1
|
Li X, Prudente AS, Prato V, Guo X, Hao H, Jones F, Figoli S, Mullen P, Wang Y, Tonello R, Lee SH, Shah S, Maffei B, Berta T, Du X, Gamper N. Peripheral gating of mechanosensation by glial diazepam binding inhibitor. J Clin Invest 2024; 134:e176227. [PMID: 38888973 PMCID: PMC11324294 DOI: 10.1172/jci176227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
We report that diazepam binding inhibitor (DBI) is a glial messenger mediating crosstalk between satellite glial cells (SGCs) and sensory neurons in the dorsal root ganglion (DRG). DBI is highly expressed in SGCs of mice, rats, and humans, but not in sensory neurons or most other DRG-resident cells. Knockdown of DBI results in a robust mechanical hypersensitivity without major effects on other sensory modalities. In vivo overexpression of DBI in SGCs reduces sensitivity to mechanical stimulation and alleviates mechanical allodynia in neuropathic and inflammatory pain models. We further show that DBI acts as an unconventional agonist and positive allosteric modulator at the neuronal GABAA receptors, particularly strongly affecting those with a high-affinity benzodiazepine binding site. Such receptors are selectively expressed by a subpopulation of mechanosensitive DRG neurons, and these are also more enwrapped with DBI-expressing glia, as compared with other DRG neurons, suggesting a mechanism for a specific effect of DBI on mechanosensation. These findings identified a communication mechanism between peripheral neurons and SGCs. This communication modulates pain signaling and can be targeted therapeutically.
Collapse
Affiliation(s)
- Xinmeng Li
- Department of Pharmacology; The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Vincenzo Prato
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Xianchuan Guo
- Department of Pharmacology; The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Han Hao
- Department of Pharmacology; The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Frederick Jones
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Sofia Figoli
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Pierce Mullen
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Yujin Wang
- Department of Pharmacology; The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Shihab Shah
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Benito Maffei
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Xiaona Du
- Department of Pharmacology; The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology; The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Qarot E, Guan Y, Hanani M. The protective barrier role of satellite glial cells in sensory ganglia. Glia 2024; 72:1054-1066. [PMID: 38450799 DOI: 10.1002/glia.24511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 03/08/2024]
Abstract
Neurons in sensory ganglia are wrapped completely by satellite glial cells (SGCs). One putative function of SGCs is to regulate the neuronal microenvironment, but this role has received only little attention. In this study we investigated whether the SGC envelope serves a barrier function and how SGCs may control the neuronal microenvironment. We studied this question on short-term (<24 h) cell cultures of dorsal root ganglia and trigeminal ganglia from adult mice, which contain neurons surrounded with SGCs, and neurons that are not. Using calcium imaging, we measured neuronal responses to molecules with established actions on sensory neurons. We found that neurons surrounded by SGCs had a smaller response to molecules such as adenosine triphosphate (ATP), glutamate, GABA, and bradykinin than neurons without glial cover. When we inhibited the activity of NTPDases, which hydrolyze the ATP, and also when we inhibited the glutamate and GABA transporters on SGCs, this difference in the neuronal response was no longer observed. We conclude that the SGC envelope does not hinder diffusional passage, but acts as a metabolic barrier that regulates the neuronal microenvironment, and can protect the neurons and modulate their activity.
Collapse
Affiliation(s)
- Eman Qarot
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Li X, Prudente AS, Prato V, Guo X, Hao H, Jones F, Figoli S, Mullen P, Wang Y, Tonnello R, Lee SH, Shah S, Maffei B, Berta T, Du X, Gamper N. Peripheral gating of pain by glial endozepine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567848. [PMID: 38045227 PMCID: PMC10690183 DOI: 10.1101/2023.11.20.567848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We report that diazepam binding inhibitor (DBI) is a glial messenger mediating satellite glia-sensory neuron crosstalk in the dorsal root ganglion (DRG). DBI is highly and specifically expressed in satellite glia cells (SGCs) of mice, rat and human, but not in sensory neurons or other DRG-resident cells. Knockdown of DBI results in a robust mechanical hypersensitivity without significant effects on other sensory modalities. In vivo overexpression of DBI in SGCs reduces sensitivity to mechanical stimulation and alleviates mechanical allodynia in neuropathic and inflammatory pain models. We further show that DBI acts as a partial agonist and positive allosteric modulator at the neuronal GABAA receptors, particularly strongly effecting those with a high-affinity benzodiazepine binding site. Such receptors are selectively expressed by a subpopulation of mechanosensitive DRG neurons and these are also more enwrapped with DBI-expressing glia, as compared to other DRG neurons, suggesting a mechanism for specific effect of DBI on mechanosensation. These findings identified a new, peripheral neuron-glia communication mechanism modulating pain signalling, which can be targeted therapeutically.
Collapse
Affiliation(s)
- Xinmeng Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Vincenzo Prato
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Xianchuan Guo
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Frederick Jones
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Sofia Figoli
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Pierce Mullen
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Yujin Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Raquel Tonnello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Shihab Shah
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Benito Maffei
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|