1
|
Droby A, Thaler A, Mirelman A. Imaging Markers in Genetic Forms of Parkinson's Disease. Brain Sci 2023; 13:1212. [PMID: 37626568 PMCID: PMC10452191 DOI: 10.3390/brainsci13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor symptoms such as bradykinesia, rigidity, and resting tremor. While the majority of PD cases are sporadic, approximately 15-20% of cases have a genetic component. Advances in neuroimaging techniques have provided valuable insights into the pathophysiology of PD, including the different genetic forms of the disease. This literature review aims to summarize the current state of knowledge regarding neuroimaging findings in genetic PD, focusing on the most prevalent known genetic forms: mutations in the GBA1, LRRK2, and Parkin genes. In this review, we will highlight the contributions of various neuroimaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI), in elucidating the underlying pathophysiological mechanisms and potentially identifying candidate biomarkers for genetic forms of PD.
Collapse
Affiliation(s)
- Amgad Droby
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| | - Avner Thaler
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration (LEMON), Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6801298, Israel; (A.T.); (A.M.)
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 39040, Israel
| |
Collapse
|
2
|
Cognitive Impairment in Genetic Parkinson's Disease. PARKINSON'S DISEASE 2022; 2021:8610285. [PMID: 35003622 PMCID: PMC8739522 DOI: 10.1155/2021/8610285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is common in idiopathic Parkinson's disease (PD). Knowledge of the contribution of genetics to cognition in PD is increasing in the last decades. Monogenic forms of genetic PD show distinct cognitive profiles and rate of cognitive decline progression. Cognitive impairment is higher in GBA- and SNCA-associated PD, lower in Parkin- and PINK1-PD, and possibly milder in LRRK2-PD. In this review, we summarize data regarding cognitive function on clinical studies, neuroimaging, and biological markers of cognitive decline in autosomal dominant PD linked to mutations in LRRK2 and SNCA, autosomal recessive PD linked to Parkin and PINK1, and also PD linked to GBA mutations.
Collapse
|
3
|
Brcina N, Hohenfeld C, Heidbreder A, Mirzazade S, Krahe J, Wojtala J, Binkofski F, Schulz JB, Schiefer J, Reetz K, Dogan I. Increased neural motor activation and functional reorganization in patients with idiopathic rapid eye movement sleep behavior disorder. Parkinsonism Relat Disord 2021; 92:76-82. [PMID: 34715608 DOI: 10.1016/j.parkreldis.2021.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Altered brain activity and functional reorganization patterns during self-initiated movements have been reported in early pre-motor and motor stages of Parkinson's disease. The aim of this study was to investigate whether similar alterations can be observed in patients with idiopathic REM-sleep behavior disorder (RBD). METHODS 13 polysomnography-confirmed male and right-handed RBD patients and 13 healthy controls underwent a bilateral hand-movement fMRI task including internally selected (INT) and externally-guided (EXT) movement conditions for each hand. We examined functional activity and connectivity differences between groups and task-conditions, structural differences using voxel-based morphometry, as well as associations between functional activity and clinical variables. RESULTS No group differences were observed in fMRI-task performance or in voxel-based morphometry. Both groups showed faster reaction times and exhibited greater neural activation when movements were internally selected compared to externally-guided tasks. Compared to controls, RBD patients displayed stronger activation in the dorsolateral prefrontal cortex and primary somatosensory cortex during INT-tasks, and in the right fronto-insular cortex during EXT-tasks performed with the non-dominant hand. Stronger activation in RBD patients was associated with cognitive and olfactory impairment. Connectivity analysis demonstrated overall less interregional coupling in patients compared to controls. In particular, patients showed reduced temporo-cerebellar, occipito-cerebellar and intra-cerebellar connectivity, but stronger connectivity in fronto-cerebellar and fronto-occipital pathways. CONCLUSION The observed stronger activation during hand-movement tasks and connectivity changes in RBD may reflect early compensatory and reorganization patterns in order to preserve motor functioning. Our findings may contribute to a better understanding and prognosis of prodromal stages of α-synucleinopathies.
Collapse
Affiliation(s)
- Nikolina Brcina
- RWTH Aachen University, Department of Neurology, Aachen, Germany
| | - Christian Hohenfeld
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Anna Heidbreder
- Department of Neurology with Institute of Sleep Medicine and Neuromuscular Disease, University Hospital Muenster, Muenster, Germany; Medical University Innsbruck, Department of Neurology, Innsbruck, Austria
| | - Shahram Mirzazade
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Janna Krahe
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Jennifer Wojtala
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Ferdinand Binkofski
- Division for Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH, Aachen, Germany; Institute for Neuroscience and Medicine (INM-4), Research Center Juelich GmbH, Germany
| | - Jörg B Schulz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | | | - Kathrin Reetz
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany.
| | - Imis Dogan
- RWTH Aachen University, Department of Neurology, Aachen, Germany; JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Merchant KM, Cedarbaum JM, Brundin P, Dave KD, Eberling J, Espay AJ, Hutten SJ, Javidnia M, Luthman J, Maetzler W, Menalled L, Reimer AN, Stoessl AJ, Weiner DM. A Proposed Roadmap for Parkinson's Disease Proof of Concept Clinical Trials Investigating Compounds Targeting Alpha-Synuclein. JOURNAL OF PARKINSONS DISEASE 2020; 9:31-61. [PMID: 30400107 PMCID: PMC6398545 DOI: 10.3233/jpd-181471] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The convergence of human molecular genetics and Lewy pathology of Parkinson's disease (PD) have led to a robust, clinical-stage pipeline of alpha-synuclein (α-syn)-targeted therapies that have the potential to slow or stop the progression of PD and other synucleinopathies. To facilitate the development of these and earlier stage investigational molecules, the Michael J. Fox Foundation for Parkinson's Research convened a group of leaders in the field of PD research from academia and industry, the Alpha-Synuclein Clinical Path Working Group. This group set out to develop recommendations on preclinical and clinical research that can de-risk the development of α-syn targeting therapies. This consensus white paper provides a translational framework, from the selection of animal models and associated end-points to decision-driving biomarkers as well as considerations for the design of clinical proof-of-concept studies. It also identifies current gaps in our biomarker toolkit and the status of the discovery and validation of α-syn-associated biomarkers that could help fill these gaps. Further, it highlights the importance of the emerging digital technology to supplement the capture and monitoring of clinical outcomes. Although the development of disease-modifying therapies targeting α-syn face profound challenges, we remain optimistic that meaningful strides will be made soon toward the identification and approval of disease-modifying therapeutics targeting α-syn.
Collapse
Affiliation(s)
- Kalpana M Merchant
- Vincere Biosciences, Inc., and Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Patrik Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Jamie Eberling
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alberto J Espay
- UC Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Monica Javidnia
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Liliana Menalled
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alyssa N Reimer
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
5
|
Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol 2020; 16:97-107. [PMID: 31980808 DOI: 10.1038/s41582-019-0301-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
One of the most common monogenic forms of Parkinson disease (PD) is caused by mutations in the LRRK2 gene that encodes leucine-rich repeat kinase 2 (LRRK2). LRRK2 mutations, and particularly the most common mutation Gly2019Ser, are observed in patients with autosomal dominant PD and in those with apparent sporadic PD, who are clinically indistinguishable from those with idiopathic PD. The discoveries that pathogenic mutations in the LRRK2 gene increase LRRK2 kinase activity and that small-molecule LRRK2 kinase inhibitors can be neuroprotective in preclinical models of PD have placed LRRK2 at the centre of disease modification efforts in PD. Recent investigations also suggest that LRRK2 has a role in the pathogenesis of idiopathic PD and that LRRK2 therapies might, therefore, be beneficial in this common subtype of PD. In this Review, we describe the characteristics of LRRK2-associated PD that are most relevant to the development of LRRK2-targeted therapies and the design and implementation of clinical trials. We highlight strategies for correcting the effects of mutations in the LRRK2 gene, focusing on how to identify which patients are the optimal candidates and how to decide on the timing of such trials. In addition, we discuss challenges in implementing trials of disease-modifying treatment in people who carry LRRK2 mutations.
Collapse
Affiliation(s)
- Eduardo Tolosa
- Parkinson and Movement Disorders Unit, Neurology Service, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Miquel Vila
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| |
Collapse
|
6
|
Altered reward-related neural responses in non-manifesting carriers of the Parkinson disease related LRRK2 mutation. Brain Imaging Behav 2020; 13:1009-1020. [PMID: 29971685 DOI: 10.1007/s11682-018-9920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disturbances in reward processing occur in Parkinson's disease (PD) however it is unclear whether these are solely drug-related. We applied an event-related fMRI gambling task to a group of non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene, in order to assess the reward network in an "at risk" population for future development of PD. Sixty-eight non-manifesting participants, 32 of which were non-manifesting non-carriers (NMNC), performed a gambling task which included defined intervals of anticipation and response to both reward and punishment in an fMRI setup. Behavior and cerebral activations were measured using both hypothesis driven and whole brain analysis. NMC demonstrated higher trait anxiety scores (p = 0.04) compared to NMNC. Lower activations were detected among NMC during risky anticipation in the left nucleus accumbens (NAcc) (p = 0.05) and during response to punishment in the right insula (p = 0.02), with higher activations among NMC during safe anticipation in the right insula (p = 0.02). Psycho-Physiological Interaction (PPI) analysis from the NAcc and insula revealed differential connectivity patterns. Whole brain analysis demonstrated divergent between-group activations in distributed cortical regions, bilateral caudate, left midbrain, when participants were required to press the response button upon making their next chosen move. Abnormal neural activity in both the reward and motor networks were detected in NMC indicating involvement of the ventral striatum regardless of medication use in "at risk" individuals for future development of PD.
Collapse
|
7
|
Jacob Y, Rosenberg-Katz K, Gurevich T, Helmich RC, Bloem BR, Orr-Urtreger A, Giladi N, Mirelman A, Hendler T, Thaler A. Network abnormalities among non-manifesting Parkinson disease related LRRK2 mutation carriers. Hum Brain Mapp 2019; 40:2546-2555. [PMID: 30793410 DOI: 10.1002/hbm.24543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/13/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene represent an "at risk" group for future development of Parkinson's disease (PD) and have demonstrated task related fMRI changes. However, resting-state networks have received less research focus, thus this study aimed to assess the integrity of the motor, default mode (DMN), salience (SAL), and dorsal attention (DAN) networks among this unique population by using two different connectivity measures: interregional functional connectivity analysis and Dependency network analysis (DEP NA). Machine learning classification methods were used to distinguish connectivity between the two groups of participants. Forty-four NMC and 41 non-manifesting non-carriers (NMNC) participated in this study; while no behavioral differences on standard questionnaires could be detected, NMC demonstrated lower connectivity measures in the DMN, SAL, and DAN compared to NMNC but not in the motor network. Significant correlations between NMC connectivity measures in the SAL and attention were identified. Machine learning classification separated NMC from NMNC with an accuracy rate above 0.8. Reduced integrity of non-motor networks was detected among NMC of the G2019S mutation in the LRRK2 gene prior to identifiable changes in connectivity of the motor network, indicating significant non-motor cerebral changes among populations "at risk" for future development of PD.
Collapse
Affiliation(s)
- Yael Jacob
- Translational and Molecular Imaging Institute, Icahn School of Medicine, Mount Sinai Medical Center, New York, New York.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel
| | | | - Tanya Gurevich
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.,Department of Neurology and Parkinson Centre, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.,Department of Neurology and Parkinson Centre, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Tel-Aviv Medical Center, Genetic Institute, Tel-Aviv, Israel
| | - Nir Giladi
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Mirelman
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Talma Hendler
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Avner Thaler
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Thaler A. Structural and Functional MRI in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:261-287. [PMID: 30409255 DOI: 10.1016/bs.irn.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Between 10 and 15% of Parkinson disease (PD) cases can be traced to a genetically identified causative mutation which currently number over 40. This enables the study of both "at risk" populations for future development of PD and a unique sub-group of genetically determined patient population. Structural and functional magnetic imaging has the potential of assisting diagnosis, early detection and disease progression as it is relatively cheap and easy to implement. However, the large variety of imaging options and different analytical approaches hamper the pursuit of a unified imaging biomarker. This chapter details the current imaging options and summarizes the findings among both genetically determined patients with PD and their non-manifesting first degree relatives, speculating on possible compensational mechanisms while mapping future directions in order to better utilize MRI in the research of genetic PD.
Collapse
Affiliation(s)
- Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Heldmann M, Heeren J, Klein C, Rauch L, Hagenah J, Münte TF, Kasten M, Brüggemann N. Neuroimaging abnormalities in individuals exhibiting Parkinson's disease risk markers. Mov Disord 2018; 33:1412-1422. [PMID: 29756356 DOI: 10.1002/mds.27313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/23/2017] [Accepted: 12/31/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The concept of prodromal Parkinson's disease (PD) involves variable combinations of nonmotor features and subtle motor abnormalities as a result of ongoing neurodegeneration in the brain stem including substantia nigra (SN) and abnormal findings upon transcranial sonography and nuclear imaging. Except for nuclear imaging, the predictive value of risk markers for the conversion to overt PD is low. OBJECTIVE The objective of this study was to determine whether PD risk markers are associated with changes in brain structure and to what extent cognitive changes are risk markers for PD. METHODS Diffusion-weighted imaging, voxel-based morphometry, and cortical thickness analysis was performed in 29 individuals with hyposmia and/or an increased SN hyperechogenicity (SN+) upon transcranial sonography and 28 controls without these 2 risk markers. Classical parkinsonian signs were an exclusion criterion. All of the participants underwent a neuropsychological test battery addressing executive functions, learning ability, and verbal fluency. RESULTS In the PD risk group, diffusion-weighted imaging mean diffusivity was increased in 4 left hemisphere clusters (posterior thalamus, inferior longitudinal fasciculus, fornix, corticospinal tract). A negative relationship of mean diffusivity and smell function was present for the posterior thalamus and the corticospinal tract. There was a significant correlation of mean diffusivity values and SN+ in all clusters. Neither voxel-based morphometry nor cortical thickness analysis revealed any group differences. No relevant group differences were observed for cognitive tests included. CONCLUSION PD-free individuals with PD risk markers show microstructural changes of the white matter, including areas relevant for motor and limbic processes. In addition, our study provides for the first time a neuroanatomical correlate for SN hyperechogenicity. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Janna Heeren
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Linus Rauch
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Johann Hagenah
- Department of Neurology, Westküstenklinikum Heide, Heide, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Sun L, Chan P. LRRK2-associated Parkinson's disease patients have better stereopsis than idiopathic Parkinson disease. Clin Neurol Neurosurg 2018; 169:174-177. [PMID: 29705653 DOI: 10.1016/j.clineuro.2018.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/07/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Visual dysfunctions are frequent and have several manifestations in idiopathic Parkinson's disease (PD). However, the characteristics of these complications in LRRK2 (leucine-rich kinase 2)-associated PD patients still lack systematic research. The purpose of this study is to assess visual functions of LRRK2-associated PD patients. PATIENTS AND METHODS Twenty-five (25) PD patients with LRRK2 R1628P and G2385R variants were included in the study and compared to 28 PD patients without these variants and 28 age-matched healthy controls. The genotypes of PD patients were kept double-blinded. Information on age, sex, disease duration, the movement disorder society-unified Parkinson's disease rating scale (MDS-UPDRS), Hoehn and Yahr staging scale (H&Y), Mini-Mental Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were included. Visual functions assessment included color perception, contrast sensitivity and stereopsis. RESULTS PD patients with or without LRRK2 R1628P and G2385R variants have declined contrast sensitivity, diminished color discrimination and damaged stereopsis. There was no significant difference in retinal level visual deficiency (color discrimination and contrast sensitivity) between PD with LRRK2 variants and those without, but cortex level visual function, i.e. stereopsis is better in PD with LRRK2 variants than non-carrier PD patients. The associated factors of stereopsis are different. The stereopsis is associated with MoCA scores independently in non-carrier PD patients, but with UPDRSIII scores in LRRK2-associated PD patients. CONCLUSIONS Visual functions are similarly affected in PD patients with and without LRRK2 R1628P and G2385R variants, but LRRK2-associated PD patients have better stereopsis than idiopathic PD patients.
Collapse
Affiliation(s)
- Liang Sun
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Neurobiology and Neurology, Xuanwu Hospital of Capital MedicalUniversity, Beijing, China
| | - Piu Chan
- Department of Neurobiology and Neurology, Xuanwu Hospital of Capital MedicalUniversity, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
11
|
Wen MC, Heng HS, Hsu JL, Xu Z, Liew GM, Au WL, Chan LL, Tan LC, Tan EK. Structural connectome alterations in prodromal and de novo Parkinson's disease patients. Parkinsonism Relat Disord 2017; 45:21-27. [PMID: 28964628 DOI: 10.1016/j.parkreldis.2017.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/16/2017] [Accepted: 09/20/2017] [Indexed: 11/25/2022]
|
12
|
Barber TR, Klein JC, Mackay CE, Hu MTM. Neuroimaging in pre-motor Parkinson's disease. Neuroimage Clin 2017; 15:215-227. [PMID: 28529878 PMCID: PMC5429242 DOI: 10.1016/j.nicl.2017.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/10/2017] [Accepted: 04/15/2017] [Indexed: 12/23/2022]
Abstract
The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease. In recent years, recognition that patients with REM sleep behaviour disorder (RBD) are at particularly high risk of future parkinsonism has enabled the development of large prodromal cohorts in which to investigate novel biomarkers, and neuroimaging has generated some of the most promising results to date. Here we review investigations undertaken in RBD and other pre-clinical cohorts, including modalities that are well established in clinical Parkinson's as well as novel imaging methods. Techniques such as high resolution MRI of the substantia nigra and functional imaging of Parkinsonian brain networks have great potential to facilitate early diagnosis. Further longitudinal studies will establish their true value in quantifying prodromal neurodegeneration and predicting future Parkinson's.
Collapse
Affiliation(s)
- Thomas R Barber
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Johannes C Klein
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Clare E Mackay
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK; Department of Psychiatry, University of Oxford, UK; Oxford Centre for Human Brain Activity (OHBA), University of Oxford, UK
| | - Michele T M Hu
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| |
Collapse
|
13
|
Pont-Sunyer C, Tolosa E, Caspell-Garcia C, Coffey C, Alcalay RN, Chan P, Duda JE, Facheris M, Fernández-Santiago R, Marek K, Lomeña F, Marras C, Mondragon E, Saunders-Pullman R, Waro B. The prodromal phase of leucine-rich repeat kinase 2-associated Parkinson disease: Clinical and imaging Studies. Mov Disord 2017; 32:726-738. [PMID: 28370517 DOI: 10.1002/mds.26964] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Asymptomatic, nonmanifesting carriers of leucine-rich repeat kinase 2 mutations are at increased risk of developing PD. Clinical and neuroimaging features may be associated with gene carriage and/or may demarcate individuals at greater risk for phenoconversion to PD. OBJECTIVES To investigate clinical and dopamine transporter single-photon emission computed tomography imaging characteristics of leucine-rich repeat kinase 2 asymptomatic carriers. METHODS A total of 342 carriers' and 259 noncarriers' relatives of G2019S leucine-rich repeat kinase 2/PD patients and 39 carriers' and 31 noncarriers' relatives of R1441G leucine-rich repeat kinase 2/PD patients were evaluated. Motor and nonmotor symptoms were assessed using specific scales and questionnaires. Neuroimaging quantitative data were obtained in 81 carriers and compared with 41 noncarriers. RESULTS G2019S carriers scored higher in motor scores and had lower radioligand uptake compared to noncarriers, but no differences in nonmotor symptoms scores were observed. R1441G carriers scored higher in motor scores, had lower radioligand uptake, and had higher scores in depression, dysautonomia, and Rapid Eye Movements Sleep Behavior Disorder Screening Questionnaire scores, but had better cognition scores than noncarriers. Among G2019S carriers, a group with "mild motor signs" was identified, and was significantly older, with worse olfaction and lower radioligand uptake. CONCLUSIONS G2019S and R1441G carriers differ from their noncarriers' relatives in higher motor scores and slightly lower radioligand uptake. Nonmotor symptoms were mild, and different nonmotor profiles were observed in G2019S carriers compared to R1441G carriers. A group of G2019S carriers with known prodromal features was identified. Longitudinal studies are required to determine whether such individuals are at short-term risk of developing overt parkinsonism. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Claustre Pont-Sunyer
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Neurology Unit, Hospital General de Granollers, Universitat Internacional de Catalunya, Granollers, Spain
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Piu Chan
- Departments of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - John E Duda
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz VA Medical Center and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maurizio Facheris
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Rubén Fernández-Santiago
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona, Institutd'InvestigacionsBiomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, and the Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders and Molecular NeuroImaging, New Haven, Connecticut, USA
| | - Francisco Lomeña
- Department of Nuclear Medicine, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Connie Marras
- Toronto Western Hospital Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Ontario, Canada
| | - Elisabet Mondragon
- Department of Neurology, Movement Disorders Unit. Hospital Universitario Donostia. Biodonostia Research Institute, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Sebastián, Guipúzcoa, Spain
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center and Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bjorg Waro
- Department of Neurology, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
14
|
Experience-dependent modulation of alpha and beta during action observation and motor imagery. BMC Neurosci 2017; 18:28. [PMID: 28264664 PMCID: PMC5340035 DOI: 10.1186/s12868-017-0349-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 01/18/2023] Open
Abstract
Background EEG studies investigating the neural networks that facilitate action observation (AO) and kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha (8–12 Hz) and beta (13–30 Hz) frequency bands relative to rest, reflecting efficient activation of task-relevant areas. Functional modulation of these networks through expertise in dance has been established using fMRI, with greater activation among experts during AO. While there is evidence for experience-dependent plasticity of alpha power during AO of dance, the influence of familiarity on beta power during AO, and alpha and beta activity during KMI, remain unclear. The purpose of the present study was to measure the impact of familiarity on confidence ratings and EEG activity during (1) AO of a brief ballet sequence, (2) KMI of this same sequence, and (3) KMI of non-dance movements among ballet dancers, dancers from other genres, and non-dancers. Results Ballet dancers highly familiar with the genre of the experimental stimulus demonstrated higher individual alpha peak frequency (iAPF), greater alpha desynchronization, and greater task-related beta power during AO, as well as faster iAPF during KMI of non-dance movements. While no between-group differences in alpha or beta power were observed during KMI of dance or non-dance movements, all participants showed significant desynchronization relative to baseline, and further desynchronization during dance KMI relative to non-dance KMI indicative of greater cognitive load. Conclusions These findings confirm and extend evidence for experience-dependent plasticity of alpha and beta activity during AO of dance and KMI. We also provide novel evidence for modulation of iAPF that is faster when tuned to the specific motor repertoire of the observer. By considering the multiple functional roles of these frequency bands during the same task (AO), we have disentangled the compounded contribution of familiarity and expertise to alpha desynchronization for mediating task engagement among familiar ballet dancers and reflecting task difficulty among unfamiliar non-dance subjects, respectively. That KMI of a complex dance sequence relative to everyday, non-dance movements recruits greater cognitive resources suggests it may be a more powerful tool in driving neural plasticity of action networks, especially among the elderly and those with movement disorders.
Collapse
|
15
|
Vilas D, Segura B, Baggio HC, Pont-Sunyer C, Compta Y, Valldeoriola F, José Martí M, Quintana M, Bayés A, Hernández-Vara J, Calopa M, Aguilar M, Junqué C, Tolosa E. Nigral and striatal connectivity alterations in asymptomatic LRRK2 mutation carriers: A magnetic resonance imaging study. Mov Disord 2016; 31:1820-1828. [PMID: 27653520 DOI: 10.1002/mds.26799] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The study of functional connectivity by means of magnetic resonance imaging (MRI) in asymptomatic LRRK2 mutation carriers could contribute to the characterization of the prediagnostic phase of LRRK2-associated Parkinson's disease (PD). The objective of this study was to characterize MRI functional patterns during the resting state in asymptomatic LRRK2 mutation carriers. METHODS We acquired structural and functional MRI data of 18 asymptomatic LRRK2 mutation carriers and 18 asymptomatic LRRK2 mutation noncarriers, all first-degree relatives of LRRK2-PD patients. Starting from resting-state data, we analyzed the functional connectivity of the striatocortical and the nigrocortical circuitry. Structural brain data were analyzed by voxel-based morphometry, cortical thickness, and volumetric measures. RESULTS Asymptomatic LRRK2 mutation carriers had functional connectivity reductions between the caudal motor part of the left striatum and the ipsilateral precuneus and superior parietal lobe. Connectivity in these regions correlated with subcortical gray-matter volumes in mutation carriers. Asymptomatic carriers also showed increased connectivity between the right substantia nigra and bilateral occipital cortical regions (occipital pole and cuneus bilaterally and right lateral occipital cortex). No intergroup differences in structural MRI measures were found. In LRRK2 mutation carriers, age and functional connectivity correlated negatively with striatal volumes. Additional analyses including only subjects with the G2019S mutation revealed similar findings. CONCLUSIONS Asymptomatic LRRK2 mutation carriers showed functional connectivity changes in striatocortical and nigrocortical circuits compared with noncarriers. These findings support the concept that altered brain connectivity precedes the onset of classical motor features in a genetic form of PD. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dolores Vilas
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Bàrbara Segura
- Psychiatry and Clinical Psychobiology Department, Universitat de Barcelona. Barcelona, Catalonia, Spain
| | - Hugo C Baggio
- Psychiatry and Clinical Psychobiology Department, Universitat de Barcelona. Barcelona, Catalonia, Spain
| | - Claustre Pont-Sunyer
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro en Red para la Investigacion de Enfermedades Neurodegenerativas CIBERNED, Barcelona, Catalonia, Spain
| | - Francesc Valldeoriola
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro en Red para la Investigacion de Enfermedades Neurodegenerativas CIBERNED, Barcelona, Catalonia, Spain
| | - María José Martí
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro en Red para la Investigacion de Enfermedades Neurodegenerativas CIBERNED, Barcelona, Catalonia, Spain
| | - María Quintana
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Angels Bayés
- Parkinson's Unit, Clínica Teknon, Barcelona, Spain
| | - Jorge Hernández-Vara
- Neurology Service, Hospital Universitari Vall D'Hebron, Barcelona, Catalonia, Spain
| | - Matilde Calopa
- Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Catalonia, Spain
| | - Miquel Aguilar
- Neurology Service, Hospital Universitari Mutua de Terrasa, Barcelona, Catalonia, Spain
| | - Carme Junqué
- Psychiatry and Clinical Psychobiology Department, Universitat de Barcelona. Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro en Red para la Investigacion de Enfermedades Neurodegenerativas CIBERNED, Barcelona, Catalonia, Spain
| | - Eduardo Tolosa
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro en Red para la Investigacion de Enfermedades Neurodegenerativas CIBERNED, Barcelona, Catalonia, Spain
| | | |
Collapse
|
16
|
Bregman N, Thaler A, Mirelman A, Helmich RC, Gurevich T, Orr-Urtreger A, Marder K, Bressman S, Bloem BR, Giladi N. A cognitive fMRI study in non-manifesting LRRK2 and GBA carriers. Brain Struct Funct 2016; 222:1207-1218. [PMID: 27401793 DOI: 10.1007/s00429-016-1271-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
Mutations in the GBA and LRRK2 genes account for one-third of the prevalence of Parkinson's disease (PD) in Ashkenazi Jews. Non-manifesting carriers (NMC) of these mutations represent a population at risk for future development of PD. PD patient who carry mutations in the GBA gene demonstrates more significant cognitive decline compared to idiopathic PD patients. We assessed cognitive domains using fMRI among NMC of both LRRK2 and GBA mutations to better understand pre-motor cognitive functions in these populations. Twenty-one LRRK2-NMC, 10 GBA-NMC, and 22 non-manifesting non-carriers (NMNC) who participated in this study were evaluated using the standard questionnaires and scanned while performing two separate cognitive tasks; a Stroop interference task and an N-Back working memory task. Cerebral activation patterns were assessed using both whole brain and predefined region of interest (ROI) analysis. Subjects were well matched in all demographic and clinical characteristics. On the Stroop task, in spite of similar behavior, GBA-NMC demonstrated increased task-related activity in the right medial frontal gyrus and reduced task-related activity in the left lingual gyrus compared to both LRRK2-NMC and NMNC. In addition, GBA-NMC had higher activation patterns in the incongruent task compared to NMNC in the left medial frontal gyrus and bilateral precentral gyrus. No whole-brain differences were noted between groups on the N-Back task. Paired cognitive and task-related performance between GBA-NMC, LRRK2-NMC, and NMNC could indicate that the higher activation patterns in the incongruent Stroop condition among GBA-NMC compared to LRRK2-NMC and NMNC may represent a compensatory mechanism that enables adequate cognitive performance.
Collapse
Affiliation(s)
- Noa Bregman
- Department of Neurology, Memory and Attention Disorders Center, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, 6 Weizman Street, 64239, Tel-Aviv, Israel. .,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel. .,Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Medical Center, Tel-Aviv, Israel.
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, 6 Weizman Street, 64239, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Rick C Helmich
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Tanya Gurevich
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, 6 Weizman Street, 64239, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Genetic Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Karen Marder
- Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, 6 Weizman Street, 64239, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
17
|
Di Nota PM, Levkov G, Bar R, DeSouza JFX. Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: learning and expertise effects. Exp Brain Res 2016; 234:2007-2023. [PMID: 26960739 DOI: 10.1007/s00221-016-4607-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
The lateral occipitotemporal cortex (LOTC) is comprised of subregions selectively activated by images of human bodies (extrastriate body area, EBA), objects (lateral occipital complex, LO), and motion (MT+). However, their role in motor imagery and movement processing is unclear, as are the influences of learning and expertise on its recruitment. The purpose of our study was to examine putative changes in LOTC activation during action processing following motor learning of novel choreography in professional ballet dancers. Subjects were scanned with functional magnetic resonance imaging up to four times over 34 weeks and performed four tasks: viewing and visualizing a newly learned ballet dance, visualizing a dance that was not being learned, and movement of the foot. EBA, LO, and MT+ were activated most while viewing dance compared to visualization and movement. Significant increases in activation were observed over time in left LO only during visualization of the unlearned dance, and all subregions were activated bilaterally during the viewing task after 34 weeks of performance, suggesting learning-induced plasticity. Finally, we provide novel evidence for modulation of EBA with dance experience during the motor task, with significant activation elicited in a comparison group of novice dancers only. These results provide a composite of LOTC activation during action processing of newly learned ballet choreography and movement of the foot. The role of these areas is confirmed as primarily subserving observation of complex sequences of whole-body movement, with new evidence for modification by experience and over the course of real world ballet learning.
Collapse
Affiliation(s)
- Paula M Di Nota
- Department of Psychology, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Gabriella Levkov
- Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Department of Biology, York University, Toronto, ON, Canada
| | - Rachel Bar
- Department of Psychology, Ryerson University, Toronto, ON, Canada.,Canada's National Ballet School, Toronto, ON, Canada
| | - Joseph F X DeSouza
- Department of Psychology, York University, Toronto, ON, Canada. .,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada. .,Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada. .,Department of Biology, York University, Toronto, ON, Canada. .,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada.
| |
Collapse
|
18
|
Thaler A, Helmich RC, Or-Borichev A, van Nuenen BFL, Shapira-Lichter I, Gurevich T, Orr-Urtreger A, Marder K, Bressman S, Bloem BR, Giladi N, Hendler T, Mirelman A. Intact working memory in non-manifesting LRRK2 carriers--an fMRI study. Eur J Neurosci 2015; 43:106-12. [PMID: 26536050 DOI: 10.1111/ejn.13120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 01/26/2023]
Abstract
Cognitive impairments are prevalent in patients with Parkinson's disease. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of genetic Parkinsonism. Non-manifesting carriers of the G2019S mutation in the LRRK2 gene were found to have lower executive functions as measured by the Stroop task. This exploratory study aimed to assess whether the cognitive impairment in non-manifesting carriers is specific for executive functions or includes other cognitive domains such as working memory. We recruited 77 non-manifesting first-degree relatives of Parkinson's disease patients (38 carriers). A block-design fMRI N-back task, with 0-back, 2-back and 3-back conditions, was used in order to assess working memory. Participants were well matched on the Montreal Cognitive Assessment, University of Pennsylvania Smell Identification Test, Unified Parkinson's Disease Rating Scale part III, digit span, age, gender and Beck Depression Inventory. The task achieved the overall expected effect in both groups with longer reaction times and lower accuracy rates with increasing task demands. However, no whole-brain or region-of-interest between-groups differences were found on any of the task conditions. These results indicate that non-manifesting carriers of the G2019S mutation in the LRRK2 gene have a specific cognitive profile with executive functions, as assessed by the Stroop task, demonstrating significant impairment but with working memory, as assessed with the N-back task, remaining relatively intact. These finding shed light on the pre-motor cognitive changes in this unique 'at risk' population and should enable more focused cognitive assessments of these cohorts.
Collapse
Affiliation(s)
- Avner Thaler
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, 6 Weizman Street, Tel Aviv, 64239, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Rick C Helmich
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ayelet Or-Borichev
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Irit Shapira-Lichter
- Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, 6 Weizman Street, Tel Aviv, 64239, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Karen Marder
- Columbia University Medical Center, Columbia University, New-York, NY, USA
| | | | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, 6 Weizman Street, Tel Aviv, 64239, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sieratzki Chair in Neurology, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Functional Brain Center, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Sourasky Medical Center, 6 Weizman Street, Tel Aviv, 64239, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
19
|
Mirelman A, Alcalay RN, Saunders-Pullman R, Yasinovsky K, Thaler A, Gurevich T, Mejia-Santana H, Raymond D, Gana-Weisz M, Bar-Shira A, Ozelius L, Clark L, Orr-Urtreger A, Bressman S, Marder K, Giladi N. Nonmotor symptoms in healthy Ashkenazi Jewish carriers of the G2019S mutation in the LRRK2 gene. Mov Disord 2015; 30:981-6. [PMID: 25809001 DOI: 10.1002/mds.26213] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The asymptomatic carriers of the Leucine rich repeat kinase 2 (LRRK2) G2019S mutation represent a population at risk for developing PD. The aim of this study was to assess differences in nonmotor symptoms between nonmanifesting carriers and noncarriers of the G2019S mutation. METHODS Two hundred fifty-three subjects participated in this observational cross-sectional multicenter study. Standard questionnaires assessing anxiety, depression, cognition, smell, nonmotor symptoms, and rapid eye movement (REM) sleep behavior were administered. Analyses were adjusted for age, sex, family relations, education, and site. RESULTS One hundred thirty-four carriers were identified. Carriers had higher nonmotor symptoms score on the Nonmotor symptoms (NMS) questionnaire (P = 0.02). These findings were amplified in carriers older than age 50 y, with higher nonmotor symptoms scores and trait anxiety scores (P < 0.03). CONCLUSIONS In this cross-section study, carriers of the G2019S LRRK2 mutation endorsed subtle nonmotor symptoms. Whether these are early features of PD will require a longitudinal study. © 2015 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, Department of Neurology, Israel
| | - Roy N Alcalay
- College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Rachel Saunders-Pullman
- The Alan and Barbara Mirken Department of Neurology, Mount Sinai-Beth Israel Medical Center, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kira Yasinovsky
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, Department of Neurology, Israel
| | - Avner Thaler
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, Department of Neurology, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, Department of Neurology, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Deborah Raymond
- The Alan and Barbara Mirken Department of Neurology, Mount Sinai-Beth Israel Medical Center, New York, New York, USA
| | - Mali Gana-Weisz
- Genetics Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Anat Bar-Shira
- Genetics Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Laurie Ozelius
- Departments of Genetics and Genomic Sciences and Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Lorraine Clark
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Center for Human Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Avi Orr-Urtreger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Genetics Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Susan Bressman
- The Alan and Barbara Mirken Department of Neurology, Mount Sinai-Beth Israel Medical Center, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Marder
- College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, Department of Neurology, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sieratzki Chair in Neurology, Tel-Aviv University, New York, NY, USA
| | | |
Collapse
|
20
|
Kojovic M, Kassavetis P, Bologna M, Pareés I, Rubio-Agusti I, Berardelli A, Beraredelli A, Edwards MJ, Rothwell JC, Bhatia KP. Transcranial magnetic stimulation follow-up study in early Parkinson's disease: A decline in compensation with disease progression? Mov Disord 2015; 30:1098-106. [PMID: 25753906 DOI: 10.1002/mds.26167] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND A number of neurophysiological abnormalities have been described in patients with Parkinson's disease, but very few longitudinal studies of how these change with disease progression have been reported. We describe measures of motor cortex inhibition and plasticity at 6 and 12 mo in 12 patients that we previously reported at initial diagnosis. Given the well-known interindividual variation in these measures, we were particularly concerned with the within-subject changes over time. METHODS Patients were assessed clinically, and transcranial magnetic stimulation (TMS) was used to measure motor cortical excitability, inhibition (short interval intracortical inhibition, cortical silent period), and plasticity (response to excitatory paired associative stimulation protocol) in both hemispheres. All measurements were performed 6 mo and 12 mo after the baseline experiments. RESULTS Asymmetry in clinical motor symptoms was reflected in asymmetry of plasticity and inhibition. In the group as a whole, little change was seen in any of the parameters over 12 mo. However, analysis of within-individual data showed clear correlations between changes in clinical asymmetry and asymmetry of response to paired associative stimulation protocol and cortical silent period. CONCLUSIONS Longitudinal changes in cortical silent period and response to paired associative stimulation protocol in Parkinson's disease reflect dynamic effects on motor cortex that are related to progression of motor signs. They are useful objective markers of early disease progression that could be used to detect effects of disease-modifying therapies. The decline in heightened plasticity that was present at disease onset may reflect failure of compensatory mechanisms that maintained function in the preclinical state.
Collapse
Affiliation(s)
- Maja Kojovic
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL, Institute of Neurology, The National Hospital for Neurology & Neurosurgery, Queen Square, London, United Kingdom.,Department of Neurology, University of Ljubljana, Slovenia
| | - Panagiotis Kassavetis
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL, Institute of Neurology, The National Hospital for Neurology & Neurosurgery, Queen Square, London, United Kingdom
| | - Matteo Bologna
- Department of Neurology and Psychiatry and Neuromed institute, "Sapienza" University of Rome, Italy
| | - Isabel Pareés
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL, Institute of Neurology, The National Hospital for Neurology & Neurosurgery, Queen Square, London, United Kingdom
| | - Ignacio Rubio-Agusti
- Movement Disorders Unit, Neurology Department, Hospital Universitario La Fe, Valencia, Spain
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry and Neuromed institute, "Sapienza" University of Rome, Italy
| | - Alfredo Beraredelli
- Department of Neurology and Psychiatry and Neuromed institute, "Sapienza" University of Rome, Italy
| | - Mark J Edwards
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL, Institute of Neurology, The National Hospital for Neurology & Neurosurgery, Queen Square, London, United Kingdom
| | - John C Rothwell
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL, Institute of Neurology, The National Hospital for Neurology & Neurosurgery, Queen Square, London, United Kingdom
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience & Movement Disorders, UCL, Institute of Neurology, The National Hospital for Neurology & Neurosurgery, Queen Square, London, United Kingdom
| |
Collapse
|
21
|
Helmich RC, Thaler A, van Nuenen BFL, Gurevich T, Mirelman A, Marder KS, Bressman S, Orr-Urtreger A, Giladi N, Bloem BR, Toni I. Reorganization of corticostriatal circuits in healthy G2019S LRRK2 carriers. Neurology 2015; 84:399-406. [PMID: 25540317 PMCID: PMC4336002 DOI: 10.1212/wnl.0000000000001189] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/30/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We investigated system-level corticostriatal changes in a human model of premotor Parkinson disease (PD), i.e., healthy carriers of the G2019S LRRK2 mutation that is associated with a markedly increased, age-dependent risk of developing PD. METHODS We compared 37 asymptomatic LRRK2 G2019S mutation carriers (age range 30-78 years) with 32 matched, asymptomatic nonmutation carriers (age range 30-74 years). Using fMRI, we tested the hypothesis that corticostriatal connectivity in premotor PD shifts from severely affected to less affected striatal subregions, as shown previously in symptomatic PD. Specifically, we predicted that in premotor PD, the shift in corticostriatal connectivity would follow the same gradient of striatal dopamine depletion known from overt PD, with the dorsoposterior putamen being more affected than the ventroanterior putamen. RESULTS The known parallel topology of corticostriatal loops was preserved in each group, but the topography of putamen connectivity shifted. In LRRK2 G2019S mutation carriers, the right inferior parietal cortex had reduced functional connectivity with the dorsoposterior putamen but increased connectivity with the ventroanterior putamen, as compared with noncarriers. This shift in functional connectivity increased with age in LRRK2 G2019S mutation carriers. CONCLUSIONS Asymptomatic LRRK2 G2019S mutation carriers show a reorganization of corticostriatal circuits that mirrors findings in idiopathic PD. These changes may reflect premotor basal ganglia dysfunction or circuit-level compensatory changes.
Collapse
Affiliation(s)
- Rick C Helmich
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY.
| | - Avner Thaler
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Bart F L van Nuenen
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Tanya Gurevich
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Anat Mirelman
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Karen S Marder
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Susan Bressman
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Avi Orr-Urtreger
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Nir Giladi
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Bastiaan R Bloem
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| | - Ivan Toni
- From the Centre for Cognitive Neuroimaging (R.C.H., I.T.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen; Department of Neurology (R.C.H., B.R.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Movement Disorders Unit, Department of Neurology (A.T., T.G., A.M., N.G.), and Genetic Institute (A.O.-U.), Tel Aviv Sourasky Medical Center; Sackler School of Medicine (A.T., T.G., A.O.-U., N.G.), Tel Aviv University, Israel; Department of Neurology (B.F.L.v.N.), Catharina Hospital, Eindhoven, the Netherlands; Columbia University (K.S.M.), Columbia University Medical Center, New York; and Beth Israel Medical Center (S.B.), New York, NY
| |
Collapse
|
22
|
Alcalay RN, Mejia-Santana H, Mirelman A, Saunders-Pullman R, Raymond D, Palmese C, Caccappolo E, Ozelius L, Orr-Urtreger A, Clark L, Giladi N, Bressman S, Marder K. Neuropsychological performance in LRRK2 G2019S carriers with Parkinson's disease. Parkinsonism Relat Disord 2014; 21:106-10. [PMID: 25434972 DOI: 10.1016/j.parkreldis.2014.09.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Ashkenazi Jewish (AJ) LRRK2 carriers are more likely to manifest the postural instability gait difficulty (PIGD) motor phenotype than non-carriers but perform similarly to non-carriers on cognitive screening tests. OBJECTIVE To compare the cognitive profiles of AJ with Parkinson's disease (PD) with and without LRRK2 G2019S mutations using a comprehensive neuropsychological battery. METHODS We administered a neuropsychological battery to PD participants in the Michael J. Fox Foundation AJ consortium. Participants (n = 236) from Beth Israel Medical Center, NY, Columbia University Medical Center, NY and Tel Aviv Medical Center, Israel included 116 LRRK2 G2019S carriers and 120 non-carriers. Glucocerbrosidase mutation carriers were excluded. We compared performance on each neuropsychological test between carriers and non-carriers. Participants in New York (n = 112) were evaluated with the entire battery. Tel Aviv participants (n = 124) were evaluated on attention, executive function and psychomotor speed tasks. The association between G2019S mutation status (predictor) and each neuropsychological test (outcome) was assessed using linear regression models adjusted for PIGD motor phenotype, site, sex, age, disease duration, education, Unified Parkinson's Disease Rating Scale (UPDRS) Part III, levodopa equivalent dose, and Geriatric Depression Score (GDS). RESULTS Carriers had longer disease duration (p < 0.001) and were more likely to manifest the PIGD phenotype (p = 0.024). In adjusted regression models, carriers performed better than non-carriers in Stroop Word Reading (p < 0.001), Stroop Interference (p = 0.011) and Category Fluency (p = 0.026). CONCLUSION In AJ-PD, G2019S mutation status is associated with better attention (Stroop Word Reading), executive function (Stroop Interference) and language (Category Fluency) after adjustment for PIGD motor phenotype.
Collapse
Affiliation(s)
- Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| | - Helen Mejia-Santana
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anat Mirelman
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; School of Health Related Professions, Ben Gurion University, Beer Sheba, Israel
| | - Rachel Saunders-Pullman
- The Alan and Barbara Mirken Department of Neurology, Beth Israel Medical Center, New York, NY, USA
| | - Deborah Raymond
- The Alan and Barbara Mirken Department of Neurology, Beth Israel Medical Center, New York, NY, USA
| | - Christina Palmese
- The Alan and Barbara Mirken Department of Neurology, Beth Israel Medical Center, New York, NY, USA
| | - Elise Caccappolo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Laurie Ozelius
- Departments of Genetics and Genomic Sciences and Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Avi Orr-Urtreger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Genetics Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Lorraine Clark
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Center for Human Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel-Aviv Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Susan Bressman
- The Alan and Barbara Mirken Department of Neurology, Beth Israel Medical Center, New York, NY, USA
| | - Karen Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | | |
Collapse
|
23
|
Maetzler W, Nieuwhof F, Hasmann SE, Bloem BR. Emerging therapies for gait disability and balance impairment: promises and pitfalls. Mov Disord 2014; 28:1576-86. [PMID: 24132846 DOI: 10.1002/mds.25682] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/31/2022] Open
Abstract
Therapeutic management of gait and balance impairment during aging and neurodegeneration has long been a neglected topic. This has changed considerably during recent years, for several reasons: (1) an increasing recognition that gait and balance deficits are among the most relevant determinants of an impaired quality of life and increased mortality for affected individuals; (2) the arrival of new technology, which has allowed for new insights into the anatomy and functional (dis)integrity of gait and balance circuits; and (3) based in part on these improved insights, the development of new, more specific treatment strategies in the field of pharmacotherapy, deep brain surgery, and physiotherapy. The initial experience with these emerging treatments is encouraging, although much work remains to be done. The objective of this narrative review is to discuss several promising developments in the field of gait and balance treatment. We also address several pitfalls that can potentially hinder a fast and efficient continuation of this vital progress. Important issues that should be considered in future research include a clear differentiation between gait and balance as two distinctive targets for treatment and recognition of compensatory mechanisms as a separate target for therapeutic intervention.
Collapse
Affiliation(s)
- Walter Maetzler
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, Center of Neurology, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DNZE), Tübingen, Germany
| | | | | | | |
Collapse
|
24
|
Thaler A, Artzi M, Mirelman A, Jacob Y, Helmich RC, van Nuenen BFL, Gurevich T, Orr-Urtreger A, Marder K, Bressman S, Bloem BR, Hendler T, Giladi N, Ben Bashat D. A voxel-based morphometry and diffusion tensor imaging analysis of asymptomatic Parkinson's disease-related G2019S LRRK2 mutation carriers. Mov Disord 2014; 29:823-7. [PMID: 24482120 DOI: 10.1002/mds.25827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 12/20/2013] [Accepted: 12/22/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Patients with Parkinson's disease have reduced gray matter volume and fractional anisotropy in both cortical and sub-cortical structures, yet changes in the pre-motor phase of the disease are unknown. METHODS A comprehensive imaging study using voxel-based morphometry and diffusion tensor imaging tract-based spatial statistics analysis was performed on 64 Ashkenazi Jewish asymptomatic first degree relatives of patients with Parkinson's disease (30 mutation carriers), who carry the G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene. RESULTS No between-group differences in gray matter volume could be noted in either whole-brain or volume-of-interest analysis. Diffusion tensor imaging analysis did not identify group differences in white matter areas, and volume-of-interest analysis identified no differences in diffusivity parameters in Parkinson's disease-related structures. CONCLUSIONS G2019S carriers do not manifest changes in gray matter volume or diffusivity parameters in Parkinson's disease-related structures prior to the appearance of motor symptoms.
Collapse
Affiliation(s)
- Avner Thaler
- Movement Disorders Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chan SL, Angeles DC, Tan EK. Targeting leucine-rich repeat kinase 2 in Parkinson's disease. Expert Opin Ther Targets 2013; 17:1471-82. [DOI: 10.1517/14728222.2013.842978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Alcalay RN, Mirelman A, Saunders-Pullman R, Tang MX, Mejia Santana H, Raymond D, Roos E, Orbe-Reilly M, Gurevich T, Bar Shira A, Gana Weisz M, Yasinovsky K, Zalis M, Thaler A, Deik A, Barrett MJ, Cabassa J, Groves M, Hunt AL, Lubarr N, San Luciano M, Miravite J, Palmese C, Sachdev R, Sarva H, Severt L, Shanker V, Swan MC, Soto-Valencia J, Johannes B, Ortega R, Fahn S, Cote L, Waters C, Mazzoni P, Ford B, Louis E, Levy O, Rosado L, Ruiz D, Dorovski T, Pauciulo M, Nichols W, Orr-Urtreger A, Ozelius L, Clark L, Giladi N, Bressman S, Marder KS. Parkinson disease phenotype in Ashkenazi Jews with and without LRRK2 G2019S mutations. Mov Disord 2013; 28:1966-71. [PMID: 24243757 DOI: 10.1002/mds.25647] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/11/2013] [Accepted: 07/28/2013] [Indexed: 12/12/2022] Open
Abstract
The phenotype of Parkinson's disease (PD) in patients with and without leucine-rich repeat kinase 2 (LRRK2) G2019S mutations reportedly is similar; however, large, uniformly evaluated series are lacking. The objective of this study was to characterize the clinical phenotype of Ashkenazi Jewish (AJ) PD carriers of the LRRK2 G2019S mutation. We studied 553 AJ PD patients, including 65 patients who were previously reported, from three sites (two in New York and one in Tel-Aviv). Glucocerebrosidase (GBA) mutation carriers were excluded. Evaluations included the Montreal Cognitive Assessment (MoCA), the Unified Parkinson's Disease Rating Scale (UPDRS), the Geriatric Depression Scale (GDS) and the Non-Motor Symptoms (NMS) questionnaire. Regression models were constructed to test the association between clinical and demographic features and LRRK2 status (outcome) in 488 newly recruited participants. LRRK2 G2019S carriers (n = 97) and non-carriers (n = 391) were similar in age and age at onset of PD. Carriers had longer disease duration (8.6 years vs. 6.1 years; P < 0.001), were more likely to be women (51.5% vs. 37.9%; P = 0.015), and more often reported first symptoms in the lower extremities (40.0% vs. 19.2%; P < 0.001). In logistic models that were adjusted for age, disease duration, sex, education, and site, carriers were more likely to have lower extremity onset (P < 0.001), postural instability and gait difficulty (PIGD) (P = 0.043), and a persistent levodopa response for >5 years (P = 0.042). Performance on the UPDRS, MoCA, GDS, and NMS did not differ by mutation status. PD in AJ LRRK2 G2019S mutation carriers is similar to idiopathic PD but is characterized by more frequent lower extremity involvement at onset and PIGD without the associated cognitive impairment.
Collapse
Affiliation(s)
- Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Panyakaew P, Bhidayasiri R. The spectrum of preclinical gait disorders in early Parkinson’s disease: subclinical gait abnormalities and compensatory mechanisms revealed with dual tasking. J Neural Transm (Vienna) 2013; 120:1665-72. [DOI: 10.1007/s00702-013-1051-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
|