1
|
Semizoglou E, Lo Re L, Middleton SJ, Perez-Sanchez J, Tufarelli T, Bennett DL, Chisholm KI. In vivo calcium imaging reveals directional sensitivity of C-low threshold mechanoreceptors. J Physiol 2025. [PMID: 39810695 DOI: 10.1113/jp286631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals. Here we suggest a new approach to studying genetically labelled C-LTMRs using in vivo calcium imaging. We used an automated rotating brush stimulus and von Frey filaments, applied to the hairy skin of anaesthetized mice to mirror light and affective touch. Simultaneously we visualized changes in C-LTMR activity and confirmed that these neurons are sensitive to low-threshold punctate mechanical stimuli and brush stimuli with a strong preference for slow brushing speeds. We also reveal that C-LMTRs are directionally sensitive, showing more activity when brushed against the natural orientation of the hair. We present in vivo calcium imaging of genetically labelled C-LTMRs as a useful approach that can reveal new aspects of C-LTMR physiology. KEY POINTS: C-low threshold mechanoreceptors are sensitive to the directionality of a brush stimulus, being preferentially activated by brushing against the grain of the hair, compared with brushing with the grain of the hair. This is surprising as brushing against the grain of the hair is considered less pleasant. In vivo calcium imaging is a useful approach to the study of C-low threshold mechanoreceptors. While viral transfection, using systemic AAV9, is effective in labelling most sensory neuron populations in the dorsal root ganglion, it fails to label C-low threshold mechanoreceptors.
Collapse
Affiliation(s)
- Evangelia Semizoglou
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, USA
| | - Laure Lo Re
- Tafalgie Therapeutics, Campus de Luminy, Marseille, France
| | - Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Tommaso Tufarelli
- School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kim I Chisholm
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
2
|
Liu X, Xiang J, Fan S, Chen X, Peng C, Xu Z. 20S-Ginsenoside Rh2, the major bioactive saponin in Panax notoginseng flowers, ameliorates cough by inhibition of NaV1.7 and TRPV1 channel currents and downregulation of TRPV1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118716. [PMID: 39179055 DOI: 10.1016/j.jep.2024.118716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng flowers, which are the buds of the traditional Chinese medicinal herb Sanqi, are widely used in China for their cough-ameliorating properties, with demonstrated therapeutic effects in the treatment of both acute and chronic coughs. However, both the antitussive mechanism and active compound basis of P. notoginseng flowers remain poorly understood. AIM OF THE STUDY We investigated the antitussive effects of P. notoginseng flowers, identified the bioactive constituents responsible for alleviating cough symptoms, and elucidated the underlying pharmacological mechanisms. MATERIALS AND METHODS We analyzed the major chemical constituents of aqueous extracts of P. notoginseng flowers using liquid chromatography-mass spectrometry and quantitatively analyzed the key component, 20S-ginsenoside Rh2, using high-performance liquid chromatography. Using a cough reflex model in healthy mice and an ovalbumin-induced, highly sensitive guinea pig cough model, we verified the suppressive effects of P. notoginseng flowers and their saponin constituents on coughing. Furthermore, we explored the mechanisms of action of the key ion channels, NaV1.7 and TRPV1, using whole-cell patch-clamp techniques and molecular docking. Finally, the therapeutic mechanisms of P. notoginseng flowers on pathological cough were revealed using hematoxylin and eosin staining, immunohistochemistry, and western blotting. RESULTS The active components of P. notoginseng flowers were primarily protopanaxadiol-type saponins, among which 20S-ginsenoside Rh2 had the highest content (51.46 mg/g). In the mouse model, P. notoginseng flowers exhibited antitussive effects comparable to those of pentoxyverine citrate. Although its main saponin component, 20S-ginsenoside Rh2, showed slightly weaker effects, it still demonstrated concentration-dependent inhibition of channel activity. The whole-cell patch-clamp technique and virtual molecular docking showed that Rh2 might exert its effects by directly binding to the NaV1.7 and TRPV1 channels. In the guinea pig model, P. notoginseng flowers and their saponin components not only reduced cough frequency and prolonged the latency period before cough onset, but also significantly inhibited tracheal and pulmonary inflammation and the overexpression of TRPV1. CONCLUSIONS 20S-Ginsenoside Rh2, the major bioactive saponin in P. notoginseng flowers, exhibits potent antitussive effects. The potential mechanism of action of 20S-Ginsenoside Rh2 in the treatment of cough may involve inhibiting NaV1.7 and TRPV1 channel currents through direct binding to core protein active sites and downregulating TRPV1 expression.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Jie Xiang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuyuan Fan
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xumin Chen
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chengzhan Peng
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhengxin Xu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, 225009, China; Yeda Institute of Gene and Cell Therapy, Taizhou, 318000, China.
| |
Collapse
|
3
|
Resch FJ, Heber S, Shahi F, Zauner M, Ciotu CI, Gleiss A, Sator S, Fischer MJM. Human cold pain: a randomized crossover trial. Pain 2024:00006396-990000000-00795. [PMID: 39693244 DOI: 10.1097/j.pain.0000000000003503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024]
Abstract
ABSTRACT The mechanism causing cold pain in humans is unresolved. Animal data suggest a nonredundant contribution to cold pain for transient receptor potential channels TRPM8 and TRPA1 for detection and voltage-gated sodium channels NaV1.7 and NaV1.8 for conduction at these temperatures. We established an intradermal injection-based cold pain model, which allows pharmacologically addressing molecular targets at the site of cooling. Lidocaine, added to the injection solution as positive control, largely reduced cold-induced pain in 36 volunteers. The 4 mentioned molecular targets were blocked by antagonists in a double-blinded crossover trial. Pain induced by 3°C intradermal fluid was not reduced to a relevant extent by any of the 4 antagonists alone or by the quadruple combination. However, the temperature threshold for cold pain appeared shifted by the inhibition of TRPA1, TRPM8, and NaV1.7 and to a lesser extent by NaV1.8 inhibition, 4-fold inhibition decreased the threshold by 5.8°C. Further mechanisms contributing to human cold pain need to be considered.
Collapse
Affiliation(s)
- Felix J Resch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Heber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Farzin Shahi
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Zauner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Sabine Sator
- Division of Special Anesthesia and Pain Medicine, Department of Anesthesia, Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Yu H, Nagi SS, Usoskin D, Hu Y, Kupari J, Bouchatta O, Yan H, Cranfill SL, Gautam M, Su Y, Lu Y, Wymer J, Glanz M, Albrecht P, Song H, Ming GL, Prouty S, Seykora J, Wu H, Ma M, Marshall A, Rice FL, Li M, Olausson H, Ernfors P, Luo W. Leveraging deep single-soma RNA sequencing to explore the neural basis of human somatosensation. Nat Neurosci 2024; 27:2326-2340. [PMID: 39496796 PMCID: PMC11614738 DOI: 10.1038/s41593-024-01794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human (h)DRG neurons-critical information to decipher their functions-are lacking due to technical difficulties. In this study, we isolated somata from individual hDRG neurons and conducted deep RNA sequencing (RNA-seq) to detect, on average, over 9,000 unique genes per neuron, and we identified 16 neuronal types. These results were corroborated and validated by spatial transcriptomics and RNAscope in situ hybridization. Cross-species analyses revealed divergence among potential pain-sensing neurons and the likely existence of human-specific neuronal types. Molecular-profile-informed microneurography recordings revealed temperature-sensing properties across human sensory afferent types. In summary, by employing single-soma deep RNA-seq and spatial transcriptomics, we generated an hDRG neuron atlas, which provides insights into human somatosensory physiology and serves as a foundation for translational work.
Collapse
Affiliation(s)
- Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saad S Nagi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dmitry Usoskin
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden
| | - Jussi Kupari
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden
| | - Otmane Bouchatta
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hanying Yan
- Department of Biostatistics in Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suna Li Cranfill
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mayank Gautam
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Su
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - You Lu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James Wymer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Max Glanz
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Phillip Albrecht
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Prouty
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Marshall
- Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Frank L Rice
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, USA
| | - Mingyao Li
- Department of Biostatistics in Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Håkan Olausson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden.
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Tanaka T, Isonishi A, Banja M, Yamamoto R, Sonobe M, Okuda-Ashitaka E, Furue H, Okuda H, Tatsumi K, Wanaka A. Dermal macrophages control tactile perception under physiological conditions via NGF signaling. Sci Rep 2024; 14:27192. [PMID: 39516548 PMCID: PMC11549316 DOI: 10.1038/s41598-024-78683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
We demonstrated previously that sorting nexin 25 (SNX25) in nerve-associated macrophages plays critical roles in pain sensation by regulating tissue NGF content under both physiological and neuropathic conditions. In the present study, we apply the SNX25-NGF paradigm to tactile perception by showing that Snx25+/- mice or macrophage-specific Snx25 conditional knock-out (mcKO) mice had weaker responses to tactile stimuli in normal conditions. Snx25 mcKO mice responded poorly to transcutaneous electrical stimuli at a frequency of 5 Hz (C fiber responses), but normally to stimuli at a frequency of 250 Hz (Aδ fiber responses) or of 2000 Hz (Aβ fiber responses). CX3CR1-positive dermal macrophages were frequently found near calcitonin gene-related peptide (CGRP)- positive nerves and, less frequently, tyrosine hydroxylase (TH)-positive nerves. We confirmed that the tissue content of NGF was lower in Snx25 mcKO mice than in wild-type mice, and in turn, dermal NGF injection restored tactile sensitivity in Snx25+/- mice and Snx25 mcKO mice to normal levels. These results indicate that CGRP-positive C-nociceptors (possibly also TH-positive C-LTMRs) associated dermal macrophages control tactile perception by producing NGF and secreting it into the dermis.
Collapse
Affiliation(s)
- Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan.
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Mitsuko Banja
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Rikuto Yamamoto
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Masaki Sonobe
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Emiko Okuda-Ashitaka
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Hiroaki Okuda
- Department of Functional Morphology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
6
|
Taub DG, Woolf CJ. Age-dependent small fiber neuropathy: Mechanistic insights from animal models. Exp Neurol 2024; 377:114811. [PMID: 38723859 PMCID: PMC11131160 DOI: 10.1016/j.expneurol.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 05/05/2024] [Indexed: 05/28/2024]
Abstract
Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Middleton SJ, Hu H, Perez-Sanchez J, Zuberi S, McGrath Williams J, Weir GA, Bennett DL. GluCl.Cre ON enables selective inhibition of molecularly defined pain circuits. Pain 2023; 164:2780-2791. [PMID: 37366588 PMCID: PMC10652717 DOI: 10.1097/j.pain.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Insight into nociceptive circuits will ultimately build our understanding of pain processing and aid the development of analgesic strategies. Neural circuit analysis has been advanced greatly by the development of optogenetic and chemogenetic tools, which have allowed function to be ascribed to discrete neuronal populations. Neurons of the dorsal root ganglion, which include nociceptors, have proved challenging targets for chemogenetic manipulation given specific confounds with commonly used DREADD technology. We have developed a cre/lox dependant version of the engineered glutamate-gated chloride channel (GluCl) to restrict and direct its expression to molecularly defined neuronal populations. We have generated GluCl.Cre ON that selectively renders neurons expressing cre-recombinase susceptible to agonist-induced silencing. We have functionally validated our tool in multiple systems in vitro, and subsequently generated viral vectors and tested its applicability in vivo. Using Nav1.8 Cre mice to restrict AAV-GluCl.Cre ON to nociceptors, we demonstrate effective silencing of electrical activity in vivo and concomitant hyposensitivity to noxious thermal and noxious mechanical pain, whereas light touch and motor function remained intact. We also demonstrated that our strategy can effectively silence inflammatory-like pain in a chemical pain model. Collectively, we have generated a novel tool that can be used to selectively silence defined neuronal circuits in vitro and in vivo. We believe that this addition to the chemogenetic tool box will facilitate further understanding of pain circuits and guide future therapeutic development.
Collapse
Affiliation(s)
- Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Huimin Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jimena Perez-Sanchez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sana Zuberi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Greg A. Weir
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Barry AM, Zhao N, Yang X, Bennett DL, Baskozos G. Deep RNA-seq of male and female murine sensory neuron subtypes after nerve injury. Pain 2023; 164:2196-2215. [PMID: 37318015 PMCID: PMC10502896 DOI: 10.1097/j.pain.0000000000002934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT Dorsal root ganglia (DRG) neurons have been well described for their role in driving both acute and chronic pain. Although nerve injury is known to cause transcriptional dysregulation, how this differs across neuronal subtypes and the impact of sex is unclear. Here, we study the deep transcriptional profiles of multiple murine DRG populations in early and late pain states while considering sex. We have exploited currently available transgenics to label numerous subpopulations for fluorescent-activated cell sorting and subsequent transcriptomic analysis. Using bulk tissue samples, we are able to circumvent the issues of low transcript coverage and drop-outs seen with single-cell data sets. This increases our power to detect novel and even subtle changes in gene expression within neuronal subtypes and discuss sexual dimorphism at the neuronal subtype level. We have curated this resource into an accessible database for other researchers ( https://livedataoxford.shinyapps.io/drg-directory/ ). We see both stereotyped and unique subtype signatures in injured states after nerve injury at both an early and late timepoint. Although all populations contribute to a general injury signature, subtype enrichment changes can also be seen. Within populations, there is not a strong intersection of sex and injury, but previously unknown sex differences in naïve states-particularly in Aβ-RA + Aδ-low threshold mechanoreceptors-still contribute to differences in injured neurons.
Collapse
Affiliation(s)
- Allison M. Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Na Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Yu H, Usoskin D, Nagi SS, Hu Y, Kupari J, Bouchatta O, Cranfill SL, Gautam M, Su Y, Lu Y, Wymer J, Glanz M, Albrecht P, Song H, Ming GL, Prouty S, Seykora J, Wu H, Ma M, Rice FL, Olausson H, Ernfors P, Luo W. Single-Soma Deep RNA sequencing of Human DRG Neurons Reveals Novel Molecular and Cellular Mechanisms Underlying Somatosensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533207. [PMID: 36993480 PMCID: PMC10055202 DOI: 10.1101/2023.03.17.533207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.
Collapse
|
10
|
Santiago C, Sharma N, Africawala N, Siegrist J, Handler A, Tasnim A, Anjum R, Turecek J, Lehnert BP, Renauld S, Nolan-Tamariz M, Iskols M, Magee AR, Paradis S, Ginty DD. Activity-dependent development of the body's touch receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559109. [PMID: 37790437 PMCID: PMC10542488 DOI: 10.1101/2023.09.23.559109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report a role for activity in the development of the primary sensory neurons that detect touch. Genetic deletion of Piezo2, the principal mechanosensitive ion channel in somatosensory neurons, caused profound changes in the formation of mechanosensory end organ structures and altered somatosensory neuron central targeting. Single cell RNA sequencing of Piezo2 conditional mutants revealed changes in gene expression in the sensory neurons activated by light mechanical forces, whereas other neuronal classes were less affected. To further test the role of activity in mechanosensory end organ development, we genetically deleted the voltage-gated sodium channel Nav1.6 (Scn8a) in somatosensory neurons throughout development and found that Scn8a mutants also have disrupted somatosensory neuron morphologies and altered electrophysiological responses to mechanical stimuli. Together, these findings indicate that mechanically evoked neuronal activity acts early in life to shape the maturation of the mechanosensory end organs that underlie our sense of gentle touch.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikhil Sharma
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Nusrat Africawala
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julianna Siegrist
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Annie Handler
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Aniqa Tasnim
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rabia Anjum
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan P. Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexandra R. Magee
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Suzanne Paradis
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lead Contact
| |
Collapse
|
11
|
Deng L, Dourado M, Reese RM, Huang K, Shields SD, Stark KL, Maksymetz J, Lin H, Kaminker JS, Jung M, Foreman O, Tao J, Ngu H, Joseph V, Roose-Girma M, Tam L, Lardell S, Orrhult LS, Karila P, Allard J, Hackos DH. Nav1.7 is essential for nociceptor action potentials in the mouse in a manner independent of endogenous opioids. Neuron 2023; 111:2642-2659.e13. [PMID: 37352856 DOI: 10.1016/j.neuron.2023.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Loss-of-function mutations in Nav1.7, a voltage-gated sodium channel, cause congenital insensitivity to pain (CIP) in humans, demonstrating that Nav1.7 is essential for the perception of pain. However, the mechanism by which loss of Nav1.7 results in insensitivity to pain is not entirely clear. It has been suggested that loss of Nav1.7 induces overexpression of enkephalin, an endogenous opioid receptor agonist, leading to opioid-dependent analgesia. Using behavioral pharmacology and single-cell RNA-seq analysis, we find that overexpression of enkephalin occurs only in cLTMR neurons, a subclass of sensory neurons involved in low-threshold touch detection, and that this overexpression does not play a role in the analgesia observed following genetic removal of Nav1.7. Furthermore, we demonstrate using laser speckle contrast imaging (LSCI) and in vivo electrophysiology that Nav1.7 function is required for the initiation of C-fiber action potentials (APs), which explains the observed insensitivity to pain following genetic removal or inhibition of Nav1.7.
Collapse
Affiliation(s)
- Lunbin Deng
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Michelle Dourado
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Rebecca M Reese
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Kevin Huang
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Shannon D Shields
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Kimberly L Stark
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - James Maksymetz
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Han Lin
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Joshua S Kaminker
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Min Jung
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Janet Tao
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Victory Joseph
- Department of Biomedical Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Meron Roose-Girma
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | - Paul Karila
- Cellectricon AB, Neongatan 4B, 431 53 Mölndal, Sweden
| | - Julien Allard
- E-Phys, CRBC, 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - David H Hackos
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA.
| |
Collapse
|
12
|
Schirmer A, Croy I, Ackerley R. What are C-tactile afferents and how do they relate to "affective touch"? Neurosci Biobehav Rev 2023; 151:105236. [PMID: 37196923 DOI: 10.1016/j.neubiorev.2023.105236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Since their initial discovery in cats, low-threshold C-fiber mechanoreceptors have become a central interest of scientists studying the affective aspects of touch. Their pursuit in humans, here termed C-tactile (CT) afferents, has led to the establishment of a research field referred to as "affective touch", which is differentiated from "discriminative touch". Presently, we review these developments based on an automated semantic analysis of more than 1000 published abstracts as well as empirical evidence and the solicited opinions of leading experts in the field. Our review provides a historical perspective and update of CT research, it reflects on the meaning of "affective touch", and discusses how current insights challenge established views on the relation between CTs and affective touch. We conclude that CTs support gentle, affective touch, but that not every affective touch experience relies on CTs or must necessarily be pleasant. Moreover, we speculate that currently underappreciated aspects of CT signaling will prove relevant for the manner in which these unique fibers support how humans connect both physically and emotionally.
Collapse
Affiliation(s)
- Annett Schirmer
- Department of Psychology, University of Innsbruck, Innsbruck, Austria.
| | - Ilona Croy
- Department of Psychology, Friedrich Schiller University, Jena, Germany
| | - Rochelle Ackerley
- Aix Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), Marseille, France.
| |
Collapse
|
13
|
Shiers S, Funk G, Cervantes A, Horton P, Dussor G, Hennen S, Price TJ. Na V1.7 mRNA and protein expression in putative projection neurons of the human spinal dorsal horn. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527110. [PMID: 36778234 PMCID: PMC9915702 DOI: 10.1101/2023.02.04.527110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NaV1.7, a membrane-bound voltage-gated sodium channel, is preferentially expressed along primary sensory neurons, including their peripheral & central nerve endings, axons, and soma within the dorsal root ganglia and plays an integral role in amplifying membrane depolarization and pain neurotransmission. Loss- and gain-of-function mutations in the gene encoding NaV1.7, SCN9A, are associated with a complete loss of pain sensation or exacerbated pain in humans, respectively. As an enticing pain target supported by human genetic validation, many compounds have been developed to inhibit NaV1.7 but have disappointed in clinical trials. The underlying reasons are still unclear, but recent reports suggest that inhibiting NaV1.7 in central terminals of nociceptor afferents is critical for achieving pain relief by pharmacological inhibition of NaV1.7. We report for the first time that NaV1.7 mRNA is expressed in putative projection neurons (NK1R+) in the human spinal dorsal horn, predominantly in lamina 1 and 2, as well as in deep dorsal horn neurons and motor neurons in the ventral horn. NaV1.7 protein was found in the central axons of sensory neurons terminating in lamina 1-2, but also was detected in the axon initial segment of resident spinal dorsal horn neurons and in axons entering the anterior commissure. Given that projection neurons are critical for conveying nociceptive information from the dorsal horn to the brain, these data support that dorsal horn NaV1.7 expression may play an unappreciated role in pain phenotypes observed in humans with genetic SCN9A mutations, and in achieving analgesic efficacy in clinical trials.
Collapse
Affiliation(s)
- Stephanie Shiers
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| | | | | | | | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| | | | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| |
Collapse
|
14
|
Molecular Mechanisms of Epilepsy: The Role of the Chloride Transporter KCC2. J Mol Neurosci 2022; 72:1500-1515. [PMID: 35819636 DOI: 10.1007/s12031-022-02041-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is a neurological disease characterized by abnormal or synchronous brain activity causing seizures, which may produce convulsions, minor physical signs, or a combination of symptoms. These disorders affect approximately 65 million people worldwide, from all ages and genders. Seizures apart, epileptic patients present a high risk to develop neuropsychological comorbidities such as cognitive deficits, emotional disturbance, and psychiatric disorders, which severely impair quality of life. Currently, the treatment for epilepsy includes the administration of drugs or surgery, but about 30% of the patients treated with antiepileptic drugs develop time-dependent pharmacoresistence. Therefore, further investigation about epilepsy and its causes is needed to find new pharmacological targets and innovative therapeutic strategies. Pharmacoresistance is associated to changes in neuronal plasticity and alterations of GABAA receptor-mediated neurotransmission. The downregulation of GABA inhibitory activity may arise from a positive shift in GABAA receptor reversal potential, due to an alteration in chloride homeostasis. In this paper, we review the contribution of K+-Cl--cotransporter (KCC2) to the alterations in the Cl- gradient observed in epileptic condition, and how these alterations are coupled to the increase in the excitability.
Collapse
|
15
|
Huzard D, Martin M, Maingret F, Chemin J, Jeanneteau F, Mery PF, Fossat P, Bourinet E, François A. The impact of C-tactile low-threshold mechanoreceptors on affective touch and social interactions in mice. SCIENCE ADVANCES 2022; 8:eabo7566. [PMID: 35767616 PMCID: PMC9242590 DOI: 10.1126/sciadv.abo7566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Affective touch is necessary for proper neurodevelopment and sociability. However, it remains unclear how the neurons innervating the skin detect affective and social behaviors. The C low-threshold mechanoreceptors (C-LTMRs), a specific population of somatosensory neurons in mice, appear particularly well suited, physiologically and anatomically, to perceive affective and social touch. However, their contribution to sociability has not been resolved yet. Our observations revealed that C-LTMR functional deficiency induced social isolation and reduced tactile interactions in adulthood. Conversely, transient increase in C-LTMR excitability in adults, using chemogenetics, was rewarding, promoted touch-seeking behaviors, and had prosocial influences on group dynamics. This work provides the first empirical evidence that specific peripheral inputs alone can drive complex social behaviors. It demonstrates the existence of a specialized neuronal circuit, originating in the skin, wired to promote interactions with other individuals.
Collapse
Affiliation(s)
- Damien Huzard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Miquel Martin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - François Maingret
- Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS, Bordeaux, France
| | - Jean Chemin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Freddy Jeanneteau
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierre-François Mery
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pascal Fossat
- Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS, Bordeaux, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury François
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Corresponding author.
| |
Collapse
|
16
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
17
|
Xue Y, Kremer M, Muniz Moreno MDM, Chidiac C, Lorentz R, Birling MC, Barrot M, Herault Y, Gaveriaux-Ruff C. The Human SCN9AR185H Point Mutation Induces Pain Hypersensitivity and Spontaneous Pain in Mice. Front Mol Neurosci 2022; 15:913990. [PMID: 35769334 PMCID: PMC9234669 DOI: 10.3389/fnmol.2022.913990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The voltage-gated sodium channel Nav1.7 is encoded by SCN9A gene and plays a critical role in pain sensitivity. Several SCN9A gain-of-function (GOF) mutations have been found in patients with small fiber neuropathy (SFN) having chronic pain, including the R185H mutation. However, for most of these variants, their involvement in pain phenotype still needs to be experimentally elucidated. In order to delineate the impact of R185H mutation on pain sensitivity, we have established the Scn9aR185H mutant mouse model using the CRISPR/Cas9 technology. The Scn9aR185H mutant mice show no cellular alteration in the dorsal root ganglia (DRG) containing cell bodies of sensory neurons and no alteration of growth or global health state. Heterozygous and homozygous animals of both sexes were investigated for pain sensitivity. The mutant mice were more sensitive than the wild-type mice in the tail flick and hot plate tests, acetone, and von Frey tests for sensitivity to heat, cold, and touch, respectively, although with sexual dimorphic effects. The newly developed bioinformatic pipeline, Gdaphen is based on general linear model (GLM) and random forest (RF) classifiers as well as a multifactor analysis of mixed data and shows the qualitative and quantitative variables contributing the most to the pain phenotype. Using Gdaphen, tail flick, Hargreaves, hot plate, acetone, cold plate, and von Frey tests, sex and genotype were found to be contributing most to the pain phenotype. Importantly, the mutant animals displayed spontaneous pain as assessed in the conditioned place preference (CPP) assay. Altogether, our results indicate that Scn9aR185H mice show a pain phenotype, suggesting that the SCN9AR185H mutation identified in patients with SFN having chronic pain contributes to their symptoms. Therefore, we provide genetic evidence for the fact that this mutation in Nav1.7 channel plays an important role in nociception and in the pain experienced by patients with SFN who have this mutation. These findings should aid in exploring further pain treatments based on the Nav1.7 channel.
Collapse
Affiliation(s)
- Yaping Xue
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Mélanie Kremer
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Cellulaires et Intégratives (INCI), Université de Strasbourg, Strasbourg, France
| | - Maria del Mar Muniz Moreno
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Celeste Chidiac
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Romain Lorentz
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), CELPHEDIA-PHENOMIN-Institut Clinique de la Souris, (PHENOMIN-ICS), Université de Strasbourg, Illkirch, France
| | - Marie-Christine Birling
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), CELPHEDIA-PHENOMIN-Institut Clinique de la Souris, (PHENOMIN-ICS), Université de Strasbourg, Illkirch, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Cellulaires et Intégratives (INCI), Université de Strasbourg, Strasbourg, France
| | - Yann Herault
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), CELPHEDIA-PHENOMIN-Institut Clinique de la Souris, (PHENOMIN-ICS), Université de Strasbourg, Illkirch, France
- *Correspondence: Yann Herault,
| | - Claire Gaveriaux-Ruff
- Centre National de la Recherche Scientifique (CNRS), Institut de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7242, Université de Strasbourg, Illkirch, France
- Claire Gaveriaux-Ruff,
| |
Collapse
|