical practice. Overall, we highlight the need of enhancing blood-brain barrier (BBB) penetration for the improvement of antibody-based therapeutics in the brain, which could greatly enhance the antibody medications for cerebral ischemia in clinical practice.
Collapse
|
13
|
Briani C, Visentin A. Therapeutic Monoclonal Antibody Therapies in Chronic Autoimmune Demyelinating Neuropathies. Neurotherapeutics 2022; 19:874-884. [PMID: 35349079 PMCID: PMC9294114 DOI: 10.1007/s13311-022-01222-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases of the peripheral nervous system have so far been treated mainly with exogenous high-dose intravenous immunoglobulins (IVIg), that act through several mechanisms, including neutralization of pathogenic autoantibodies, modulation of lymphocyte activity, interference with antigen presentation, and interaction with Fc receptors, cytokines, and the complement system. Other therapeutic strategies have recently been developed, in part to address the increasing shortage of IVIg, prime among which is the use of B cell depleting monoclonal antibodies, or small molecule inhibitors targeting the B-cell specific kinases. Rituximab, a chimeric monoclonal antibody against CD20 + B lymphocytes, is currently the most used, especially in anti-MAG antibody neuropathy and autoimmune neuropathies with antibodies to nodal/paranodal antigens that are unresponsive to IVIg. After several reports of its efficacy in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), rituximab is currently under investigation in three Phase 2 trials in CIDP. In addition, the possible role of complement activation in the pathogenesis of chronic autoimmune neuropathies has brought into consideration drugs that can block the complement cascade, such as eculizumab, a monoclonal antibody already assessed in acute polyradiculoneuropathies, and approved for myasthenia gravis. Preliminary data on eculizumab in multifocal motor neuropathy have been published, but randomized controlled studies are pending. Moreover, the neonatal Fc receptor, that recycles IgGs by preventing their lysosome degradation, is an important and attractive pharmacological target. Antibodies against FcRn, which reduce circulating IgG (both pathogenic and non-pathogenic) have been developed. The FcRn blocker efgartigimod, a humanized IgG1-derived Fc fragment, which competitively inhibits the FcRn, has recently been approved for the treatment of myasthenia gravis and is currently under investigation in CIDP. In addition, the anti-human FcRn monoclonal antibody rozanolixizumab is currently being assessed in phase 2 trials in CIDP. However, none of the abovementioned monoclonal antibodies is currently approved for treatment of any immune-mediated neuropathies. While more specific and individualized therapies are being developed, the possibility of combined treatments targeting different pathogenic mechanisms deserves consideration as well.
Collapse
Affiliation(s)
- Chiara Briani
- Department of Neurosciences, Neurology Unit, University of Padova, Padova, Italy.
| | - Andrea Visentin
- Department of Medicine, Hematology Unit, University of Padova, Padova, Italy
| |
Collapse
|