1
|
Olkhova EA, Bradshaw C, Blain A, Alvim D, Turnbull DM, LeBeau FEN, Ng YS, Gorman GS, Lax NZ. A novel mouse model of mitochondrial disease exhibits juvenile-onset severe neurological impairment due to parvalbumin cell mitochondrial dysfunction. Commun Biol 2023; 6:1078. [PMID: 37872380 PMCID: PMC10593770 DOI: 10.1038/s42003-023-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/10/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial diseases comprise a common group of neurometabolic disorders resulting from OXPHOS defects, that may manifest with neurological impairments, for which there are currently no disease-modifying therapies. Previous studies suggest inhibitory interneuron susceptibility to mitochondrial impairment, especially of parvalbumin-expressing interneurons (PV+). We have developed a mouse model of mitochondrial dysfunction specifically in PV+ cells via conditional Tfam knockout, that exhibited a juvenile-onset progressive phenotype characterised by cognitive deficits, anxiety-like behaviour, head-nodding, stargazing, ataxia, and reduced lifespan. A brain region-dependent decrease of OXPHOS complexes I and IV in PV+ neurons was detected, with Purkinje neurons being most affected. We validated these findings in a neuropathological study of patients with pathogenic mtDNA and POLG variants showing PV+ interneuron loss and deficiencies in complexes I and IV. This mouse model offers a drug screening platform to propel the discovery of therapeutics to treat severe neurological impairment due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elizaveta A Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Debora Alvim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Fiona E N LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK.
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
2
|
Durrleman C, Grevent D, Aubart M, Kossorotoff M, Roux CJ, Kaminska A, Rio M, Barcia G, Boddaert N, Munnich A, Nabbout R, Desguerre I. Clinical and radiological description of 120 pediatric stroke-like episodes. Eur J Neurol 2023; 30:2051-2061. [PMID: 37046408 DOI: 10.1111/ene.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND PURPOSE Stroke-like episodes (SLEs) are defined as acute onset of neurological symptoms mimicking a stroke and radiological lesions non-congruent to vascular territory. We aimed to analyze the acute clinical and radiological features of SLEs to determine their pathophysiology. METHODS We performed a monocenter retrospective analysis of 120 SLEs in 60 children over a 20-year period. Inclusion criteria were compatible clinical symptoms and stroke-like lesions on brain magnetic resonance imaging (MRI; performed for all 120 events) with focal hyperintensity on diffusion-weighted imaging in a non-vascular territory. RESULTS Three groups were identified: children with mitochondrial diseases (n = 22) involving mitochondrial DNA mutations (55%) or nuclear DNA mutations (45%); those with other metabolic diseases or epilepsy disorders (n = 22); and those in whom no etiology was found despite extensive investigations (n = 16). Age at first SLE was younger in the group with metabolic or epilepsy disorders (18 months vs. 128 months; p < 0.0001) and an infectious trigger was more frequent (69% vs. 20%; p = 0.0001). Seizures occurred in 75% of episodes, revealing 50% episodes of SLEs and mainly leading to status epilepticus (90%). Of the 120 MRI scans confirming the diagnosis, 28 were performed within a short and strict 48-h period and were further analyzed to better understand the underlying mechanisms. The scans showed primary cortical hyperintensity (n = 28/28) with decreased apparent diffusion coefficient in 52% of cases. Systematic hyperperfusion was found on spin labeling sequences when available (n = 18/18). CONCLUSION Clinical and radiological results support the existence of a vicious circle based on two main mechanisms: energy deficit and neuronal hyperexcitability at the origin of SLE.
Collapse
Affiliation(s)
- Chloe Durrleman
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - David Grevent
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
- Lumiere Platform, Université Paris Cité, Paris, France
| | - Melodie Aubart
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Manoelle Kossorotoff
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Charles-Joris Roux
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Anna Kaminska
- Neurophysiology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Marlene Rio
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Giulia Barcia
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Nathalie Boddaert
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
- Lumiere Platform, Université Paris Cité, Paris, France
| | - Arnold Munnich
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Rima Nabbout
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Isabelle Desguerre
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Ng YS, Gorman GS. Stroke-like episodes in adult mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:65-78. [PMID: 36813321 DOI: 10.1016/b978-0-12-821751-1.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Stroke-like episode is a paroxysmal neurological manifestation which affects a specific group of patients with mitochondrial disease. Focal-onset seizures, encephalopathy, and visual disturbances are prominent findings associated with stroke-like episodes, with a predilection for the posterior cerebral cortex. The most common cause of stroke-like episodes is the m.3243A>G variant in MT-TL1 gene followed by recessive POLG variants. This chapter aims to review the definition of stroke-like episode and delineate the clinical phenomenology, neuroimaging and EEG findings typically seen in patients. In addition, several lines of evidence supporting neuronal hyper-excitability as the key mechanism of stroke-like episodes are discussed. The management of stroke-like episodes should focus on aggressive seizure management and treatment for concomitant complications such as intestinal pseudo-obstruction. There is no robust evidence to prove the efficacy of l-arginine for both acute and prophylactic settings. Progressive brain atrophy and dementia are the sequalae of recurrent stroke-like episode, and the underlying genotype in part predicts prognosis.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Guerrero-Molina MP, Morales-Conejo M, Delmiro A, Morán M, Domínguez-González C, Arranz-Canales E, Ramos-González A, Arenas J, Martín MA, de la Aleja JG. High-dose oral glutamine supplementation reduces elevated glutamate levels in cerebrospinal fluid in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome. Eur J Neurol 2023; 30:538-547. [PMID: 36334048 DOI: 10.1111/ene.15626] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND PURPOSE Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous disorder caused by mitochondrial DNA mutations. There are no disease-modifying therapies, and treatment remains mainly supportive. It has been shown previously that patients with MELAS syndrome have significantly increased cerebrospinal fluid (CSF) glutamate and significantly decreased CSF glutamine levels compared to controls. Glutamine has many metabolic fates in neurons and astrocytes, and the glutamate-glutamine cycle couples with many metabolic pathways depending on cellular requirements. The aim was to compare CSF glutamate and glutamine levels before and after dietary glutamine supplementation. It is postulated that high-dose oral glutamine supplementation could reduce the increase in glutamate levels. METHOD This open-label, single-cohort study determined the safety and changes in glutamate and glutamine levels in CSF after 12 weeks of oral glutamine supplementation. RESULTS Nine adult patients with MELAS syndrome (66.7% females, mean age 35.8 ± 3.2 years) were included. After glutamine supplementation, CSF glutamate levels were significantly reduced (9.77 ± 1.21 vs. 18.48 ± 1.34 μmol/l, p < 0.001) and CSF glutamine levels were significantly increased (433.66 ± 15.31 vs. 336.31 ± 12.92 μmol/l, p = 0.002). A side effect observed in four of nine patients was a mild sensation of satiety. One patient developed mild and transient elevation of transaminases, and another patient was admitted for an epileptic status without stroke-like episode. DISCUSSION This study demonstrates that high-dose oral glutamine supplementation significantly reduces CSF glutamate and increases CSF glutamine levels in patients with MELAS syndrome. These findings may have potential therapeutic implications in these patients. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT04948138. Initial release 24 June 2021, first patient enrolled 1 July 2021. https://clinicaltrials.gov/ct2/show/NCT04948138.
Collapse
Affiliation(s)
| | - Montserrat Morales-Conejo
- Department of Internal Medicine, University Hospital, Madrid, Spain
- National Reference Center for Congenital Errors of Metabolism (CSUR) and European Reference Center for Inherited Metabolic Disease (MetabERN), University Hospital, Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Aitor Delmiro
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
- Research Institute ('imas12'), University Hospital, Madrid, Spain
| | - María Morán
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
- Research Institute ('imas12'), University Hospital, Madrid, Spain
| | - Cristina Domínguez-González
- Neurology Department, Neuromuscular Disorders Unit, University Hospital, Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
- Research Institute ('imas12'), University Hospital, Madrid, Spain
| | - Elena Arranz-Canales
- Department of Internal Medicine, University Hospital, Madrid, Spain
- National Reference Center for Congenital Errors of Metabolism (CSUR) and European Reference Center for Inherited Metabolic Disease (MetabERN), University Hospital, Madrid, Spain
| | | | - Joaquín Arenas
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
- Research Institute ('imas12'), University Hospital, Madrid, Spain
| | - Miguel A Martín
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
- Research Institute ('imas12'), University Hospital, Madrid, Spain
| | - Jesús González de la Aleja
- National Reference Center for Congenital Errors of Metabolism (CSUR) and European Reference Center for Inherited Metabolic Disease (MetabERN), University Hospital, Madrid, Spain
- Neurology Department, Epilepsy Unit, University Hospital, Madrid, Spain
| |
Collapse
|
5
|
Abstract
Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Robert McFarland
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Kobayashi Y, Karasawa S, Ohashi N, Yamamoto K. Disseminated stroke-like episodes lesions in MELAS are partially reversible with lactate disappearance. Acta Neurol Belg 2022:10.1007/s13760-022-01999-w. [PMID: 35674909 DOI: 10.1007/s13760-022-01999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Yuya Kobayashi
- Department of Neurology, Nagano Municipal Hospital, 1333-1, Tomitake, Nagano, 381-8551, Japan.
| | - Seishu Karasawa
- Department of Neurology, Nagano Municipal Hospital, 1333-1, Tomitake, Nagano, 381-8551, Japan
| | - Nobuhiko Ohashi
- Department of Neurology, Nagano Municipal Hospital, 1333-1, Tomitake, Nagano, 381-8551, Japan
| | - Kanji Yamamoto
- Department of Neurology, Nagano Municipal Hospital, 1333-1, Tomitake, Nagano, 381-8551, Japan
| |
Collapse
|
7
|
Genetic causes of acute encephalopathy in adults: beyond inherited metabolic and epileptic disorders. Neurol Sci 2022; 43:1617-1626. [PMID: 35066645 PMCID: PMC8783656 DOI: 10.1007/s10072-022-05899-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/13/2022] [Indexed: 01/18/2023]
|
8
|
Guerrero-Molina MP, Morales-Conejo M, Delmiro A, Morán M, Domínguez-González C, Arranz-Canales E, Ramos-González A, Arenas J, Martín MA, González de la Aleja J. Elevated glutamate and decreased glutamine levels in the cerebrospinal fluid of patients with MELAS syndrome. J Neurol 2022; 269:3238-3248. [PMID: 35088140 PMCID: PMC8794606 DOI: 10.1007/s00415-021-10942-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Background Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a genetically heterogeneous disorder caused by mitochondrial DNA (mtDNA) mutations in the MT-TL1 gene. The pathophysiology of neurological manifestations is still unclear, but neuronal hyperexcitability and neuron–astrocyte uncoupling have been suggested. Glutamatergic neurotransmission is linked to glucose oxidation and mitochondrial metabolism in astrocytes and neurons. Given the relevance of neuron–astrocyte metabolic coupling and astrocyte function regulating energetic metabolism, we aimed to assess glutamate and glutamine CSF levels in MELAS patients. Methods This prospective observational case–control study determined glutamate and glutamine CSF levels in patients with MELAS syndrome and compared them with controls. The plasma and CSF levels of the remaining amino acids and lactate were also determined. Results Nine adult patients with MELAS syndrome (66.7% females mean age 35.8 ± 3.2 years) and 19 controls (63.2% females mean age 42.7 ± 3.8 years) were included. The CSF glutamate levels were significantly higher in patients with MELAS than in controls (18.48 ± 1.34 vs. 5.31 ± 1.09 μmol/L, p < 0.001). Significantly lower glutamine concentrations in patients with MELAS than controls were shown in CSF (336.31 ± 12.92 vs. 407.06 ± 15.74 μmol/L, p = 0.017). Moreover, the CSF levels of alanine, the branched-chain amino acids (BCAAs) and lactate were significantly higher in patients with MELAS. Conclusions Our results suggest the glutamate–glutamine cycle is altered probably due to metabolic imbalance, and as a result, the lactate–alanine and BCAA–glutamate cycles are upregulated. These findings might have therapeutic implications in MELAS syndrome. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10942-7.
Collapse
Affiliation(s)
- María Paz Guerrero-Molina
- Neuromuscular Disorders Unit, Neurology Department, University Hospital, 12 de Octubre, Madrid, Spain.
| | - Montserrat Morales-Conejo
- Department of Internal Medicine, University Hospital, 12 de Octubre, Madrid, Spain.,National Reference Center for Congenital Errors of Metabolism (CSUR) an European Reference Center for Inherited Metabolic Disease (MetabERN), University Hospital, 12 de Octubre, Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Aitor Delmiro
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain.,Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Research Institute ('imas12'), University Hospital, 12 de Octubre, Madrid, Spain
| | - María Morán
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain.,Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Research Institute ('imas12'), University Hospital, 12 de Octubre, Madrid, Spain
| | - Cristina Domínguez-González
- Neuromuscular Disorders Unit, Neurology Department, University Hospital, 12 de Octubre, Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain.,Research Institute ('imas12'), University Hospital, 12 de Octubre, Madrid, Spain
| | - Elena Arranz-Canales
- Department of Internal Medicine, University Hospital, 12 de Octubre, Madrid, Spain.,National Reference Center for Congenital Errors of Metabolism (CSUR) an European Reference Center for Inherited Metabolic Disease (MetabERN), University Hospital, 12 de Octubre, Madrid, Spain
| | - Ana Ramos-González
- Department of Neuroradiology, University Hospital, 12 de Octubre, Madrid, Spain
| | - Joaquín Arenas
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain.,Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Research Institute ('imas12'), University Hospital, 12 de Octubre, Madrid, Spain
| | - Miguel A Martín
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain.,Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Research Institute ('imas12'), University Hospital, 12 de Octubre, Madrid, Spain
| | - Jesús González de la Aleja
- National Reference Center for Congenital Errors of Metabolism (CSUR) an European Reference Center for Inherited Metabolic Disease (MetabERN), University Hospital, 12 de Octubre, Madrid, Spain.,Epilepsy Unit, Neurology Department, University Hospital, 12 de Octubre, Madrid, Spain
| |
Collapse
|
9
|
Mitochondrial DNA depletion syndrome with a mutation in SLC25A4 developing epileptic encephalopathy: A case report. Brain Dev 2022; 44:56-62. [PMID: 34452803 DOI: 10.1016/j.braindev.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Autosomal dominant mitochondrial DNA depletion syndrome (MTDPS-12A) is characterized by severe hypotonia from birth due to a mutation in the adenine nucleotide translocator 1 (ANT1). CASE REPORT A 4-year-old female patient diagnosed with neonatal-onset mitochondrial disease, who had good cognitive function while receiving antiepileptic treatment, presented with sudden-onset status epilepticus with facial and limb myoclonus persisting for more than 30 min. Subsequently, she developed epileptic encephalopathy. Brain MRI showed progressive ventricular enlargement and marked white matter atrophy. She was unable to perform verbal communication or make eye contact and fingertip movements. She lacked any signs of cardiomyopathy. Sanger sequencing demonstrated a heterozygous de novo mutation of c.239G>A (p.Arg80His) in SLC25A4. Her right quadriceps muscle tissue showed lowered complexes I, III, and IV activities and mitochondria DNA depletion (mitochondria/nuclear DNA: 14.6 ± 2.2%) through the quantitative polymerase chain reaction. She was definitively diagnosed with MTDPS-12A. CONCLUSION Status epilepticus causes encephalopathy in patients with MTDPS-12A. Reducing the energy requirement on the cardiac muscle and brain may be a treatment strategy for patients with MTDPS-12A. Therefore, seizure management and preventive treatment of status epilepticus are considered to be important for maintaining neurodevelopmental outcomes.
Collapse
|
10
|
Hytönen MK, Sarviaho R, Jackson CB, Syrjä P, Jokinen T, Matiasek K, Rosati M, Dallabona C, Baruffini E, Quintero I, Arumilli M, Monteuuis G, Donner J, Anttila M, Suomalainen A, Bindoff LA, Lohi H. In-frame deletion in canine PITRM1 is associated with a severe early-onset epilepsy, mitochondrial dysfunction and neurodegeneration. Hum Genet 2021; 140:1593-1609. [PMID: 33835239 PMCID: PMC8519929 DOI: 10.1007/s00439-021-02279-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/27/2021] [Indexed: 11/30/2022]
Abstract
We investigated the clinical, genetic, and pathological characteristics of a previously unknown severe juvenile brain disorder in several litters of Parson Russel Terriers. The disease started with epileptic seizures at 6–12 weeks of age and progressed rapidly to status epilepticus and death or euthanasia. Histopathological changes at autopsy were restricted to the brain. There was severe acute neuronal degeneration and necrosis diffusely affecting the grey matter throughout the brain with extensive intraneuronal mitochondrial crowding and accumulation of amyloid-β (Aβ). Combined homozygosity mapping and genome sequencing revealed an in-frame 6-bp deletion in the nuclear-encoded pitrilysin metallopeptidase 1 (PITRM1) encoding for a mitochondrial protease involved in mitochondrial targeting sequence processing and degradation. The 6-bp deletion results in the loss of two amino acid residues in the N-terminal part of PITRM1, potentially affecting protein folding and function. Assessment of the mitochondrial function in the affected brain tissue showed a significant deficiency in respiratory chain function. The functional consequences of the mutation were modeled in yeast and showed impaired growth in permissive conditions and an impaired respiration capacity. Loss-of-function variants in human PITRM1 result in a childhood-onset progressive amyloidotic neurological syndrome characterized by spinocerebellar ataxia with behavioral, psychiatric and cognitive abnormalities. Homozygous Pitrm1-knockout mice are embryonic lethal, while heterozygotes show a progressive, neurodegenerative phenotype characterized by impairment in motor coordination and Aβ deposits. Our study describes a novel early-onset PITRM1-related neurodegenerative canine brain disorder with mitochondrial dysfunction, Aβ accumulation, and lethal epilepsy. The findings highlight the essential role of PITRM1 in neuronal survival and strengthen the connection between mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Riika Sarviaho
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Pernilla Syrjä
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Tarja Jokinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Kaspar Matiasek
- Faculty of Veterinary Medicine, Centre for Clinical Veterinary Medicine, LMU-Munich, Veterinärstrasse 13, 80539, Munich, Germany
| | - Marco Rosati
- Faculty of Veterinary Medicine, Centre for Clinical Veterinary Medicine, LMU-Munich, Veterinärstrasse 13, 80539, Munich, Germany
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ileana Quintero
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Geoffray Monteuuis
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Jonas Donner
- Wisdom Health (Genoscoper Laboratories), Helsinki, Finland
| | | | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Neuro-SysMed, Haukeland University Hospital, Bergen, Norway
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland. .,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Luo Q, Xian P, Wang T, Wu S, Sun T, Wang W, Wang B, Yang H, Yang Y, Wang H, Liu W, Long Q. Antioxidant activity of mesenchymal stem cell-derived extracellular vesicles restores hippocampal neurons following seizure damage. Am J Cancer Res 2021; 11:5986-6005. [PMID: 33897894 PMCID: PMC8058724 DOI: 10.7150/thno.58632] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a critical event in neuronal damage following seizures. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been shown to be promising nanotherapeutic agents in neurological disorders. However, the mechanism underlying MSC-EVs therapeutic efficacy for oxidative stress-induced neuronal damage remains poorly understood. Methods: We investigated the antioxidant and restoration activities of MSC-EVs on hippocampal neurons in response to H2O2 stimulation in vitro and seizures in vivo. We also explored the potential underlying mechanism by injecting adeno-associated virus (AAV)-nuclear factor erythroid-derived 2, like 2 (Nrf2), a key antioxidant mediator, in animal models. Results: MSC-EVs were enriched in antioxidant miRNAs and exhibited remarkable antioxidant activity evident by increased ferric ion-reducing antioxidant ability, catalase, superoxide dismutase, and glutathione peroxidase activities and decreased reactive oxygen species (ROS) generation, DNA/lipid/protein oxidation, and stress-associated molecular patterns in cultured cells and mouse models. Notably, EV administration exerted restorative effects on the hippocampal neuronal structure and associated functional impairments, including dendritic spine alterations, electrophysiological disturbances, calcium transients, mitochondrial changes, and cognitive decline after oxidative stress in vitro or in vivo. Mechanistically, we found that the Nrf2 signaling pathway was involved in the restorative effect of EV therapy against oxidative neuronal damage, while AAV-Nrf2 injection attenuated the antioxidant activity of MSC-EVs on the seizure-induced hippocampal injury. Conclusions: We have shown that MSC-EVs facilitate the reconstruction of hippocampal neurons associated with the Nrf2 defense system in response to oxidative insults. Our study highlights the clinical value of EV-therapy in neurological disorders such as seizures.
Collapse
|
12
|
Chakrabarty S, Govindaraj P, Sankaran BP, Nagappa M, Kabekkodu SP, Jayaram P, Mallya S, Deepha S, Ponmalar JNJ, Arivinda HR, Meena AK, Jha RK, Sinha S, Gayathri N, Taly AB, Thangaraj K, Satyamoorthy K. Contribution of nuclear and mitochondrial gene mutations in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. J Neurol 2021; 268:2192-2207. [PMID: 33484326 PMCID: PMC8179915 DOI: 10.1007/s00415-020-10390-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022]
Abstract
Background Mitochondrial disorders are clinically complex and have highly variable phenotypes among all inherited disorders. Mutations in mitochon
drial DNA (mtDNA) and nuclear genome or both have been reported in mitochondrial diseases suggesting common pathophysiological pathways. Considering the clinical heterogeneity of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) phenotype including focal neurological deficits, it is important to look beyond mitochondrial gene mutation. Methods The clinical, histopathological, biochemical analysis for OXPHOS enzyme activity, and electron microscopic, and neuroimaging analysis was performed to diagnose 11 patients with MELAS syndrome with a multisystem presentation. In addition, whole exome sequencing (WES) and whole mitochondrial genome sequencing were performed to identify nuclear and mitochondrial mutations. Results Analysis of whole mtDNA sequence identified classical pathogenic mutation m.3243A > G in seven out of 11 patients. Exome sequencing identified pathogenic mutation in several nuclear genes associated with mitochondrial encephalopathy, sensorineural hearing loss, diabetes, epilepsy, seizure and cardiomyopathy (POLG, DGUOK, SUCLG2, TRNT1, LOXHD1, KCNQ1, KCNQ2, NEUROD1, MYH7) that may contribute to classical mitochondrial disease phenotype alone or in combination with m.3243A > G mutation. Conclusion Individuals with MELAS exhibit clinical phenotypes with varying degree of severity affecting multiple systems including auditory, visual, cardiovascular, endocrine, and nervous system. This is the first report to show that nuclear genetic factors influence the clinical outcomes/manifestations of MELAS subjects alone or in combination with m.3243A > G mutation. Electronic supplementary material The online version of this article (10.1007/s00415-020-10390-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Bindu Parayil Sankaran
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Genetic Metabolic Disorders Service, Children's Hospital At Westmead, Sydney, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Hanumanthapura R Arivinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Rajan Kumar Jha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
13
|
Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatr 2020; 20:41. [PMID: 31996177 PMCID: PMC6988306 DOI: 10.1186/s12887-020-1912-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background Maternally inherited complex I deficiencies due to mutations in MT-ND genes represent a heterogeneous group of multisystem mitochondrial disorders (MD) with a unfavourable prognosis. The aim of the study was to characterize the impact of the mutations in MT-ND genes, including the novel m.13091 T > C variant, on the course of the disease, and to analyse the activities of respiratory chain complexes, the amount of protein subunits, and the mitochondrial energy-generating system (MEGS) in available muscle biopsies and cultivated fibroblasts. Methods The respiratory chain complex activities were measured by spectrophotometry, MEGS were analysed using radiolabelled substrates, and protein amount by SDS-PAGE or BN-PAGE in muscle or fibroblasts. Results In our cohort of 106 unrelated families carrying different mtDNA mutations, we found heteroplasmic mutations in the genes MT-ND1, MT-ND3, and MT-ND5, including the novel variant m.13091 T > C, in 13 patients with MD from 12 families. First symptoms developed between early childhood and adolescence and progressed to multisystem disease with a phenotype of Leigh or MELAS syndromes. MRI revealed bilateral symmetrical involvement of deep grey matter typical of Leigh syndrome in 6 children, cortical/white matter stroke-like lesions suggesting MELAS syndrome in 3 patients, and a combination of cortico-subcortical lesions and grey matter involvement in 4 patients. MEGS indicated mitochondrial disturbances in all available muscle samples, as well as a significantly decreased oxidation of [1-14C] pyruvate in fibroblasts. Spectrophotometric analyses revealed a low activity of complex I and/or complex I + III in all muscle samples except one, but the activities in fibroblasts were mostly normal. No correlation was found between complex I activities and mtDNA mutation load, but higher levels of heteroplasmy were generally found in more severely affected patients. Conclusions Maternally inherited complex I deficiencies were found in 11% of families with mitochondrial diseases in our region. Six patients manifested with Leigh, three with MELAS. The remaining four patients presented with an overlap between these two syndromes. MEGS, especially the oxidation of [1-14C] pyruvate in fibroblasts might serve as a sensitive indicator of functional impairment due to MT-ND mutations. Early onset of the disease and higher level of mtDNA heteroplasmy were associated with a worse prognosis.
Collapse
|
14
|
Ng YS, Bindoff LA, Gorman GS, Horvath R, Klopstock T, Mancuso M, Martikainen MH, Mcfarland R, Nesbitt V, Pitceathly RDS, Schaefer AM, Turnbull DM. Consensus-based statements for the management of mitochondrial stroke-like episodes. Wellcome Open Res 2019; 4:201. [PMID: 32090171 PMCID: PMC7014928 DOI: 10.12688/wellcomeopenres.15599.1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Focal-onset seizures and encephalopathy are prominent features of a stroke-like episode, which is a severe neurological manifestation associated with subtypes of mitochondrial disease. Despite more than 30 years of research, the acute treatment of stroke-like episodes remains controversial. Methods: We used the modified Delphi process to harness the clinical expertise of a group of mitochondrial disease specialists from five European countries to produce consensus guidance for the acute management of stroke-like episodes and commonly associated complications. Results: Consensus on a new definition of mitochondrial stroke-like episodes was achieved and enabled the group to develop diagnostic criteria based on clinical features, neuroimaging and/or electroencephalogram findings. Guidelines for the management of strokelike episodes were agreed with aggressive seizure management strongly recommended at the outset of stroke-like episodes. Conclusions: Our consensus statement defines stroke-like episodes in terms of an epileptic encephalopathy and we have used this to revise both diagnostic criteria and guidelines for management. A prospective, multi-centre, randomised controlled trial is required for evaluating the efficacy of any compound on modifying the trajectory of stroke-like episodes.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Newcastle University, UK, Newcastle upon Tyne, Tyne and Wear, NE2 4HH, UK
- Directorate of Neurosciences, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, Tyne and Wear, NE1 4LP, UK
- NHS Highly Specialised Service for Rare Mitohcondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Laurence A. Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Newcastle University, UK, Newcastle upon Tyne, Tyne and Wear, NE2 4HH, UK
- Directorate of Neurosciences, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, Tyne and Wear, NE1 4LP, UK
- NHS Highly Specialised Service for Rare Mitohcondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Newcastle University, UK, Newcastle upon Tyne, Tyne and Wear, NE2 4HH, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Mika H. Martikainen
- Division of Clinical Neurosciences, University of Turku and Turku University Hospital, Turku, Finland
| | - Robert Mcfarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, UK, Newcastle upon Tyne, Tyne and Wear, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitohcondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Great North Children Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Victoria Nesbitt
- Department of Paediatrics, The Children's Hospital, Oxford, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders,, Nuffield Dept Women’s & Reproductive Health, The Churchill Hospital, Oxford, UK
| | - Robert D. S. Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Centre for Neuromuscular Diseases, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Andrew M. Schaefer
- Wellcome Centre for Mitochondrial Research, Newcastle University, UK, Newcastle upon Tyne, Tyne and Wear, NE2 4HH, UK
- Directorate of Neurosciences, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, Tyne and Wear, NE1 4LP, UK
- NHS Highly Specialised Service for Rare Mitohcondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Doug M. Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, UK, Newcastle upon Tyne, Tyne and Wear, NE2 4HH, UK
- Directorate of Neurosciences, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, Tyne and Wear, NE1 4LP, UK
- NHS Highly Specialised Service for Rare Mitohcondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Jaramillo-Calle DA, Solano JM, Rabinstein AA, Bonkovsky HL. Porphyria-induced posterior reversible encephalopathy syndrome and central nervous system dysfunction. Mol Genet Metab 2019; 128:242-253. [PMID: 31706631 DOI: 10.1016/j.ymgme.2019.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM An association between neuropsychiatric manifestations and neuroimaging suggestive of posterior reversible encephalopathy syndrome (PRES) during porphyric attacks has been described in numerous case reports. We aimed to systematically review clinical-radiological features and likely pathogenic mechanisms of PRES in patients with acute hepatic porphyrias (AHP) and porphyric attacks. METHODS PubMed, Scopus, Ovid MEDLINE, and Google Scholar were searched (July 30, 2019). We included articles describing patients with convincing evidence of an AHP, confirmed porphyric attacks, and PRES in neuroimaging. RESULTS Forty-three out of 269 articles were included, which reported on 46 patients. Thirty-nine (84.8%) patients were women. The median age was 24 ± 13.8 years. 52.2% had unspecified AHP, 41.3% acute intermittent porphyria, 4.3% hereditary coproporphyria, and 2.2% variegate porphyria. 70.2% had systemic arterial hypertension. Seizures, mental changes, arterial hypertension, and hyponatremia occurred more frequently than expected for porphyric attacks (p < .001). Seizures and hyponatremia were also more frequent than expected for PRES. The most common distributions of brain lesions were occipital (81.4%), parietal (65.1%), frontal (60.5%), subcortical (40%), and cortical (32.5%). Cerebral vasoconstriction was demonstrated in 41.7% of the patients who underwent angiography. 19.6% of the patients had ischemic lesions, and 4.3% developed long-term sequelae (cognitive decline and focal neurological deficits). CONCLUSIONS Brain edema, vasoconstriction, and ischemia in the context of PRES likely account for central nervous symptoms in some porphyric attacks.
Collapse
Affiliation(s)
- Daniel A Jaramillo-Calle
- IPS Universitaria, Universidad de Antioquia, Medellin, Colombia; Institute of Medical Research, Universidad de Antioquia, School of Medicine, Medellin, Colombia.
| | - Juan M Solano
- Department of Neurology, Universidad de Antioquia, School of Medicine, Medellin, Colombia
| | | | - Herbert L Bonkovsky
- Section on Gastroenterology & Hepatology, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, United States of America..
| |
Collapse
|
16
|
Abstract
OBJECTIVES We describe a 13-year-old girl with a past medical history of epilepsy, intellectual impairment, dysphagia with gastric tube dependence, and autism spectrum disorder who presented with focal status epilepticus. METHODS Video-electroencephalography revealed left occipital pseudoperiodic epileptiform discharges and frequent seizures originating from the left hemisphere. The seizure was refractory to antiepileptic medications and pharmacologic coma. Subsequently, left occipital lobectomy was done. Extensive evaluation including whole exome sequencing, histopathologic examination of brain and muscle samples, mitochondrial DNA content analysis of tissue sample was completed to detect the etiology. RESULTS Skeletal muscle mitochondrial DNA content (qPCR) analysis showed approximately 37% of the mean value of age and tissue matched control group consistent with a mitochondrial depletion syndrome. Microscopic examination of the brain showed cortical abnormalities that largely consisted of infarct-like pathology in a laminar manner, abnormalities of neuronal distribution, and white matter changes. Compound heterozygous mutations of the CARS2 gene were identified by whole exome sequencing; V52G variant [p.Val52Gly (GTG>GGG):c.155 T>G in exon 1] was inherited from the mother and T188M variant[p.Thr188Met (ACG>ATG): c.563 C>T in exon 5] was inherited from the father. CONCLUSION This is the first detailed clinicopathologic description of the Alpers-Huttenlocher syndrome phenotype from CARS mutations.
Collapse
|
17
|
Reversible Dilation of Cerebral Macrovascular Changes in MELAS Episodes. Clin Neuroradiol 2018; 29:321-329. [DOI: 10.1007/s00062-018-0662-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/02/2018] [Indexed: 01/12/2023]
|
18
|
|
19
|
Piper JD, Piper PW. Benzoate and Sorbate Salts: A Systematic Review of the Potential Hazards of These Invaluable Preservatives and the Expanding Spectrum of Clinical Uses for Sodium Benzoate. Compr Rev Food Sci Food Saf 2017; 16:868-880. [PMID: 33371618 DOI: 10.1111/1541-4337.12284] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 12/30/2022]
Abstract
Sodium benzoate and potassium sorbate are extremely useful agents for food and beverage preservation, yet concerns remain over their complete safety. Benzoate can react with the ascorbic acid in drinks to produce the carcinogen benzene. A few children develop allergy to this additive while, as a competitive inhibitor of D-amino acid oxidase, benzoate can also influence neurotransmission and cognitive functioning. Model organism and cell culture studies have raised some issues. Benzoate has been found to exert teratogenic and neurotoxic effects on zebrafish embryos. In addition, benzoate and sorbate are reported to cause chromosome aberrations in cultured human lymphocytes; also to be potently mutagenic toward the mitochondrial DNA in aerobic yeast cells. Whether the substantial human consumption of these compounds could significantly increase levels of such damages in man is still unclear. There is no firm evidence that it is a risk factor in type 2 diabetes. The clinical administration of sodium benzoate is of proven benefit for many patients with urea cycle disorders, while recent studies indicate it may also be advantageous in the treatment of multiple sclerosis, schizophrenia, early-stage Alzheimer's disease and Parkinson's disease. Nevertheless, exposure to high amounts of this agent should be approached with caution, especially since it has the potential to generate a shortage of glycine which, in turn, can negatively influence brain neurochemistry. We discuss here how a small fraction of the population might be rendered-either through their genes or a chronic medical condition-particularly susceptible to any adverse effects of sodium benzoate.
Collapse
Affiliation(s)
- Joseph D Piper
- Centre for Genomics and Child Health, Blizard Inst., Queen Mary Univ. of London, London, E1 2AT, United Kingdom
| | - Peter W Piper
- Dept. of Molecular Biology and Biotechnology, Univ. of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
20
|
Taieb G, Juntas-Morales R, Renard D. Progression of stroke-like lesions along the cortico-ponto-cerebellar tract. Acta Neurol Belg 2017; 117:309-310. [PMID: 27418365 DOI: 10.1007/s13760-016-0671-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
21
|
Finsterer J, Wakil SM. Stroke-like episodes, peri-episodic seizures, and MELAS mutations. Eur J Paediatr Neurol 2016; 20:824-829. [PMID: 27562097 DOI: 10.1016/j.ejpn.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Stroke-like episodes (SLEs) are a hallmark of various mitochondrial disorders, in particular MELAS syndrome. SLEs manifest with vasogenic oedema (DWI and ADC hyperintensity) or partial cytotoxic oedema (DWI hyperintensity, ADC hypointensity) in the acute and subacute stage, and with gyriform T1-hyperintensity (cortical necrosis) in the chronic stage. PRINCIPAL RESULTS SLEs must be clearly distinguished from ischaemic stroke, since management of these two entities is different. SLEs may go along with or without seizures or epileptiform discharges on EEG. However, in MELAS syndrome seizures may also occur in the absence of SLEs. Focal and generalised seizures have been reported but it is currently unknown if the one or the other prevail. SLEs with and without seizures may respond to NO-precursors l-arginine, succinate, or citrulline. As a supportive measure a ketogenic diet should be initiated. Seizures prior to or during a SLE or paroxysmal EEG-activity during a SLE should be initially treated with antiepileptic drugs (AEDs) with low mitochondrion-toxicity. Only in case these AEDs are ineffective, AEDs with higher mitochondrion-toxicity should be added. MAJOR CONCLUSIONS All patients with SLEs need to have an EEG recorded irrespective if they have manifesting seizures or not. There are no mtDNA or nDNA mutations which predispose for SLEs with seizures.
Collapse
Affiliation(s)
| | - Salma Majid Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
|
23
|
Whittaker RG, Devine HE, Gorman GS, Schaefer AM, Horvath R, Ng Y, Nesbitt V, Lax NZ, McFarland R, Cunningham MO, Taylor RW, Turnbull DM. Epilepsy in adults with mitochondrial disease: A cohort study. Ann Neurol 2015; 78:949-57. [PMID: 26381753 PMCID: PMC4737309 DOI: 10.1002/ana.24525] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The aim of this work was to determine the prevalence and progression of epilepsy in adult patients with mitochondrial disease. METHODS We prospectively recruited a cohort of 182 consecutive adult patients attending a specialized mitochondrial disease clinic in Newcastle upon Tyne between January 1, 2005 and January 1, 2008. We then followed this cohort over a 7-year period, recording primary outcome measures of occurrence of first seizure, status epilepticus, stroke-like episode, and death. RESULTS Overall prevalence of epilepsy in the cohort was 23.1%. Mean age of epilepsy onset was 29.4 years. Prevalence varied widely between genotypes, with several genotypes having no cases of epilepsy, a prevalence of 34.9% in the most common genotype (m.3243A>G mutation), and 92.3% in the m.8344A>G mutation. Among the cohort as a whole, focal seizures, with or without progression to bilateral convulsive seizures, was the most common seizure type. Conversely, all of the patients with the m.8344A>G mutation and epilepsy experienced myoclonic seizures. Patients with the m.3243A>G mutation remain at high risk of developing stroke-like episodes (1.16% per year). However, although the standardized mortality ratio for the entire cohort was high (2.86), this ratio did not differ significantly between patients with epilepsy (2.96) and those without (2.83). INTERPRETATION Epilepsy is a common manifestation of mitochondrial disease. It develops early in the disease and, in the case of the m.3243A>G mutation, often presents in the context of a stroke-like episode or status epilepticus. However, epilepsy does not itself appear to contribute to the increased mortality in mitochondrial disease.
Collapse
Affiliation(s)
- Roger G Whittaker
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen E Devine
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Grainne S Gorman
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew M Schaefer
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rita Horvath
- Institute of Genetic Medicine, International Center for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yi Ng
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victoria Nesbitt
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nichola Z Lax
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert McFarland
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark O Cunningham
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert W Taylor
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Douglass M Turnbull
- Wellcome Trust Center for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Lax NZ, Grady J, Laude A, Chan F, Hepplewhite PD, Gorman G, Whittaker RG, Ng Y, Cunningham MO, Turnbull DM. Extensive respiratory chain defects in inhibitory interneurones in patients with mitochondrial disease. Neuropathol Appl Neurobiol 2015; 42:180-93. [PMID: 25786813 PMCID: PMC4772453 DOI: 10.1111/nan.12238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/13/2015] [Indexed: 01/18/2023]
Abstract
Aims Mitochondrial disorders are among the most frequently inherited cause of neurological disease and arise due to mutations in mitochondrial or nuclear DNA. Currently, we do not understand the specific involvement of certain brain regions or selective neuronal vulnerability in mitochondrial disease. Recent studies suggest γ‐aminobutyric acid (GABA)‐ergic interneurones are particularly susceptible to respiratory chain dysfunction. In this neuropathological study, we assess the impact of mitochondrial DNA defects on inhibitory interneurones in patients with mitochondrial disease. Methods Histochemical, immunohistochemical and immunofluorescent assays were performed on post‐mortem brain tissue from 10 patients and 10 age‐matched control individuals. We applied a quantitative immunofluorescent method to interrogate complex I and IV protein expression in mitochondria within GABAergic interneurone populations in the frontal, temporal and occipital cortices. We also evaluated the density of inhibitory interneurones in serial sections to determine if cell loss was occurring. Results We observed significant, global reductions in complex I expression within GABAergic interneurones in frontal, temporal and occipital cortices in the majority of patients. While complex IV expression is more variable, there is reduced expression in patients harbouring m.8344A>G point mutations and POLG mutations. In addition to the severe respiratory chain deficiencies observed in remaining interneurones, quantification of GABAergic cell density showed a dramatic reduction in cell density suggesting interneurone loss. Conclusions We propose that the combined loss of interneurones and severe respiratory deficiency in remaining interneurones contributes to impaired neuronal network oscillations and could underlie development of neurological deficits, such as cognitive impairment and epilepsy, in mitochondrial disease.
Collapse
Affiliation(s)
- Nichola Z Lax
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - John Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Laude
- Bio-imaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Felix Chan
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Philippa D Hepplewhite
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Roger G Whittaker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Yi Ng
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Demarest ST, Whitehead MT, Turnacioglu S, Pearl PL, Gropman AL. Phenotypic analysis of epilepsy in the mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes-associated mitochondrial DNA A3243G mutation. J Child Neurol 2014; 29:1249-56. [PMID: 25038129 DOI: 10.1177/0883073814538511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The A to G mitochondrial DNA point mutation at position 3243 (A3243G) is the most common cause of mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS), a systemic multiorgan disease. Epilepsy is a common finding but there is wide phenotypic variation that has not been thoroughly explored. We report the epilepsy phenotypes of 7 patients with the A3243G mutation. Most presented with typical MELAS and epilepsy characterized by infrequent prolonged focal seizures, including epilepsia partialis continua, hemiclonic status epilepticus, nonconvulsive status, and occipital status epilepticus. Seizures usually occurred during the acute phase of a strokelike episode. Periodic lateralized epileptiform discharges may be seen electrographically. Some patients with this mutation are completely asymptomatic or have mild symptoms typical for mitochondrial diseases. Slow spike-wave activity consistent with Lennox-Gastaut syndrome and electrographic status epilepticus was seen in 1 patient who responded to ethosuximide.
Collapse
Affiliation(s)
- Scott T Demarest
- Children's National Medical Center, The George Washington University School of Medicine, Washington, DC, USA
| | - Matthew T Whitehead
- Children's National Medical Center, The George Washington University School of Medicine, Washington, DC, USA
| | - Sinan Turnacioglu
- Children's National Medical Center, The George Washington University School of Medicine, Washington, DC, USA
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea L Gropman
- Children's National Medical Center, The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
26
|
Aurangzeb S, Vale T, Tofaris G, Poulton J, Turner MR. Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) in the older adult. Pract Neurol 2014; 14:432-6. [PMID: 24828681 DOI: 10.1136/practneurol-2014-000853] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Thomas Vale
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - George Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Joanna Poulton
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Mitochondrial disorders and epilepsy. Rev Neurol (Paris) 2014; 170:375-80. [DOI: 10.1016/j.neurol.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/21/2022]
|
28
|
Mignot C, Apartis E, Durr A, Marques Lourenço C, Charles P, Devos D, Moreau C, de Lonlay P, Drouot N, Burglen L, Kempf N, Nourisson E, Chantot-Bastaraud S, Lebre AS, Rio M, Chaix Y, Bieth E, Roze E, Bonnet I, Canaple S, Rastel C, Brice A, Rötig A, Desguerre I, Tranchant C, Koenig M, Anheim M. Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. Orphanet J Rare Dis 2013; 8:173. [PMID: 24164873 PMCID: PMC3843540 DOI: 10.1186/1750-1172-8-173] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/15/2013] [Indexed: 01/23/2023] Open
Abstract
Autosomal recessive cerebellar ataxia 2 (ARCA2) is a recently identified recessive ataxia due to ubiquinone deficiency and biallelic mutations in the ADCK3 gene. The phenotype of the twenty-one patients reported worldwide varies greatly. Thus, it is difficult to decide which ataxic patients are good candidates for ADCK3 screening without evidence of ubiquinone deficiency. We report here the clinical and molecular data of 10 newly diagnosed patients from seven families and update the disease history of four additional patients reported in previous articles to delineate the clinical spectrum of ARCA2 phenotype and to provide a guide to the molecular diagnosis. First signs occurred before adulthood in all 14 patients. Cerebellar atrophy appeared in all instances. The progressivity and severity of ataxia varied greatly, but no patients had the typical inexorable ataxic course that characterizes other childhood-onset recessive ataxias. The ataxia was frequently associated with other neurological signs. Importantly, stroke-like episodes contributed to significant deterioration of the neurological status in two patients. Ubidecarenone therapy markedly improved the movement disorders, including ataxia, in two other patients. The 7 novel ADCK3 mutations found in the 10 new patients were two missense and five truncating mutations. There was no apparent correlation between the genotype and the phenotype. Our series reveals that the clinical spectrum of ARCA2 encompasses a range of ataxic phenotypes. On one end, it may manifest as a pure ataxia with very slow progressivity and, on the other end, as a severe infantile encephalopathy with cerebellar atrophy. The phenotype of most patients, however, lies in between. It is characterized by a very slowly progressive or apparently stable ataxia associated with other signs of central nervous system involvement. We suggest undergoing the molecular analysis of ADCK3 in patients with this phenotype and in those with cerebellar atrophy and a stroke-like episode. The diagnosis of patients with a severe ARCA2 phenotype may also be performed on the basis of biological data, i.e. low ubiquinone level or functional evidence of ubiquinone deficiency. This diagnosis is crucial since the neurological status of some patients may be improved by ubiquinone therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mathieu Anheim
- Department of Genetics and Cytogenetics, AP-HP, Hôpital de la Salpêtrière, Paris, F-75013, France.
| |
Collapse
|