1
|
Burdo S, Di Berardino F, Bruno G. Is auditory neuropathy an appropriate term? A systematic literature review on its aetiology and pathogenesis. ACTA OTORHINOLARYNGOLOGICA ITALICA 2021; 41:496-506. [PMID: 34825666 PMCID: PMC8686806 DOI: 10.14639/0392-100x-n0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/15/2021] [Indexed: 11/23/2022]
Abstract
To clarify the aetio-pathogenesis of Auditory Neuropathy Spectrum Disorder (ANSD), a total of 845 papers were divided into four categories: Review, Audiology, Treatment and Aetiology. Aetiology was the topic analysed categorising papers as: Genetics, Histopathology, Imaging and Medical diseases. Isolated ANs were in relation to Otoferlin, Pejvakin and DIAPH3 deficiency, and the syndromes were mainly Charcot Marie Tooth, Friedreich Ataxia, mitochondrial disorders and those associated with optic neuropathies. In histopathology papers, important information was available from analyses on human premature newborns and on some syndromic neuropathies. From cochlear dysmorphism to cerebral tumours associated with ANs, these are described in what is identified as the Imaging area. Finally, the prevalent clinical pathology was bilirubinopathy, followed by diabetes. In conclusion, AN/ANSDs do not refer to a clear pathological condition, but to an instrumental pattern without any evidence of auditory nerve involvement, except in a few conditions. The terms AN/ANSD are misleading and should be avoided, including terms such as “synaptopathy” or “dis-synchrony”.
Collapse
|
2
|
Santarelli R, Rossi R, Scimemi P, Cama E, Valentino ML, La Morgia C, Caporali L, Liguori R, Magnavita V, Monteleone A, Biscaro A, Arslan E, Carelli V. OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. ACTA ACUST UNITED AC 2015; 138:563-76. [PMID: 25564500 PMCID: PMC4339771 DOI: 10.1093/brain/awu378] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Santarelli et al. reveal that hearing impairments in patients carrying OPA1 missense mutations are the result of disordered synchrony in auditory nerve fibre activity owing to degeneration of terminal dendrites. Cochlear implantation improves speech perception and synchronous activation of auditory pathways in these patients by bypassing the lesion site. Hearing impairment is the second most prevalent clinical feature after optic atrophy in dominant optic atrophy associated with mutations in the OPA1 gene. In this study we characterized the hearing dysfunction in OPA1-linked disorders and provided effective rehabilitative options to improve speech perception. We studied two groups of OPA1 subjects, one comprising 11 patients (seven males; age range 13–79 years) carrying OPA1 mutations inducing haploinsufficiency, the other, 10 subjects (three males; age range 5–58 years) carrying OPA1 missense mutations. Both groups underwent audiometric assessment with pure tone and speech perception evaluation, and otoacoustic emissions and auditory brainstem response recording. Cochlear potentials were recorded through transtympanic electrocochleography from the group of patients harbouring OPA1 missense mutations and were compared to recordings obtained from 20 control subjects with normal hearing and from 19 subjects with cochlear hearing loss. Eight patients carrying OPA1 missense mutations underwent cochlear implantation. Speech perception measures and electrically-evoked auditory nerve and brainstem responses were obtained after 1 year of cochlear implant use. Nine of 11 patients carrying OPA1 mutations inducing haploinsufficiency had normal hearing function. In contrast, all but one subject harbouring OPA1 missense mutations displayed impaired speech perception, abnormal brainstem responses and presence of otoacoustic emissions consistent with auditory neuropathy. In electrocochleography recordings, cochlear microphonic had enhanced amplitudes while summating potential showed normal latency and peak amplitude consistent with preservation of both outer and inner hair cell activities. After cancelling the cochlear microphonic, the synchronized neural response seen in both normally-hearing controls and subjects with cochlear hearing loss was replaced by a prolonged, low-amplitude negative potential that decreased in both amplitude and duration during rapid stimulation consistent with neural generation. The use of cochlear implant improved speech perception in all but one patient. Brainstem potentials were recorded in response to electrical stimulation in five of six subjects, whereas no compound action potential was evoked from the auditory nerve through the cochlear implant. These findings indicate that underlying the hearing impairment in patients carrying OPA1 missense mutations is a disordered synchrony in auditory nerve fibre activity resulting from neural degeneration affecting the terminal dendrites. Cochlear implantation improves speech perception and synchronous activation of auditory pathways by bypassing the site of lesion.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- 1 Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy 2 Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Roberta Rossi
- 1 Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy 2 Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Pietro Scimemi
- 1 Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy 2 Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Elona Cama
- 1 Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy 2 Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Maria Lucia Valentino
- 3 Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy 4 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| | - Chiara La Morgia
- 3 Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy 4 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| | - Leonardo Caporali
- 3 Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy 4 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| | - Rocco Liguori
- 3 Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy 4 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| | - Vincenzo Magnavita
- 1 Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy 2 Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Anna Monteleone
- 2 Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Ariella Biscaro
- 2 Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Edoardo Arslan
- 1 Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy 2 Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Valerio Carelli
- 3 Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy 4 IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| |
Collapse
|