1
|
Ugawa Y. [How to use clinical neurophysiology in functional neurological disorders (FND)?]. Rinsho Shinkeigaku 2024:cn-002050. [PMID: 39710390 DOI: 10.5692/clinicalneurol.cn-002050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
I have reviewed the utility of clinical neurophysiological examinations in recently highlighted functional neurological disorders (FND) focusing mainly on functional movement disorders (FMD). There are many neurophysiological methods useful for diagnosis of FMD. I will hereafter summarize a few of them in the following part. Surface EMG: This is one of minimally required examinations for clinical analysis of movement disorders. It plays roles in the exclusion of organic disorders and showing positive findings to support FND, especially for functional tremor. The power spectral analysis of surface EMG clearly proves a few useful findings, such as entrainment, distraction and others. Somatosensory evoked potential (SEP): Giant SEP is critical because it proves organic disorders with hyperexcitability of the sensory cortex. Single pulse transcranial magnetic stimulation (TMS): Normal motor evoked potential (MEP) showing intact corticospinal tracts is a positive finding for functional paresis patients. It is also useful to exclude the corticospinal tracts organic dysfunction. Jerk-locked back averaging (JLA), bereitschaftspotential (BP), event related desynchronization (ERD): These are sometimes used for functional disorders, but their clinical validity remains to be determined.
Collapse
Affiliation(s)
- Yoshikazu Ugawa
- Section of Human Neurophysiology, Institute of Biomedical Sciences, Fukushima Medical University
| |
Collapse
|
2
|
Park JE. Functional Movement Disorders: Updates and Clinical Overview. J Mov Disord 2024; 17:251-261. [PMID: 38950896 PMCID: PMC11300393 DOI: 10.14802/jmd.24126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024] Open
Abstract
Functional movement disorder (FMD) is a type of functional neurological disorder that is common but often difficult to diagnose or manage. FMD can present as various phenotypes, including tremor, dystonia, myoclonus, gait disorders, and parkinsonism. Conducting a clinical examination appropriate for assessing a patient with suspected FMD is important, and various diagnostic testing maneuvers may also be helpful. Treatment involving a multidisciplinary team, either outpatient or inpatient, has been found to be most effective. Examples of such treatment protocols are also discussed in this review. While recognition and understanding of the disorder has improved over the past few decades, as well as the development of treatments, it is not uncommon for patients and physicians to continue to experience various difficulties when dealing with this disorder. In this review, I provide a practical overview of FMD and discuss how the clinical encounter itself can play a role in patients' acceptance of the diagnosis. Recent neuroimaging studies that aid in understanding the pathophysiology are also discussed.
Collapse
Affiliation(s)
- Jung E Park
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
3
|
Gunduz A, Valls-Solé J, Serranová T, Coppola G, Kofler M, Jääskeläinen SK. The blink reflex and its modulation - Part 2: Pathophysiology and clinical utility. Clin Neurophysiol 2024; 160:75-94. [PMID: 38412746 DOI: 10.1016/j.clinph.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
The blink reflex (BR) is integrated at the brainstem; however, it is modulated by inputs from various structures such as the striatum, globus pallidus, substantia nigra, and nucleus raphe magnus but also from afferent input from the peripheral nervous system. Therefore, it provides information about the pathophysiology of numerous peripheral and central nervous system disorders. The BR is a valuable tool for studying the integrity of the trigemino-facial system, the relevant brainstem nuclei, and circuits. At the same time, some neurophysiological techniques applying the BR may indicate abnormalities involving structures rostral to the brainstem that modulate or control the BR circuits. This is a state-of-the-art review of the clinical application of BR modulation; physiology is reviewed in part 1. In this review, we aim to present the role of the BR and techniques related to its modulation in understanding pathophysiological mechanisms of motor control and pain disorders, in which these techniques are diagnostically helpful. Furthermore, some BR techniques may have a predictive value or serve as a basis for follow-up evaluation. BR testing may benefit in the diagnosis of hemifacial spasm, dystonia, functional movement disorders, migraine, orofacial pain, and psychiatric disorders. Although the abnormalities in the integrity of the BR pathway itself may provide information about trigeminal or facial nerve disorders, alterations in BR excitability are found in several disease conditions. BR excitability studies are suitable for understanding the common pathophysiological mechanisms behind various clinical entities, elucidating alterations in top-down inhibitory systems, and allowing for follow-up and quantitation of many neurological syndromes.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Division of Neurophysiology, Istanbul, Turkey.
| | - Josep Valls-Solé
- IDIBAPS. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170 08024, Barcelona, Spain.
| | - Tereza Serranová
- Department of Neurology and Center of Clinical Neuroscience, Charles University, Prague 1st Faculty of Medicine and General University Hospital, Prague, Kateřinská 30, 12800 Prague 2, Czech Republic.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, via Franco Faggiana 1668 04100, Latina, Italy.
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, A-6170 Zirl, Austria.
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Division of Medical Imaging, Turku University Hospital and University of Turku, Postal Box 52, FIN 20521 Turku, Finland.
| |
Collapse
|
4
|
Kamble N, Pal PK. Electrophysiology in Functional Movement Disorders: An Update. Tremor Other Hyperkinet Mov (N Y) 2023; 13:49. [PMID: 38162980 PMCID: PMC10756160 DOI: 10.5334/tohm.793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
Background Functional movement disorders (FMD) are a diagnostic and therapeutic challenge, both to the neurologist and psychiatrists. The phenomenology is varied and can present as tremors, dystonia, jerks/myoclonus, gait disorder, other abnormal movements or a combination. There has been an increase in the use of electrophysiological studies that are an important tool in the evaluation of FMDs. Methods We searched the database platforms of MEDLINE, Google scholar, Web of Sciences, Scopus using the Medical Subject Heading terms (MeSH) for all the articles from 1st January 1970 till November 2022. A total of 658 articles were obtained by the search mechanism. A total of 79 relevant articles were reviewed thoroughly, of which 26 articles that had electrophysiological data were included in the present review. Results Variability, distractibility and entertainability can be demonstrated in functional tremors by using multichannel surface electromyography. Voluntary ballistic movements tend to decrease the tremor, while loading the tremulous limb with weight causes the tremor amplitude to increase in functional tremor. Presence of Bereitschaftspotential demonstrates the functional nature of palatal tremor and myoclonus. Co-contraction testing may be helpful in differentiating functional from organic dystonia. The R2 blink reflex recovery cycle has been found to be abnormally enhanced in organic blepharospasm, whereas it is normal in presumed functional blepharospasm. Plasticity is found to be abnormally high in organic dystonia and normal in functional dystonia, in addition to enhanced facilitation in patients with organic dystonia. Conclusions Electrophysiological tests supplement clinical examination and helps in differentiating FMD from organic movement disorders.
Collapse
Affiliation(s)
- Nitish Kamble
- Departments of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bengaluru-560029, Karnataka, India
| | - Pramod Kumar Pal
- Departments of Neurology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Hosur Road, Bengaluru-560029, Karnataka, India
| |
Collapse
|
5
|
Grimm K, Prilop L, Schön G, Gelderblom M, Misselhorn J, Gerloff C, Zittel S. Cerebellar Modulation of Sensorimotor Associative Plasticity Is Impaired in Cervical Dystonia. Mov Disord 2023; 38:2084-2093. [PMID: 37641392 DOI: 10.1002/mds.29586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND In recent years, cervical dystonia (CD) has been recognized as a network disorder that involves not only the basal ganglia but other brain regions, such as the primary motor and somatosensory cortex, brainstem, and cerebellum. So far, the role of the cerebellum in the pathophysiology of dystonia is only poorly understood. OBJECTIVE The objective of this study was to investigate the role of the cerebellum on sensorimotor associative plasticity in patients with CD. METHODS Sixteen patients with CD and 13 healthy subjects received cerebellar transcranial direct current stimulation (ctDCS) followed by a paired associative stimulation (PAS) protocol based on transcranial magnetic stimulation that induces sensorimotor associative plasticity. Across three sessions the participants received excitatory anodal, inhibitory cathodal, and sham ctDCS in a double-blind crossover design. Before and after the intervention, motor cortical excitability and motor symptom severity were assessed. RESULTS PAS induced an increase in motor cortical excitability in both healthy control subjects and patients with CD. In healthy subjects this effect was attenuated by both anodal and cathodal ctDCS with a stronger effect of cathodal stimulation. In patients with CD, anodal stimulation suppressed the PAS effect, whereas cathodal stimulation had no influence on PAS. Motor symptom severity was unchanged after the intervention. CONCLUSIONS Cerebellar modulation with cathodal ctDCS had no effect on sensorimotor associative plasticity in patients with CD, in contrast with the net inhibitory effect in healthy subjects. This is further evidence that the cerebello-thalamo-cortical network plays a role in the pathophysiology of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kai Grimm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Prilop
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
7
|
Patwal R, Jolly AJ, Kumar A, Yadav R, Desai G, Thippeswamy H. Diagnostic accuracy of clinical signs and investigations for functional weakness, sensory and movement disorders: A systematic review. J Psychosom Res 2023; 168:111196. [PMID: 36868109 DOI: 10.1016/j.jpsychores.2023.111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Patients with functional neurological disorders (FND) present with weakness, sensory or movement disorder without corresponding brain pathology. The current classificatory systems suggest an inclusionary approach to diagnose FND. Hence, there is a need to systematically evaluate the diagnostic accuracy of clinical signs and electrophysiological investigations in view of the lack of gold standard tests to diagnose FND. METHODS PubMed and SCOPUS databases were searched for studies published from Jan 1950 to Jan 2022 which reported the diagnostic accuracy of clinical signs and electrophysiological investigations in patients with FND. The Newcastle Ottawa scale was used to assess the quality of the studies. RESULTS Twenty-one studies (727 cases and 932 controls), of which 16 reported clinical signs and, five reported electrophysiological investigations, were included in the review. Two studies were of good quality, 17 of moderate quality, and two of poor quality. We identified 46 clinical signs (24 in weakness, 3 in sensory, and 19 in movement disorders) and 17 investigations (all in movement disorders). Specificity values for signs and investigations were comparatively high compared to the wide variance in sensitivity values. CONCLUSION Electrophysiological investigations appear to have a promising role in diagnosing FND, particularly functional movement disorders. The combined use of individual clinical signs and electrophysiological investigations may support and improve diagnostic certainty of FND. Future research can focus on improving the methodology and validating the existing clinical signs and electrophysiological investigations to enhance the validity of the composite diagnostic criterias for FND diagnosis.
Collapse
Affiliation(s)
- Rahul Patwal
- Department of Psychiatry, NIMHANS, Bengaluru, India
| | | | - Amit Kumar
- Department of Psychiatry, NIMHANS, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, NIMHANS, Bengaluru, India
| | - Geetha Desai
- Department of Psychiatry, NIMHANS, Bengaluru, India
| | | |
Collapse
|
8
|
Frey J, Ramirez-Zamora A, Wagle Shukla A. Applications of Transcranial Magnetic Stimulation for Understanding and Treating Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:119-139. [PMID: 37338699 DOI: 10.1007/978-3-031-26220-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transcranial magnetic stimulation (TMS)-based studies have led to an advanced understanding of the pathophysiology of dystonia. This narrative review summarizes the TMS data contributed to the literature so far. Many studies have shown that increased motor cortex excitability, excessive sensorimotor plasticity, and abnormal sensorimotor integration are the core pathophysiological substrates for dystonia. However, an increasing body of evidence supports a more widespread network dysfunction involving many other brain regions. Repetitive TMS pulses (rTMS) in dystonia have therapeutic potential as they can induce local and network-wide effects through modulation of excitability and plasticity. The bulk of rTMS studies has targeted the premotor cortex with some promising results in focal hand dystonia. Some studies have targeted the cerebellum for cervical dystonia and the anterior cingulate cortex for blepharospasm. We believe that therapeutic potential could be leveraged better when rTMS is implemented in conjunction with standard-of-care pharmacological treatments. However, due to several limitations in the studies conducted to date, including small samples, heterogeneous populations, variability in the target sites, and inconsistencies in the study design and control arm, it is hard to draw a definite conclusion. Further studies are warranted to determine optimal targets and protocols yielding the most beneficial outcomes that will translate into meaningful clinical changes.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Killian O, Hutchinson M, Reilly R. Neuromodulation in Dystonia - Harnessing the Network. ADVANCES IN NEUROBIOLOGY 2023; 31:177-194. [PMID: 37338702 DOI: 10.1007/978-3-031-26220-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Adult-onset isolated focal dystonia (AOIFD) is a network disorder characterised by abnormalities of sensory processing and motor control. These network abnormalities give rise to both the phenomenology of dystonia and the epiphenomena of altered plasticity and loss of intracortical inhibition. Existing modalities of deep brain stimulation effectively modulate parts of this network but are limited both in terms of targets and invasiveness. Novel approaches using a variety of non-invasive neuromodulation techniques including transcranial stimulation and peripheral stimulation present an interesting alternative approach and may, in conjunction with rehabilitative strategies, have a role in tailored therapies targeting the underlying network abnormality behind AOIFD.
Collapse
Affiliation(s)
- Owen Killian
- The Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | - Richard Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Ricciardi L, Bologna M, Marsili L, Espay AJ. Dysfunctional Networks in Functional Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:157-176. [PMID: 37338701 DOI: 10.1007/978-3-031-26220-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Functional dystonia, the second most common functional movement disorder, is characterized by acute or subacute onset of fixed limb, truncal, or facial posturing, incongruent with the action-induced, position-sensitive, and task-specific manifestations of dystonia. We review neurophysiological and neuroimaging data as the basis for a dysfunctional networks in functional dystonia. Reduced intracortical and spinal inhibition contributes to abnormal muscle activation, which may be perpetuated by abnormal sensorimotor processing, impaired selection of movements, and hypoactive sense of agency in the setting of normal movement preparation but abnormal connectivity between the limbic and motor networks. Phenotypic variability may be related to as-yet undefined interactions between abnormal top-down motor regulation and overactivation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortices. While there remain many gaps in knowledge, further combined neurophysiological and neuroimaging assessments stand to inform the neurobiological subtypes of functional dystonia and the potential therapeutic applications.
Collapse
Affiliation(s)
- Lucia Ricciardi
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, London, UK
- Nuffield Department of Clinical Neurosciences, Medical Research Council Brain Network Dynamics Unit, Oxford, UK
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
11
|
di Biase L, Di Santo A, Caminiti ML, Pecoraro PM, Carbone SP, Di Lazzaro V. Dystonia Diagnosis: Clinical Neurophysiology and Genetics. J Clin Med 2022; 11:jcm11144184. [PMID: 35887948 PMCID: PMC9320296 DOI: 10.3390/jcm11144184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022] Open
Abstract
Dystonia diagnosis is based on clinical examination performed by a neurologist with expertise in movement disorders. Clues that indicate the diagnosis of a movement disorder such as dystonia are dystonic movements, dystonic postures, and three additional physical signs (mirror dystonia, overflow dystonia, and geste antagonists/sensory tricks). Despite advances in research, there is no diagnostic test with a high level of accuracy for the dystonia diagnosis. Clinical neurophysiology and genetics might support the clinician in the diagnostic process. Neurophysiology played a role in untangling dystonia pathophysiology, demonstrating characteristic reduction in inhibition of central motor circuits and alterations in the somatosensory system. The neurophysiologic measure with the greatest evidence in identifying patients affected by dystonia is the somatosensory temporal discrimination threshold (STDT). Other parameters need further confirmations and more solid evidence to be considered as support for the dystonia diagnosis. Genetic testing should be guided by characteristics such as age at onset, body distribution, associated features, and coexistence of other movement disorders (parkinsonism, myoclonus, and other hyperkinesia). The aim of the present review is to summarize the state of the art regarding dystonia diagnosis focusing on the role of neurophysiology and genetic testing.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Brain Innovations Lab., Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: or ; Tel.: +39-062-2541-1220
| | - Alessandro Di Santo
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Maria Letizia Caminiti
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Simona Paola Carbone
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
12
|
Matsumoto S, Yamamoto Y, Fujita K, Miyamoto R, Koizumi H, Tateishi A, Yamada N, Izumi Y. Truncal dystonia with isolated middle cerebral artery ischemia: A case report of revascularization therapy for dystonia. Surg Neurol Int 2022; 13:155. [PMID: 35509528 PMCID: PMC9062919 DOI: 10.25259/sni_173_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022] Open
Abstract
Background: Dystonia is a rare movement disorder with some cases being difficult to treat. Although dystonia can occur as a symptom of moyamoya disease, few studies have reported truncal dystonia occurring with middle cerebral artery (MCA) stenosis. Here, we report a case of truncal dystonia with MCA occlusion. Case Description: The patient was a 48-year-old female clerical worker who lived alone. An abnormal cervical posture initially appeared 7 years before (right flexion). Symptoms improved with medication and botulinum toxin injection. Five years before this report, her symptoms worsened, so the dose of oral medication was increased and botulinum treatment was performed, but the symptoms did not improve. The patient showed decreased cerebral blood flow (CBF) in the cortical areas but not in the basal ganglia. We performed superficial temporal artery-MCA bypass surgery because we believed that the dystonia was due to right MCA stenosis. The patient’s symptoms improved immediately after surgery, except for her mild cervical backbend. Seven months after the surgery, the patient’s involuntary movements showed further improvement, and symptoms have not worsened even after 2 years. Conclusion: Revascularization therapy improved CBF and truncal dystonia and could be a viable treatment option for dystonia with ischemia in the MCA region. Extensive cerebral ischemia can result in cortical inhibition loss or over-adapted cerebral plasticity and cause dystonia. Revascularization therapy may be useful for patients with dystonia and decreased CBF in the MCA region.
Collapse
Affiliation(s)
| | - Yuki Yamamoto
- Department of Clinical Neuroscience, Tokushima University,
| | - Koji Fujita
- Department of Clinical Neuroscience, Tokushima University,
| | | | | | - Akihiro Tateishi
- Departments of Neurosurgery, Osaka Neurological Institute, Toyonaka, Japan,
| | - Naoaki Yamada
- Neuroradiology, Osaka Neurological Institute, Toyonaka, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Tokushima University,
| |
Collapse
|
13
|
Alpheis S, Altenmüller E, Scholz DS. Influence of Adverse Childhood Experiences and Perfectionism on Musician's Dystonia: a Case Control Study. Tremor Other Hyperkinet Mov (N Y) 2022; 12:8. [PMID: 35415008 PMCID: PMC8932351 DOI: 10.5334/tohm.687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Musician's dystonia (MD) is a task-specific movement disorder characterized by muscle cramps and impaired voluntary motor-control whilst playing a musical instrument. Recent studies suggest an involvement of adverse childhood experiences (ACEs) in the development of MD. Objectives By investigating the prevalence of ACEs in MD patients with perfectionism as possible mediating factor this study aims to gain further insights into the etiology of MD. Methods The Adverse Childhood Experiences Scale (ACE-S), the Childhood Trauma Questionnaire (CTQ) and Frost's Multidimensional Perfectionism Scale (FMPS) were answered by 128 MD patients and 136 healthy musicians. Regression and mediator analyses were conducted to identify relevant predictors of MD and to investigate the role of perfectionism. Results The CTQ total score (OR: 1.04; 95% CI [1.01, 1.08]) and the sub-score "emotional neglect" (OR: 1.13; 95% CI [1.02, 1.25]) were identified as two predictors of MD. Patients scored significantly higher on the sub-score emotional neglect, but no significant differences were observed for other forms of ACEs. Perfectionism had no mediating function on the association between ACEs and MD. Discussion Though only slight differences between both groups were found, there is a trend towards higher rates of emotional neglect among dystonic musicians. A possible explanation for the association between musician's dystonia and emotional neglect could be a lower stress resilience in musicians with a history of ACEs, which increases vulnerability to acquire dysfunctional movement patterns.These tendencies should be further investigated in future studies in which the MD and HM groups are more evenly matched in sex and age. Highlights We investigated the role of Adverse Childhood Experiences in the development of musician's dystonia, comparing a large sample of healthy musicians and dystonia patients. Our findings suggest that experiencing emotional neglect might increase the probability to acquire musician's dystonia. The findings offer new implications for etiology and treatment of dystonia.
Collapse
Affiliation(s)
- Stine Alpheis
- Institute of Music Physiology and Musician’s Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
- Department of Education and Psychology, Freie Universität Berlin, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician’s Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| | - Daniel S. Scholz
- Institute of Music Physiology and Musician’s Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| |
Collapse
|
14
|
Quartarone A, Ghilardi MF. Neuroplasticity in dystonia: Motor symptoms and beyond. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:207-218. [PMID: 35034735 DOI: 10.1016/b978-0-12-819410-2.00031-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This chapter first focuses on the role of altered neuroplasticity mechanisms and their regulation in the genesis of motor symptoms in the various forms of dystonia. In particular, a review of the available literature about focal dystonia suggests that use-dependent plasticity may become detrimental and produce dystonia when practice and repetition are excessive and predisposing conditions are present. Interestingly, recent evidence also shows that functional or psychogenic dystonia, despite the normal plasticity in the sensorimotor system, is characterized by plasticity-related dysfunction within limbic regions. Finally, this chapter reviews the non-motor symptoms that often accompany the motor features of dystonia, including depression and anxiety as well as obsessive-compulsive disorders, pain, and cognitive dysfunctions. Based on the current understanding of these symptoms, we discuss the evidence of their possible relationship to maladaptive plasticity in non-motor basal ganglia circuits involved in their genesis.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Maria Felice Ghilardi
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine and Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
15
|
Exploring the connections between basal ganglia and cortex revealed by transcranial magnetic stimulation, evoked potential and deep brain stimulation in dystonia. Eur J Paediatr Neurol 2022; 36:69-77. [PMID: 34922163 DOI: 10.1016/j.ejpn.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
We review the findings for motor cortical excitability, plasticity and evoked potentials in dystonia. Plasticity can be induced and assessed in cortical areas by non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and the invasive technique of deep brain stimulation (DBS), which allows access to deep brain structures. Single-pulse TMS measures have been widely studied in dystonia and consistently showed reduced silent period duration. Paired pulse TMS measures showed reduced short and long interval intracortical inhibition, interhemispheric inhibition, long-latency afferent inhibition and increased intracortical facilitation in dystonia. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex improved handwriting with prolongation of the silent period in focal hand dystonia patients. Continuous theta-burst stimulation (cTBS) of the cerebellum or cTBS of the dorsal premotor cortex improved dystonia in some studies. Plasticity induction protocols in dystonia demonstrated excessive motor cortical plasticity with the reduction in cortico-motor topographic specificity. Bilateral DBS of the globus pallidus internus (GPi) improves dystonia, associated pain and functional disability. Local field potentials recordings in dystonia patients suggested that there is increased power in the low-frequency band (4-12 Hz) in the GPi. Cortical evoked potentials at peak latencies of 10 and 25 ms can be recorded with GPi stimulation in dystonia. Plasticity induction protocols based on the principles of spike timing dependent plasticity that involved repeated pairing of GPi-DBS and motor cortical TMS at latencies of cortical evoked potentials induced motor cortical plasticity. These studies expanded our knowledge of the pathophysiology of dystonia and how cortical excitability and plasticity are altered with different treatments such as DBS.
Collapse
|
16
|
Sciamanna G, El Atiallah I, Montanari M, Pisani A. Plasticity, genetics and epigenetics in dystonia: An update. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:199-206. [PMID: 35034734 DOI: 10.1016/b978-0-12-819410-2.00011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dystonia represents a group of movement disorders characterized by involuntary muscle contractions that result in abnormal posture and twisting movements. In the last 20 years several animal models have been generated, greatly improving our knowledge of the neural and molecular mechanism underlying this pathological condition, but the pathophysiology remains still poorly understood. In this review we will discuss recent genetic factors related to dystonia and the current understanding of synaptic plasticity alterations reported by both clinical and experimental research. We will also present recent evidence involving epigenetics mechanisms in dystonia.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ilham El Atiallah
- Department of Systems Medicine, University of Rome 2 Tor Vergata, Rome, Italy
| | - Martina Montanari
- Department of Systems Medicine, University of Rome 2 Tor Vergata, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
17
|
Rauschenberger L, Knorr S, Pisani A, Hallett M, Volkmann J, Ip CW. Second hit hypothesis in dystonia: Dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis 2021; 159:105511. [PMID: 34537328 DOI: 10.1016/j.nbd.2021.105511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
One of the great mysteries in dystonia pathophysiology is the role of environmental factors in disease onset and development. Progress has been made in defining the genetic components of dystonic syndromes, still the mechanisms behind the discrepant relationship between dystonic genotype and phenotype remain largely unclear. Within this review, the preclinical and clinical evidence for environmental stressors as disease modifiers in dystonia pathogenesis are summarized and critically evaluated. The potential role of extragenetic factors is discussed in monogenic as well as adult-onset isolated dystonia. The available clinical evidence for a "second hit" is analyzed in light of the reduced penetrance of monogenic dystonic syndromes and put into context with evidence from animal and cellular models. The contradictory studies on adult-onset dystonia are discussed in detail and backed up by evidence from animal models. Taken together, there is clear evidence of a gene-environment interaction in dystonia, which should be considered in the continued quest to unravel dystonia pathophysiology.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
18
|
Cai H, Ni L, Hu X, Ding X. Inhibition of endoplasmic reticulum stress reverses synaptic plasticity deficits in striatum of DYT1 dystonia mice. Aging (Albany NY) 2021; 13:20319-20334. [PMID: 34398825 PMCID: PMC8436893 DOI: 10.18632/aging.203413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
Background and objective: Striatal plasticity alterations caused by endoplasmic reticulum (ER) stress is supposed to be critically involved in the mechanism of DYT1 dystonia. In the current study, we expanded this research field by investigating the critical role of ER stress underlying synaptic plasticity impairment imposed by mutant heterozygous Tor1a+/- in a DYT1 dystonia mouse model. Methods: Heterozygous Tor1a+/- mouse model for DYT1 dystonia was established. Wild-type (Tor1a+/+, N=10) and mutant (Tor1a+/-, N=10) mice from post-natal day P25 to P35 were randomly distributed to experimental and control groups. Patch-clamp and current-clamp recordings of SPNs were conducted with intracellular electrodes for electrophysiological analyses. Striatal changes of the direct and indirect pathways were investigated via immunofluorescence. Golgi-Cox staining was conducted to observe spine morphology of SPNs. To quantify postsynaptic signaling proteins in striatum, RNA-Seq, qRT-PCR and WB were performed in striatal tissues. Results: Long-term depression (LTD) was failed to be induced, while long-term potentiation (LTP) was further strengthened in striatal spiny projection neurons (SPNs) from the Tor1a+/- DYT1 dystonia mice. Spine morphology analyses revealed a significant increase of both number of mushroom type spines and spine width in Tor1a+/- SPNs. In addition, increased AMPA receptor function and the reduction of NMDA/AMPA ratio in the postsynaptic of Tor1a+/- SPNs was observed, along with increased ER stress protein levels in striatum of Tor1a+/- DYT1 dystonia mice. Notably, ER stress inhibitors, tauroursodeoxycholic acid (TUDCA), could rescue LTD as well as AMPA currents. Conclusion: The current study illustrated the role of ER stress in mediating structural and functional plasticity alterations in Tor1a+/- SPNs. Inhibition of the ER stress by TUDCA is beneficial in reversing the deficits at the cellular and molecular levels. Remedy of dystonia associated neurological and motor functional impairment by ER stress inhibitors could be a recommendable therapeutic agent in clinical practice.
Collapse
Affiliation(s)
- Huaying Cai
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Linhui Ni
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xingyue Hu
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xianjun Ding
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
19
|
Raghu ALB, Eraifej J, Sarangmat N, Stein J, FitzGerald JJ, Payne S, Aziz TZ, Green AL. Pallido-putaminal connectivity predicts outcomes of deep brain stimulation for cervical dystonia. Brain 2021; 144:3589-3596. [PMID: 34293093 PMCID: PMC8719844 DOI: 10.1093/brain/awab280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Cervical dystonia is a non-degenerative movement disorder characterized by dysfunction of both motor and sensory cortico-basal ganglia networks. Deep brain stimulation targeted to the internal pallidum is an established treatment, but its specific mechanisms remain elusive, and response to therapy is highly variable. Modulation of key dysfunctional networks via axonal connections is likely important. Fifteen patients underwent preoperative diffusion-MRI acquisitions and then progressed to bilateral deep brain stimulation targeting the posterior internal pallidum. Severity of disease was assessed preoperatively and later at follow-up. Scans were used to generate tractography-derived connectivity estimates between the bilateral regions of stimulation and relevant structures. Connectivity to the putamen correlated with clinical improvement, and a series of cortical connectivity-based putaminal parcellations identified the primary motor putamen as the key node (r = 0.70, P = 0.004). A regression model with this connectivity and electrode coordinates explained 68% of the variance in outcomes (r = 0.83, P = 0.001), with both as significant explanatory variables. We conclude that modulation of the primary motor putamen–posterior internal pallidum limb of the cortico-basal ganglia loop is characteristic of successful deep brain stimulation treatment of cervical dystonia. Preoperative diffusion imaging contains additional information that predicts outcomes, implying utility for patient selection and/or individualized targeting.
Collapse
Affiliation(s)
- Ashley L B Raghu
- Oxford Functional Neurosurgery, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - John Eraifej
- Oxford Functional Neurosurgery, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Neurosurgery, John Radcliffe, Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Nagaraja Sarangmat
- Department of Neurology, John Radcliffe, Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - John Stein
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - James J FitzGerald
- Oxford Functional Neurosurgery, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Neurosurgery, John Radcliffe, Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Stephen Payne
- Institute of Biomedical Engineering, Department of Engineering, University of Oxford, Oxford, UK
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Neurosurgery, John Radcliffe, Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| | - Alexander L Green
- Oxford Functional Neurosurgery, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Neurosurgery, John Radcliffe, Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| |
Collapse
|
20
|
Smit M, Albanese A, Benson M, Edwards MJ, Graessner H, Hutchinson M, Jech R, Krauss JK, Morgante F, Pérez Dueñas B, Reilly RB, Tinazzi M, Contarino MF, Tijssen MAJ. Dystonia Management: What to Expect From the Future? The Perspectives of Patients and Clinicians Within DystoniaNet Europe. Front Neurol 2021; 12:646841. [PMID: 34149592 PMCID: PMC8211212 DOI: 10.3389/fneur.2021.646841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Improved care for people with dystonia presents a number of challenges. Major gaps in knowledge exist with regard to how to optimize the diagnostic process, how to leverage discoveries in pathophysiology into biomarkers, and how to develop an evidence base for current and novel treatments. These challenges are made greater by the realization of the wide spectrum of symptoms and difficulties faced by people with dystonia, which go well-beyond motor symptoms. A network of clinicians, scientists, and patients could provide resources to facilitate information exchange at different levels, share mutual experiences, and support each other's innovative projects. In the past, collaborative initiatives have been launched, including the American Dystonia Coalition, the European Cooperation in Science and Technology (COST-which however only existed for a limited time), and the Dutch DystonieNet project. The European Reference Network on Rare Neurological Diseases includes dystonia among other rare conditions affecting the central nervous system in a dedicated stream. Currently, we aim to broaden the scope of these initiatives to a comprehensive European level by further expanding the DystoniaNet network, in close collaboration with the ERN-RND. In line with the ERN-RND, the mission of DystoniaNet Europe is to improve care and quality of life for people with dystonia by, among other endeavors, facilitating access to specialized care, overcoming the disparity in education of medical professionals, and serving as a solid platform to foster international clinical and research collaborations. In this review, both professionals within the dystonia field and patients and caregivers representing Dystonia Europe highlight important unsolved issues and promising new strategies and the role that a European network can play in activating them.
Collapse
Affiliation(s)
- Marenka Smit
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Alberto Albanese
- Department of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | | | - Mark J. Edwards
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics and Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Joachim K. Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hanover, Germany
| | - Francesca Morgante
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Belen Pérez Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron–Institut de Recerca (VHIR), Barcelona, Spain
| | - Richard B. Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
- Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| | - Marina A. J. Tijssen
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | | |
Collapse
|
21
|
Shukla S, Thirugnanasambandam N. Tapping the Potential of Multimodal Non-invasive Brain Stimulation to Elucidate the Pathophysiology of Movement Disorders. Front Hum Neurosci 2021; 15:661396. [PMID: 34054449 PMCID: PMC8149895 DOI: 10.3389/fnhum.2021.661396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
This mini-review provides a detailed outline of studies that have used multimodal approaches in non-invasive brain stimulation to investigate the pathophysiology of the three common movement disorders, namely, essential tremor, Parkinson’s disease, and dystonia. Using specific search terms and filters in the PubMed® database, we finally shortlisted 27 studies in total that were relevant to this review. While two-thirds (Brittain et al., 2013) of these studies were performed on Parkinson’s disease patients, we could find only three studies that were conducted in patients with essential tremor. We clearly show that although multimodal non-invasive brain stimulation holds immense potential in unraveling the physiological mechanisms that are disrupted in movement disorders, the technical challenges and pitfalls of combining these methods may hinder their widespread application by movement disorder specialists. A multidisciplinary team with clinical and technical expertise may be crucial in reaping the fullest benefits from such novel multimodal approaches.
Collapse
Affiliation(s)
- Sakshi Shukla
- National Brain Research Centre (NBRC), Manesar, India
| | | |
Collapse
|
22
|
Frucht L, Perez DL, Callahan J, MacLean J, Song PC, Sharma N, Stephen CD. Functional Dystonia: Differentiation From Primary Dystonia and Multidisciplinary Treatments. Front Neurol 2021; 11:605262. [PMID: 33613415 PMCID: PMC7894256 DOI: 10.3389/fneur.2020.605262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Dystonia is a common movement disorder, involving sustained muscle contractions, often resulting in twisting and repetitive movements and abnormal postures. Dystonia may be primary, as the sole feature (isolated) or in combination with other movement disorders (combined dystonia), or as one feature of another neurological process (secondary dystonia). The current hypothesis is that dystonia is a disorder of distributed brain networks, including the basal ganglia, cerebellum, thalamus and the cortex resulting in abnormal neural motor programs. In comparison, functional dystonia (FD) may resemble other forms of dystonia (OD) but has a different pathophysiology, as a subtype of functional movement disorders (FMD). FD is the second most common FMD and amongst the most diagnostically challenging FMD subtypes. Therefore, distinguishing between FD and OD is important, as the management of these disorders is distinct. There are also different pathophysiological underpinnings in FD, with for example evidence of involvement of the right temporoparietal junction in functional movement disorders that is believed to serve as a general comparator of internal predictions/motor intentions with actual motor events resulting in disturbances in self-agency. In this article, we present a comprehensive review across the spectrum of FD, including oromandibular and vocal forms and discuss the history, clinical clues, evidence for adjunctive "laboratory-based" testing, pathophysiological research and prognosis data. We also provide the approach used at the Massachusetts General Hospital Dystonia Center toward the diagnosis, management and treatment of FD. A multidisciplinary approach, including neurology, psychiatry, physical, occupational therapy and speech therapy, and cognitive behavioral psychotherapy approaches are frequently required; pharmacological approaches, including possible targeted use of botulinum toxin injections and inpatient programs are considerations in some patients. Early diagnosis and treatment may help prevent unnecessary investigations and procedures, while facilitating the appropriate management of these highly complex patients, which may help to mitigate frequently poor clinical outcomes.
Collapse
Affiliation(s)
- Lucy Frucht
- Faculty of Arts and Sciences, Harvard University, Boston, MA, United States
| | - David L. Perez
- Cognitive Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neuropsychiatry Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Janet Callahan
- MGH Institute of Healthcare Professionals, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Julie MacLean
- Occupational Therapy Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Phillip C. Song
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Nutan Sharma
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Dystonia Center and Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Christopher D. Stephen
- Functional Neurological Disorder Research Program, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Dystonia Center and Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Poydasheva AG, Semenova OV, Suponeva NA, Timerbaeva SL, Piradov MA. [Issues of diagnostic and therapeutic use of transcranial magnetic stimulation in patients with writing cramp]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:49-56. [PMID: 33459541 DOI: 10.17116/jnevro202012012149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study diagnostic and therapeutic values of transcranial magnetic stimulation (TMS) in writing cramp (WC). MATERIAL AND METHODS Twelve right-handed patients with WC were enrolled in the study. All patients underwent low-frequency repetitive TMS (rTMS) of the premotor cortex of contralateral to affected hand hemisphere. The clinical efficacy was assessed using the Writer's Cramp Rating Scale (WCRS) and the Medical Outcomes Study-Short Form (MOS-SF-36). Before and after last rTMS session, motor mapping of Abductor pollicis brevis muscle (APB) was performed using navigated TMS (nTMS). Localization, area, and amplitude-weighted area of the APB muscle cortical representations were compared with the healthy controls. After the rTMS course, the dynamics of the studied parameters was assessed. RESULTS Ten sessions of low-frequency rTMS of premotor cortex reduced the severity of WS clinical symptoms with a duration of effect of at least 1 month (p<0.05). There was no statistically significant difference between the area and the weighted area of cortical muscle representations between patients and healthy controls or in patients before and after rTMS. When assessing the localization of cortical muscle representations, two trends were noted: in 4 patients, the localization remained stable, with a shift in the center of gravity of less than 4 mm; in the other 8 patients, a shift in the center of mass of more than 5 mm was noted. No significant correlation between the stability of the cortical muscle representations (the magnitude of the shift in the center of gravity) and the improvement on the WCRS were found. CONCLUSION The low-frequency rTMS of the premotor cortex of the contralateral to affected hand hemisphere can be used as an adjuvant therapy for WC. The TMS-motor mapping study did not show its diagnostic value.
Collapse
Affiliation(s)
| | - O V Semenova
- Vorokhobov City Clinical Hospital No. 67, Moscow, Russia
| | | | | | - M A Piradov
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
24
|
Latorre A, Cocco A, Bhatia KP, Erro R, Antelmi E, Conte A, Rothwell JC, Rocchi L. Defective Somatosensory Inhibition and Plasticity Are Not Required to Develop Dystonia. Mov Disord 2020; 36:1015-1021. [PMID: 33332649 DOI: 10.1002/mds.28427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dystonia may have different neuroanatomical substrates and pathophysiology. This is supported by studies on the motor system showing, for instance, that plasticity is abnormal in idiopathic dystonia, but not in dystonia secondary to basal ganglia lesions. OBJECTIVE The aim of this study was to test whether somatosensory inhibition and plasticity abnormalities reported in patients with idiopathic dystonia also occur in patients with dystonia caused by basal ganglia damage. METHODS Ten patients with acquired dystonia as a result of basal ganglia lesions and 12 healthy control subjects were recruited. They underwent electrophysiological testing at baseline and after a single 45-minute session of high-frequency repetitive somatosensory stimulation. Electrophysiological testing consisted of somatosensory temporal discrimination, somatosensory-evoked potentials (including measurement of early and late high-frequency oscillations and the spatial inhibition ratio of N20/25 and P14 components), the recovery cycle of paired-pulse somatosensory-evoked potentials, and primary motor cortex short-interval intracortical inhibition. RESULTS Unlike previous reports of patients with idiopathic dystonia, patients with acquired dystonia did not differ from healthy control subjects in any of the electrophysiological measures either before or after high-frequency repetitive somatosensory stimulation, except for short-interval intracortical inhibition, which was reduced at baseline in patients compared to control subjects. CONCLUSIONS The data show that reduced somatosensory inhibition and enhanced cortical plasticity are not required for the clinical expression of dystonia, and that the abnormalities reported in idiopathic dystonia are not necessarily linked to basal ganglia damage. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Antoniangela Cocco
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Neuroscience, Catholic University, Milan, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Elena Antelmi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
25
|
Thomsen BLC, Teodoro T, Edwards MJ. Biomarkers in functional movement disorders: a systematic review. J Neurol Neurosurg Psychiatry 2020; 91:1261-1269. [PMID: 33087421 DOI: 10.1136/jnnp-2020-323141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/11/2020] [Accepted: 09/23/2020] [Indexed: 11/04/2022]
Abstract
Functional movement disorders (FMD) are proposed to reflect a specific problem with voluntary control of movement, despite normal intent to move and an intact neural capacity for movement. In many cases, a positive diagnosis of FMD can be established on clinical grounds. However, the diagnosis remains challenging in certain scenarios, and there is a need for predictors of treatment response and long-term prognosis.In this context, we performed a systematic review of biomarkers in FMD. Eighty-six studies met our predefined criteria and were included.We found fairly reliable electroencephalography and electromyography-based diagnostic biomarkers for functional myoclonus and tremor. Promising biomarkers have also been described for functional paresis, gait and balance disorders. In contrast, there is still a lack of diagnostic biomarkers of functional dystonia and tics, where clinical diagnosis is often also more challenging. Importantly, many promising findings focus on pathophysiology and reflect group-level comparisons, but cannot differentiate on an individual basis. Some biomarkers also require access to time-consuming and resource-consuming techniques such as functional MRI.In conclusion, there are important gaps in diagnostic biomarkers in FMD in the areas of most clinical uncertainty. There is also is a lack of treatment response and prognostic biomarkers to aid in the selection of patients who would benefit from rehabilitation and other forms of treatment.
Collapse
Affiliation(s)
- Birgitte Liang Chen Thomsen
- Neurology, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tiago Teodoro
- Neurosciences Research Centre, St George's University of London, London, UK.,Instituto de Medicina Molecular, University of Lisbon, Lisboa, Portugal
| | - Mark J Edwards
- Neurosciences Research Centre, St George's University of London, London, UK
| |
Collapse
|
26
|
The pathophysiology of functional movement disorders. Neurosci Biobehav Rev 2020; 120:387-400. [PMID: 33159917 DOI: 10.1016/j.neubiorev.2020.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023]
Abstract
Functional neurological disorder is characterized by neurological symptoms that cannot be explained by typical neurological diseases or other medical conditions. This review will critically discuss the literature on the pathophysiology of functional movement disorders (FMD), including functional neuroimaging studies, neurophysiological studies, studies on biomarkers and genetic studies. According to PRISMA guidelines for systematic reviews, we selected 39 studies. A complex scenario emerged, with the involvement of different areas of the brain in the pathophysiology of FMD. Our findings showed a hypoactivation of the contralateral primary motor cortex, a decreased activity in the parietal lobe, an aberrant activation of the amygdala, an increased temporo-parietal junction activity and a hyperactivation of insular regions in patients with FMD. Functional connectivity (FC) findings underlined aberrant connections between amygdala and motor areas, temporo-parietal junction and insula. We proposed amygdala hyperactivation as a possible biological marker for FMD and FC alterations between amygdala and other areas of the brain as consequent epiphenomena, accounting for the pathophysiological complexity of FMD. These conclusions might drive novel treatment hypotheses.
Collapse
|
27
|
Meng HJ, Zhang LL, Luo SS, Cao N, Zhang J, Pi YL. Modulation of hand motor skill performance induced by motor practice combined with matched or mismatched hand posture motor imagery. Physiol Behav 2020; 225:113084. [DOI: 10.1016/j.physbeh.2020.113084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
|
28
|
Latorre A, Rocchi L, Bhatia KP. Delineating the electrophysiological signature of dystonia. Exp Brain Res 2020; 238:1685-1692. [PMID: 32712678 DOI: 10.1007/s00221-020-05863-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Over the last 30 years, the concept of dystonia has dramatically changed, from being considered a motor neurosis, to a pure basal ganglia disorder, to finally reach the definition of a network disorder involving the basal ganglia, cerebellum, thalamus and sensorimotor cortex. This progress has been possible due to the collaboration between clinicians and scientists, and the development of increasingly sophisticated electrophysiological techniques able to non-invasively investigate pathophysiological mechanisms in humans. This review is a chronological excursus of the electrophysiological studies that laid the foundation for the understanding of the pathophysiology of dystonia and delineated its electrophysiological signatures. Evidence for neurophysiological abnormalities is grouped according to the neural system involved, and a unifying theory, bringing together all the hypothesis and evidence provided to date, is proposed at the end.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
29
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
30
|
Benussi A, Premi E, Cantoni V, Compostella S, Magni E, Gilberti N, Vergani V, Delrio I, Gamba M, Spezi R, Costa A, Tinazzi M, Padovani A, Borroni B, Magoni M. Cortical Inhibitory Imbalance in Functional Paralysis. Front Hum Neurosci 2020; 14:153. [PMID: 32457588 PMCID: PMC7220997 DOI: 10.3389/fnhum.2020.00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Functional neurological disorders are characterized by neurological symptoms that have no identifiable pathology and little is known about their underlying pathophysiology. OBJECTIVES To analyze motor cortex excitability and intracortical inhibitory and excitatory circuits' imbalance in patients with flaccid functional weakness. METHODS Twenty-one consecutive patients with acute onset of flaccid functional weakness were recruited. Single and paired-pulse transcranial magnetic stimulation (TMS) protocols were used to analyze resting motor thresholds (RMT) and intracortical inhibitory (short interval intracortical inhibition - SICI) and excitatory (intracortical facilitation - ICF) circuits' imbalance between the affected and non-affected motor cortices. RESULTS We observed a significant increase in RMT and SICI in the affected motor cortex (p < 0.001), but not for ICF, compared to the contralateral unaffected side. CONCLUSION This study extends current knowledge of functional weakness, arguing for a specific central nervous system abnormality which may be involved in the symptoms' pathophysiology.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Premi
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Compostella
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eugenio Magni
- U.O. Neurologia, Fondazione Poliambulanza Hospital, Brescia, Italy
| | - Nicola Gilberti
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Veronica Vergani
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Ilenia Delrio
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Massimo Gamba
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Raffaella Spezi
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Angelo Costa
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Michele Tinazzi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mauro Magoni
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| |
Collapse
|
31
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
32
|
Chen KHS, Chen R. Principles of Electrophysiological Assessments for Movement Disorders. J Mov Disord 2020; 13:27-38. [PMID: 31986867 PMCID: PMC6987526 DOI: 10.14802/jmd.19064] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Electrophysiological studies can provide objective and quantifiable assessments of movement disorders. They are useful in the diagnosis of hyperkinetic movement disorders, particularly tremors and myoclonus. The most commonly used measures are surface electromyography (sEMG), electroencephalography (EEG) and accelerometry. Frequency and coherence analyses of sEMG signals may reveal the nature of tremors and the source of the tremors. The effects of voluntary tapping, ballistic movements and weighting of the limbs can help to distinguish between organic and functional tremors. The presence of Bereitschafts-potentials and beta-band desynchronization recorded by EEG before movement onset provide strong evidence for functional movement disorders. EMG burst durations, distributions and muscle recruitment orders may identify and classify myoclonus to cortical, subcortical or spinal origins and help in the diagnosis of functional myoclonus. Organic and functional cervical dystonia can potentially be distinguished by EMG power spectral analysis. Several reflex circuits, such as the long latency reflex, blink reflex and startle reflex, can be elicited with different types of external stimuli and are useful in the assessment of myoclonus, excessive startle and stiff person syndrome. However, limitations of the tests should be recognized, and the results should be interpreted together with clinical observations.
Collapse
Affiliation(s)
- Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease, University Health Network, Toronto, ON, Canada
| |
Collapse
|
33
|
Conte A, Defazio G, Mascia M, Belvisi D, Pantano P, Berardelli A. Advances in the pathophysiology of adult-onset focal dystonias: recent neurophysiological and neuroimaging evidence. F1000Res 2020; 9. [PMID: 32047617 PMCID: PMC6993830 DOI: 10.12688/f1000research.21029.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Focal dystonia is a movement disorder characterized by involuntary muscle contractions that determine abnormal postures. The traditional hypothesis that the pathophysiology of focal dystonia entails a single structural dysfunction (i.e. basal ganglia) has recently come under scrutiny. The proposed network disorder model implies that focal dystonias arise from aberrant communication between various brain areas. Based on findings from animal studies, the role of the cerebellum has attracted increased interest in the last few years. Moreover, it has been increasingly reported that focal dystonias also include nonmotor disturbances, including sensory processing abnormalities, which have begun to attract attention. Current evidence from neurophysiological and neuroimaging investigations suggests that cerebellar involvement in the network and mechanisms underlying sensory abnormalities may have a role in determining the clinical heterogeneity of focal dystonias.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Marcello Mascia
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | | | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
34
|
Furuya S, Lee A, Oku T, Altenmüller E. Aberrant Somatosensory-Motor Adaptation in Musicians' Dystonia. Mov Disord 2020; 35:808-815. [PMID: 31922329 DOI: 10.1002/mds.27985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some forms of movement disorders are characterized by task-specific manifestations of symptoms. However, its underlying mechanisms are poorly understood. Here we addressed this issue through a novel motor adaptation experimental paradigm. METHODS Pianists with and without focal task-specific dystonia learned to play the piano with a key whose weight can be modified by a novel robot system. RESULTS The result clearly demonstrated a significantly larger error between the target and produced keystroke velocities in the patients than the controls following a repetition of keystrokes of the weighted key. This adaptation failure was not correlated with the variability of timing and velocity of the keystroke when the patients were playing unloaded piano keys, which suggests distinct effects of focal task-specific dystonia on motor adaptation and fine motor control. Immediately after a repetition of the strikes of the heavy key with keeping the fingers adducted, the error of the keystroke velocity when striking the key with the fingers more abducted was maintained in both the patients and controls. This generalization of the adaptation across different hand postures suggests that motor memory of dynamics of the piano key is independent of biomechanical properties of the hand. Importantly, a lack of difference in the finger muscular strength between the groups indicated that the adaptation failure was not attributed to deficit of muscular strength in the patients. CONCLUSIONS These findings suggest that task-specific manifestation of dystonic movements in focal task-specific dystonia is associated with malfunctions of internal representation of mechanical properties of a well-trained tool. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shinichi Furuya
- Sony Computer Science Laboratories Inc., Tokyo, Japan.,Musical Skill and Injury Center, Sophia University, Tokyo, Japan.,Institute for Music Physiology and Musicians' Medicine, Hannover University of Music, Drama, and Media, Hannover, Germany
| | - André Lee
- Department of Neurology, Technical University, The Technical University of Munich, Munich, Germany
| | - Takanori Oku
- Sony Computer Science Laboratories Inc., Tokyo, Japan
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medicine, Hannover University of Music, Drama, and Media, Hannover, Germany
| |
Collapse
|
35
|
Poydasheva AG, Semenova OV, Suponeva NA, Timerbaeva SL, Piradov MA. [Diagnostic and therapeutic issues of using transcranial magnetic stimulation in patients with writer's cramp]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:22-29. [PMID: 31793539 DOI: 10.17116/jnevro201911910122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To assess diagnostic and therapeutic values of transcranial magnetic stimulation (TMS) in patients with writer's cramp (WC). MATERIAL AND METHODS Twelve right-handed patients with WC were enrolled in the study. All patients underwent low-frequency repetitive TMS (rTMS) over the premotor cortex of the hemisphere contralateral to the affected hand. The clinical efficacy was assessed using the Writer's Cramp Rating Scale (WCRS) and the Medical Outcomes Study-Short Form (MOS-SF-36). Before and after the last rTMS session, motor mapping of abductor pollicis brevis muscle (APB) was performed using navigated TMS (nTMS). Localization, area, and amplitude-weighted area of the APB muscle cortical representations were compared with the healthy controls. The dynamics of the mentioned above parameters after the rTMS course was assessed. RESULTS Ten sessions of low-frequency rTMS over premotor cortex reduced the severity of WC clinical symptoms, with a duration of effect of at least 1 month (p<0.05). There was no significant difference between the area and the weighted area of cortical muscle representations between patients and healthy controls or in patients before and after rTMS. When assessing the localization of cortical muscle representations, two trends were noted: in 4 patients, the localization remained stable, with a shift in the center of gravity of less than 4 mm; in the other 8 patients, a shift in the center of gravity of more than 5 mm was noted. No significant correlations between the stability of the cortical muscle representations (the magnitude of the shift in the center of gravity) and the improvement on the WCRS scale were found. CONCLUSION The low-frequency rTMS over the premotor cortex of the hemisphere contralateral to the affected hand can be used as an adjuvant therapy for WC. The TMS-motor mapping study did not show its diagnostic value.
Collapse
Affiliation(s)
| | - O V Semenova
- Vorokhobov City Clinical Hospital #67, Moscow, Russia
| | | | - S L Timerbaeva
- Federal State Hospital for Treatment and Rehabilitation, Moscow, Russia
| | - M A Piradov
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
36
|
Baik JS, Ma HI, Lee PH, Taira T. Focal Task-Specific Lower Limb Dystonia Only When Walking Stairs: Is It a New Disease Entity? Front Neurol 2019; 10:1081. [PMID: 31749753 PMCID: PMC6842934 DOI: 10.3389/fneur.2019.01081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction: Focal task-specific dystonia in the lower limb or foot often occurs only during walking, running, hiking, or cycling. Several medications and botulinum toxin injection are effective in patients with this disorder. The objective of this study was to understand the spectrum of focal task-specific dystonia in the lower limb only when walking stairs and to compare other types of task-specific dystonia. Methods: All original articles and case reports were collected and reviewed using PubMed. In addition, all video clips of published cases were evaluated, and patients' clinical findings analyzed. The present study included 12 patients described in previous studies and five new Asian patients found in the medical records. Results: Most of the patients were women, and the onset age was 42 years. Ten patients were classified as the Kicking type, including three patients with the rKicking type, and six patients were considered as the Lifting type; however, only one patient was not included in any of the types. Symptoms in most of the patients did not improve with any medications or botulinum toxin injection. The symptoms of most patients did not change over a long time. Conclusion: Most patients showed the dystonic symptom when walking downstairs rather than upstairs. Psychogenic dystonia is a disease differentially diagnosed with this dystonia. Unlike other types of focal task-specific dystonia, the response to treatment was disappointing because most of the medications and botulinum toxin injection were not effective. The prognosis is completely different from that of other types of focal task-specific dystonia.
Collapse
Affiliation(s)
- Jong Sam Baik
- Department of Neurology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - Hyeo-Il Ma
- Department of Neurology, Hallym University Hospital, Anyang, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Takaomi Taira
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
37
|
Voluntary and involuntary movements: A proposal from a clinician. Neurosci Res 2019; 156:80-87. [PMID: 31634500 DOI: 10.1016/j.neures.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 11/23/2022]
Abstract
In this communication, I first summarize the mechanisms underlying human voluntary movements and define the involuntary movements (medical term). CLASSIFICATION OF HUMAN MOVEMENTS Human movements are classified into two main kinds: intentional movements and non-intentional movements in which the involuntary movements are included. Non-intentional movements have many kinds of movement: normal non-intentional movements (associate movements, mirror movements or juggling knees etc.), several reflexes (spinal tendon, spinal flexion, spino-bulbo-spinal, cortical reflexes and startle response) and pathological non-intentional movements which should be treated (so called "involuntary movements" in clinical practice, medical term of involuntary movement). VOLUNTARY MOVEMENTS The final motor commands for movements are mediated by several descending motor pathways. These final pathways are modified, regulated by two main loops (basal ganglia loop and cerebellar loop). INVOLUNTARY MOVEMENTS (MEDICAL TERM) The involuntary movements are produced by a non-intentional, pathological activation anywhere within the final common pathways or the above two loops. I would like to personally divide those into four major groups. TREMOR Some oscillation mechanisms may produce tremor: one site oscillation or loop oscillation. MYOCLONUS Sudden, brief, shock-like involuntary movements arising from anywhere from the cortex to the muscle. CHOREA/BALLISM Suddenly appearing, irregular, phasic movements which are usually mimicked by normal subjects. DYSTONIA/ATHETOSIS Sustained, long duration muscle contraction sometimes associated with torsion components.
Collapse
|
38
|
Naro A, Billeri L, Portaro S, Bramanti P, Calabrò RS. Lasting Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Writer's Cramp: A Case Report. Front Hum Neurosci 2019; 13:314. [PMID: 31619978 PMCID: PMC6759570 DOI: 10.3389/fnhum.2019.00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
The treatment of writer’s cramp (W’sC) is essentially based on the use of botulinum toxin. However, additional treatments are sometime required to prolong the effects of the toxin, compensate for its progressive loss of efficacy in some subjects, and re-educate handwriting (e.g., rehabilitation strategies). Low-frequency repetitive transcranial magnetic stimulation (rTMS) has been employed to improve W’sC, but with short-lasting and controversial outcomes. We report on the effects of a long-lasting low-frequency rTMS paradigm on W’sC symptoms. A 25-year-old male with a diagnosis of simple W’sC was enrolled in the study. He underwent an objective assessment using the Writer’s Cramp Rating Scale (WCRS) and the 1-min writing test. Further, we recorded muscle activation of the upper limb during handwriting using an EMG wireless system. The patient was provided with 1,200 biphasic magnetic pulses delivered at 1 Hz over the left premotor cortex (PMC), 15 times scheduled every 2 days, thus covering a period of 5 weeks, followed by 10 days of rest. This block of stimulations was practiced other four times, for a period of 6 months. The patient showed a gradual clinical improvement with the progression of the treatments. W’sC symptoms totally disappeared and all the clinical scores showed a significant improvement after rTMS completion. Such improvement lasted up to 1 year after the end of the treatment. Moreover, we detected a long-lasting improvement in sensorimotor plasticity as measured by a paired associative stimulation protocol. Our case suggests that the long-lasting application of 1 Hz rTMS to PMC is a safe and potentially valuable tool to improve W’sC symptoms enduringly, probably by reverting maladaptive plasticity mechanisms within the sensory-motor areas of the hemisphere contralateral to the dystonic hand.
Collapse
Affiliation(s)
- Antonino Naro
- Behavioral and Robotic Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Luana Billeri
- Behavioral and Robotic Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Simona Portaro
- Behavioral and Robotic Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Placido Bramanti
- Behavioral and Robotic Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Rocco Salvatore Calabrò
- Behavioral and Robotic Neurorehabilitation Unit, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
39
|
Conte A, Rocchi L, Latorre A, Belvisi D, Rothwell JC, Berardelli A. Ten‐Year Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. Mov Disord 2019; 34:1616-1628. [DOI: 10.1002/mds.27859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Anna Latorre
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | | | - John C. Rothwell
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Alfredo Berardelli
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| |
Collapse
|
40
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Mov Disord 2019; 34:936-949. [DOI: 10.1002/mds.27736] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli Isernia Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
41
|
Versace V, Campostrini S, Sebastianelli L, Soda M, Saltuari L, Lun S, Nardone R, Kofler M. Adult-Onset Gilles de la Tourette Syndrome: Psychogenic or Organic? The Challenge of Abnormal Neurophysiological Findings. Front Neurol 2019; 10:461. [PMID: 31130912 PMCID: PMC6509948 DOI: 10.3389/fneur.2019.00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is characterized by multiple motor and vocal tics. Adult-onset cases are rare and may be due to "reactivation" of childhood tics, or secondary to psychiatric or genetic diseases, or due to central nervous system lesions of different etiologies. Late-onset psychogenic motor/vocal tics resembling GTS have been described. Neurophysiology may serve to differentiate organic from functional GTS. Altered blink reflex pre-pulse inhibition (BR-PPI), blink reflex excitability recovery (BR-ERC), and short-interval intracortical inhibition (SICI) have been described in GTS. We report a 48-years-old male, who developed numerous motor/vocal tics 2 months after sustaining non-commotional craniofacial trauma in a car accident. Both his father and brother had died earlier in car crashes. He presented with blepharospasm-like forced lid closure, forceful lip pursing, noisy suction movements, and deep moaning sounds, occurring in variable combinations, without warning symptoms or internal "urge." Tics showed low distractibility and these increased with attention. Standard magnetic resonance imaging, electroencephalography, and evoked potentials were unremarkable. Neuropsychology diagnosed moderately impaired intellect, attention, and executive functions. Psychiatric assessment revealed somatization disorder and generalized anxiety. BR-PPI was unremarkable, while BR-ERC was enhanced, even showing facilitation at short intervals. SICI was markedly reduced at 1 and 3 ms and intracortical facilitation (ICF) was enhanced at 10 ms. The patient fulfilled Fahn and Williams' diagnostic criteria for a psychogenic movement disorder. Neurophysiology, however, documented hyperexcitability of motor cortex and brainstem. We suggest that-similar to what has been reported in psychogenic dystonia-a pre-existing predisposition may have led to the functional hyperkinetic disorder in response to severe psychic stress.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Stefania Campostrini
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Mirco Soda
- Department of Neuropsychology, Hospital of Bressanone, Bressanone, Italy
| | - Leopold Saltuari
- Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy.,Department of Neurology, State Hospital Hochzirl, Zirl, Austria
| | - Sigrid Lun
- Department of Psychiatry, Hospital of Bressanone, Bressanone, Italy
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy.,Department of Neurology, Christian Doppler Medical Center, Paracelsus Private Medical University of Salzburg, Salzburg, Austria
| | - Markus Kofler
- Department of Neurology, State Hospital Hochzirl, Zirl, Austria
| |
Collapse
|
42
|
Baizabal-Carvallo JF, Hallett M, Jankovic J. Pathogenesis and pathophysiology of functional (psychogenic) movement disorders. Neurobiol Dis 2019; 127:32-44. [PMID: 30798005 DOI: 10.1016/j.nbd.2019.02.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/31/2019] [Accepted: 02/20/2019] [Indexed: 11/17/2022] Open
Abstract
Functional movement disorders (FMDs), known over time as "hysteria", "dissociative", "conversion", "somatoform", "non-organic" and "psychogenic" disorders, are characterized by having a voluntary quality, being modifiable by attention and distraction but perceived by the patient as involuntary. Although a high prevalence of depression and anxiety is observed in these patients, a definitive role of psychiatric disorders in FMDs has not been proven, and many patients do not endorse such manifestations. Stressful events, social influences and minor trauma may precede the onset of FMDs, but their pathogenic mechanisms are unclear. Patients with FMDs have several abnormalities in their neurobiology including strengthened connectivity between the limbic and motor networks. Additionally, there is altered top-down regulation of motor activities and increased activation of areas implicated in self-awareness, self-monitoring, and active motor inhibition such as the cingulate and insular cortex. Decreased activation of the supplementary motor area (SMA) and pre-SMA, implicated in motor control and preparation, is another finding. The sense of agency defined as the feeling of controlling external events through one's own action also seems to be impaired in individuals with FMDs. Correlating with this is a loss of intentional binding, a subjective time compression between intentional action and its sensory consequences. Organic and functional dystonia may be difficult to differentiate since they share diverse neurophysiological features including decreased cortical inhibition, and similar local field potentials in the globus pallidus and thalamus; although increased cortical plasticity is observed only in patients with organic dystonia. Advances in the pathogenesis and pathophysiology of FMDs may be helpful to understand the nature of these disorders and plan further treatment strategies.
Collapse
Affiliation(s)
- José Fidel Baizabal-Carvallo
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA; University of Guanajuato, Mexico.
| | - Mark Hallett
- Human Motor Control Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Leon-Sarmiento FE, Bayona-Prieto J, Leon-Ariza JS, Leon-Ariza DS, Jacob AE, LaFaver K, Doty RL. Smell status in functional movement disorders: New clues for diagnosis and underlying mechanisms. Clin Neurol Neurosurg 2019; 177:68-72. [DOI: 10.1016/j.clineuro.2018.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 01/11/2023]
|
44
|
Portaro S, Naro A, Cacciola A, Marra A, Quartarone A, Milardi D, Calabrò RS. Adult-Onset Walking-Upstairs Dystonia. J Clin Neurol 2019; 15:122-124. [PMID: 30375761 PMCID: PMC6325365 DOI: 10.3988/jcn.2019.15.1.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Angela Marra
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Demetrio Milardi
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
- Department of Anatomy, University of Messina, Messina, Italy
| | | |
Collapse
|
45
|
Erro R, Rocchi L, Antelmi E, Liguori R, Tinazzi M, Berardelli A, Rothwell J, Bhatia KP. High frequency somatosensory stimulation in dystonia: Evidence fordefective inhibitory plasticity. Mov Disord 2018; 33:1902-1909. [PMID: 30376603 DOI: 10.1002/mds.27470] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Apart from motor symptoms, multiple deficits of sensory processing have been demonstrated in dystonia. The most consistent behavioural measure of this is abnormal somatosensory temporal discrimination threshold, which has recently been associated with physiological measures of reduced inhibition within the primary somatosensory area. High-frequency repetitive sensory stimulation is a patterned electric stimulation applied to the skin through surface electrodes that has been recently reported to shorten somatosensory temporal discrimination in healthy subjects and to increase the resting level of excitability in several different types of inhibitory interaction in the somatosensory and even motor areas. OBJECTIVES We tested whether high-frequency repetitive sensory stimulation could augment cortical inhibition and, in turn, ameliorate somatosensory temporal discrimination in cervical dystonia. METHODS Somatosensory temporal discrimination and a number of electrophysiological measures of sensorimotor inhibition and facilitation were measured before and after 45 minutes of high-frequency repetitive sensory stimulation. RESULTS As compared with a group of healthy volunteers of similar age, in whom high-frequency repetitive sensory stimulation increased inhibition and shortened somatosensory temporal discrimination, patients with cervical dystonia showed a consistent, paradoxical response: they had reduced suppression of paired-pulse somatosensory evoked potentials, as well as reduced high-frequency oscillations, lateral inhibition, and short interval intracortical inhibition. Somatosensory temporal discrimination deteriorated after the stimulation protocol, and correlated with reduced measures of inhibition within the primary somatosensory cortex. CONCLUSIONS We suggest that patients with dystonia have abnormal homeostatic inhibitory plasticity within the sensorimotor cortex and that this is responsible for their paradoxical response to high-frequency repetitive sensory stimulation. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Center for Neurodegenerative Diseases, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana,", University of Salerno, Baronissi (Salerno), Italy
| | - Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Department of Neurology and Psychiatry, University of Rome "Sapienza,", Rome, Italy
| | - Elena Antelmi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, University of Rome "Sapienza,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Institute, Via Atinense, Pozzilli, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| |
Collapse
|
46
|
Synaptic Plasticity Changes: Hallmark for Neurological and Psychiatric Disorders. Neural Plast 2018; 2018:9230704. [PMID: 30425736 PMCID: PMC6218720 DOI: 10.1155/2018/9230704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/09/2023] Open
|
47
|
Abstract
Dystonia is a neurological condition characterized by abnormal involuntary movements or postures owing to sustained or intermittent muscle contractions. Dystonia can be the manifesting neurological sign of many disorders, either in isolation (isolated dystonia) or with additional signs (combined dystonia). The main focus of this Primer is forms of isolated dystonia of idiopathic or genetic aetiology. These disorders differ in manifestations and severity but can affect all age groups and lead to substantial disability and impaired quality of life. The discovery of genes underlying the mendelian forms of isolated or combined dystonia has led to a better understanding of its pathophysiology. In some of the most common genetic dystonias, such as those caused by TOR1A, THAP1, GCH1 and KMT2B mutations, and idiopathic dystonia, these mechanisms include abnormalities in transcriptional regulation, striatal dopaminergic signalling and synaptic plasticity and a loss of inhibition at neuronal circuits. The diagnosis of dystonia is largely based on clinical signs, and the diagnosis and aetiological definition of this disorder remain a challenge. Effective symptomatic treatments with pharmacological therapy (anticholinergics), intramuscular botulinum toxin injection and deep brain stimulation are available; however, future research will hopefully lead to reliable biomarkers, better treatments and cure of this disorder.
Collapse
|
48
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
49
|
Maltese M, Stanic J, Tassone A, Sciamanna G, Ponterio G, Vanni V, Martella G, Imbriani P, Bonsi P, Mercuri NB, Gardoni F, Pisani A. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. eLife 2018; 7:33331. [PMID: 29504938 PMCID: PMC5849413 DOI: 10.7554/elife.33331] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, although it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a+/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a+/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers.
Collapse
Affiliation(s)
- Marta Maltese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jennifer Stanic
- Department of Pharmacology, University of Milan, Milan, Italy
| | - Annalisa Tassone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Antonio Pisani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
50
|
Caverzasio S, Amato N, Manconi M, Prosperetti C, Kaelin-Lang A, Hutchison WD, Galati S. Brain plasticity and sleep: Implication for movement disorders. Neurosci Biobehav Rev 2018; 86:21-35. [DOI: 10.1016/j.neubiorev.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
|