1
|
Chen B, Tan Q, Zhang H, Chu W, Wen H, Tian X, Yang Y, Li W, Li W, Chen Y, Feng H. Contralesional Anodal Transcranial Direct Current Stimulation Promotes Intact Corticospinal Tract Axonal Sprouting and Functional Recovery After Traumatic Brain Injury in Mice. Neurorehabil Neural Repair 2024; 38:214-228. [PMID: 38385458 DOI: 10.1177/15459683241233261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
BACKGROUND Anodal transcranial direct current stimulation (AtDCS), a neuromodulatory technique, has been applied to treat traumatic brain injury (TBI) in patients and was reported to promote functional improvement. We evaluated the effect of contralesional AtDCS on axonal sprouting of the intact corticospinal tract (CST) and the underlying mechanism in a TBI mouse model to provide more preclinical evidence for the use of AtDCS to treat TBI. METHODS TBI was induced in mice by a contusion device. Then, the mice were subjected to contralesional AtDCS 5 days per week followed by a 2-day interval for 7 weeks. After AtDCS, motor function was evaluated by the irregular ladder walking, narrow beam walking, and open field tests. CST sprouting was assessed by anterograde and retrograde labeling of corticospinal neurons (CSNs), and the effect of AtDCS was further validated by pharmacogenetic inhibition of axonal sprouting using clozapine-N-oxide (CNO). RESULTS TBI resulted in damage to the ipsilesional cortex, while the contralesional CST remained intact. AtDCS improved the skilled motor functions of the impaired hindlimb in TBI mice by promoting CST axon sprouting, specifically from the intact hemicord to the denervated hemicord. Furthermore, electrical stimulation of CSNs significantly increased the excitability of neurons and thus activated the mechanistic target of rapamycin (mTOR) pathway. CONCLUSIONS Contralesional AtDCS improved skilled motor following TBI, partly by promoting axonal sprouting through increased neuronal activity and thus activation of the mTOR pathway.
Collapse
Affiliation(s)
- Beike Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiang Tan
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Blood Transfusion, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Hongyan Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihua Chu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuelong Tian
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Yang Yang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Weina Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Stein A, Vinh To X, Nasrallah FA, Barlow KM. Evidence of Ongoing Cerebral Microstructural Reorganization in Children With Persisting Symptoms Following Mild Traumatic Brain Injury: A NODDI DTI Analysis. J Neurotrauma 2024; 41:41-58. [PMID: 37885245 DOI: 10.1089/neu.2023.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Approximately 300-550 children per 100,000 sustain a mild traumatic brain injury (mTBI) each year, of whom ∼25-30% have long-term cognitive problems. Following mTBI, free water (FW) accumulation occurs in white matter (WM) tracts. Diffusion tensor imaging (DTI) can be used to investigate structural integrity following mTBI. Compared with conventional DTI, neurite orientation dispersion and density imaging (NODDI) orientation dispersion index (ODI) and fraction of isolated free water (FISO) metrics may allow a more advanced insight into microstructural damage following pediatric mTBI. In this longitudinal study, we used NODDI to explore whole-brain and tract-specific differences in ODI and FISO in children with persistent symptoms after mTBI (n = 80) and in children displaying clinical recovery (n = 32) at 1 and 2-3 months post-mTBI compared with healthy controls (HCs) (n = 21). Two-way repeated measures analysis of variance (ANOVA) and voxelwise two-sample t tests were conducted to compare whole-brain and tract-specific diffusion across groups. All results were corrected at positive false discovery rate (pFDR) <0.05. We also examined the association between NODDI metrics and clinical outcomes, using logistical regression to investigate the value of NODDI metrics in predicting future recovery from mTBI. Whole-brain ODI was significantly increased in symptomatic participants compared with HCs at both 1 and 2 months post-injury, where the uncinate fasciculus (UF) and inferior fronto-occipital fasciculus (IFOF) were particularly implicated. Using region of interest (ROI) analysis in significant WM, bilateral IFOF and UF voxels, symptomatic participants had the highest ODI in all ROIs. ODI was lower in asymptomatic participants, and HCs had the lowest ODI in all ROIs. No changes in FISO were found across groups or over time. WM ODI was moderately correlated with a higher youth-reported post-concussion symptom inventory (PCSI) score. With 87% predictive power, ODI (1 month post-injury) and clinical predictors (age, sex, PCSI score, attention scores) were a more sensitive predictor of recovery at 2-3 months post-injury than fractional anisotropy (FA) and clinical predictors, or clinical predictors alone. FISO could not predict recovery at 2-3 months post-injury. Therefore, we found that ODI was significantly increased in symptomatic children following mTBI compared with HCs at 1 month post-injury, and progressively decreased over time alongside clinical recovery. We found no significant differences in FISO between groups or over time. WM ODI at 1 month was a more sensitive predictor of clinical recovery at 2-3 months post-injury than FA, FISO, or clinical measures alone. Our results show evidence of ongoing microstructural reorganization or neuroinflammation between 1 and 2-3 months post-injury, further supporting delayed return to play in children who remain symptomatic. We recommend future research examining the clinical utility of NODDI following mTBI to predict recovery or persistence of post-concussion symptoms and thereby inform management of mTBI.
Collapse
Affiliation(s)
- Athena Stein
- Acquired Brain Injury in Children Research Group, The University of Queensland, South Brisbane, Queensland, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Karen M Barlow
- Acquired Brain Injury in Children Research Group, The University of Queensland, South Brisbane, Queensland, Australia
- Queensland Pediatric Rehabilitation Service, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Wang D, Fan Q, Xiao X, He H, Yang Y, Li Y. Structural Fingerprinting of the Frontal Aslant Tract: Predicting Cognitive Control Capacity and Obsessive-Compulsive Symptoms. J Neurosci 2023; 43:7016-7027. [PMID: 37696666 PMCID: PMC10586535 DOI: 10.1523/jneurosci.0628-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
White matter of the human brain is influenced by common genetic variations and shaped by neural activity-dependent experiences. Variations in microstructure of cerebral white matter across individuals and even across fiber tracts might underlie differences in cognitive capacity and vulnerabilities to mental disorders. The frontoparietal and cingulo-opercular networks of the brain constitute the central system supporting cognitive functions, and functional connectivity of these networks has been used to distinguish individuals known as "functional fingerprinting." The frontal aslant tract (FAT) that passes through the two networks has been implicated in executive functions. However, whether FAT can be used as a "structural fingerprint" to distinguish individuals and predict an individual's cognitive function and dysfunction is unknown. Here we investigated the fingerprinting property of FAT microstructural profiles using three independent diffusion MRI datasets with repeated scans on human participants including both females and males. We found that diffusion and geometric profiles of FAT can be used to distinguish individuals with a high accuracy. Next, we demonstrated that fractional anisotropy in different FAT segments predicted distinct cognitive functions, including working memory, inhibitory control, and relational reasoning. Finally, we assessed the contribution of altered FAT microstructural profiles to cognitive dysfunction in unmedicated patients with obsessive-compulsive disorders. We found that the altered microstructure in FAT was associated with the severity of obsessive-compulsive symptoms. Collectively, our findings suggest that the microstructural profiles of FAT can identify individuals with a high accuracy and may serve as an imaging marker for predicting an individual's cognitive capacity and disease severity.SIGNIFICANCE STATEMENT The frontoparietal network and cingulo-opercular network of the brain constitute a dual-network architecture for human cognitive functions, and functional connectivity of these two networks can be used as a "functional fingerprint" to distinguish individuals. However, the structural underpinnings of these networks subserving individual heterogeneities in their functional connectivity and cognitive ability remain unknown. We show here that the frontal aslant tract (FAT) that passes through the two networks distinguishes individuals with a high accuracy. Further, we demonstrate that the diffusion profiles of FAT predict distinct cognitive functions in healthy subjects and are associated with the clinical symptoms in patients with obsessive-compulsive disorders. Our findings suggest that the FAT may serve as a unique structural fingerprint underlying individual cognitive capability.
Collapse
Affiliation(s)
- Danni Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, People's Republic of China
| | - Xiang Xiao
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou 310027, People's Republic of China
- School of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
4
|
Li LM, Carson A, Dams-O'Connor K. Psychiatric sequelae of traumatic brain injury - future directions in research. Nat Rev Neurol 2023; 19:556-571. [PMID: 37591931 DOI: 10.1038/s41582-023-00853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Despite growing appreciation that traumatic brain injury (TBI) is an important public health burden, our understanding of the psychiatric and behavioural consequences of TBI remains limited. These changes are particularly detrimental to a person's sense of self, their relationships and their participation in the wider community, and they continue to have devastating individual and cumulative effects long after TBI. This Review relates specifically to TBIs that confer objective clinical or biomarker evidence of structural brain injury; symptomatic head injuries without such evidence are outside the scope of this article. Common psychiatric, affective and behavioural sequelae of TBI and their proposed underlying mechanisms are outlined, along with a brief overview of current treatments. Suggestions for how scientists and clinicians can work together in the future to address the chasms in clinical care and knowledge are discussed in depth.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Brain Sciences, Imperial College London, London, UK.
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kristen Dams-O'Connor
- Brain Injury Research Center, Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Thams F, Li SC, Flöel A, Antonenko D. Functional Connectivity and Microstructural Network Correlates of Interindividual Variability in Distinct Executive Functions of Healthy Older Adults. Neuroscience 2023; 526:61-73. [PMID: 37321368 DOI: 10.1016/j.neuroscience.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Executive functions, essential for daily life, are known to be impaired in older age. Some executive functions, including working memory updating and value-based decision-making, are specifically sensitive to age-related deterioration. While their neural correlates in young adults are well-described, a comprehensive delineation of the underlying brain substrates in older populations, relevant to identify targets for modulation against cognitive decline, is missing. Here, we assessed letter updating and Markov decision-making task performance to operationalize these trainable functions in 48 older adults. Resting-state functional magnetic resonance imaging was acquired to quantify functional connectivity (FC) in task-relevant frontoparietal and default mode networks. Microstructure in white matter pathways mediating executive functions was assessed with diffusion tensor imaging and quantified by tract-based fractional anisotropy (FA). Superior letter updating performance correlated with higher FC between dorsolateral prefrontal cortex and left frontoparietal and hippocampal areas, while superior Markov decision-making performance correlated with decreased FC between basal ganglia and right angular gyrus. Furthermore, better working memory updating performance was related to higher FA in the cingulum bundle and the superior longitudinal fasciculus. Stepwise linear regression showed that cingulum bundle FA added significant incremental contribution to the variance explained by fronto-angular FC alone. Our findings provide a characterization of distinct functional and structural connectivity correlates associated with performance of specific executive functions. Thereby, this study contributes to the understanding of the neural correlates of updating and decision-making functions in older adults, paving the way for targeted modulation of specific networks by modulatory techniques such as behavioral interventions and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Zellescher Weg 17, 01062 Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, TU Dresden, 01062 Dresden, Germany.
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany.
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
6
|
Cordeiro BNDL, Kuster E, Thibaut A, Rodrigues Nascimento L, Gonçalves JV, Arêas GPT, Paiva WS, Arêas FZDS. Is transcranial direct current stimulation (tDCS) effective to improve cognition and functionality after severe traumatic brain injury? A perspective article and hypothesis. Front Hum Neurosci 2023; 17:1162854. [PMID: 37635806 PMCID: PMC10448524 DOI: 10.3389/fnhum.2023.1162854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Severe traumatic brain injury (sTBI) is an important cause of disability and mortality and affects people of all ages. Current scientific evidence indicates that motor dysfunction and cognitive impairment are the main limiting factors in patients with sTBI. Transcranial direct current stimulation (tDCS) seems to be a good therapeutic option, but when it comes to patients with sTBI, the results are inconclusive, and some protocols have not yet been tested. In addition, there is still a lack of information on tDCS-related physiological mechanisms, especially during the acute phase. In the present study, based on current evidence on tDCS mechanisms of action, we hypothesized that performing tDCS sessions in individuals with sTBI, especially in the acute and subacute phases, together with conventional therapy sessions, could improve cognition and motor function in this population. This hypothesis presents a new possibility for treating sTBI, seeking to elucidate the extent to which early tDCS may affect long-term clinical outcomes.
Collapse
Affiliation(s)
| | - Elizângela Kuster
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Lucas Rodrigues Nascimento
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Jessica Vaz Gonçalves
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Fernando Zanela da Silva Arêas
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
7
|
Schwertfeger JL, Beyer C, Hung P, Ung N, Madigan C, Cortes AR, Swaminathan B, Madhavan S. A map of evidence using transcranial direct current stimulation (tDCS) to improve cognition in adults with traumatic brain injury (TBI). FRONTIERS IN NEUROERGONOMICS 2023; 4:1170473. [PMID: 38234478 PMCID: PMC10790940 DOI: 10.3389/fnrgo.2023.1170473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 01/19/2024]
Abstract
Introduction Cognition impairments often occur after a traumatic brain injury and occur at higher rates in military members. Cognitive symptoms impair daily function, including balance and life quality, years after the TBI. Current treatments to regain cognitive function after TBI, including medications and cognitive rehabilitation, have shown limited effectiveness. Transcranial direct current stimulation (tDCS) is a low-cost, non-invasive brain stimulation intervention that improves cognitive function in healthy adults and people with neuropsychologic diagnoses beyond current interventions. Despite the available evidence of the effectiveness of tDCS in improving cognition generally, only two small TBI trials have been conducted based on the most recent systematic review of tDCS effectiveness for cognition following neurological impairment. We found no tDCS studies that addressed TBI-related balance impairments. Methods A scoping review using a peer-reviewed search of eight databases was completed in July 2022. Two assessors completed a multi-step review and completed data extraction on included studies using a priori items recommended in tDCS and TBI research guidelines. Results A total of 399 results were reviewed for inclusion and 12 met the criteria and had data extracted from them by two assessors using Google Forms. Consensus on combined data results included a third assessor when needed. No studies using tDCS for cognition-related balance were found. Discussion Guidelines and technology measures increase the identification of brain differences that alter tDCS effects on cognition. People with mild-severe and acute-chronic TBI tolerated and benefited from tDCS. TBI-related cognition is understudied, and systematic research that incorporates recommended data elements is needed to advance tDCS interventions to improve cognition after TBI weeks to years after injury.
Collapse
Affiliation(s)
- Julie Lynn Schwertfeger
- Captain James A. Lovell Federal Health Care Center, United States Department of Veteran Affairs, North Chicago, IL, United States
- Clinical Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Charlotte Beyer
- Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Paul Hung
- Captain James A. Lovell Federal Health Care Center, United States Department of Veteran Affairs, North Chicago, IL, United States
- Psychiatry Residency Program, Clinical Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Nathaniel Ung
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Caroline Madigan
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Alvi Renzyl Cortes
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Bharathi Swaminathan
- Physical Medicine and Rehabilitation, Captain James A. Lovell Federal health Care Center, North Chicago, IL, United States
- PM&R Residency Program, Clinical Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sangeetha Madhavan
- Rehabilitation Sciences Program, and Physical Therapy Program, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Coyle HL, Bailey NW, Ponsford J, Hoy KE. Investigation of neurobiological responses to theta burst stimulation during recovery from mild traumatic brain injury (mTBI). Behav Brain Res 2023; 442:114308. [PMID: 36702385 DOI: 10.1016/j.bbr.2023.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The ability of the brain to recover following neurological insult is of interest for mild traumatic brain injury (mTBI) populations. Investigating whether non-invasive brain stimulation (NIBS) can modulate neurophysiology and cognition may lead to the development of therapeutic interventions post injury. The purpose of this study was to investigate neurobiological effects of one session of intermittent theta burst stimulation (iTBS) to the dorsolateral prefrontal cortex (DLPFC) in participants recovering from mTBI. METHOD Changes to neurophysiology were assessed with electroencephalography (EEG) and transcranial magnetic stimulation combined with EEG (TMS-EEG). Digit span working memory accuracy assessed cognitive performance. 30 patients were assessed within one-month of sustaining a mTBI and 26 demographically matched controls were assessed. Participants were also assessed at 3-months (mTBI: N = 21, control: N = 26) and 6-months (mTBI: N = 15, control: N = 24). RESULTS Analyses demonstrated iTBS did not reliably modulate neurophysiological activity, and no differences in cognitive performance were produced by iTBS at any assessment time-point. CONCLUSIONS Factors responsible for our null results are unclear. Possible limitations to our experimental design are discussed. SIGNIFICANCE Our findings suggest additional research is required to establish the effects of iTBS on plasticity following mTBI, prior to therapeutic application. DATA AND CODE AVAILABILITY STATEMENT We do not have ethical approval to make this data publicly available, as our approval predated our inclusion of such approvals (which we now do routinely).
Collapse
Affiliation(s)
- Hannah L Coyle
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Neil W Bailey
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia.
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, Monash University, Australia; Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - Kate E Hoy
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Bionics Institute of Australia, 384-388 Albert St, East Melbourne, Vic 3002, Australia
| |
Collapse
|
9
|
Kurtin DL, Giunchiglia V, Vohryzek J, Cabral J, Skeldon AC, Violante IR. Moving from phenomenological to predictive modelling: Progress and pitfalls of modelling brain stimulation in-silico. Neuroimage 2023; 272:120042. [PMID: 36965862 DOI: 10.1016/j.neuroimage.2023.120042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Brain stimulation is an increasingly popular neuromodulatory tool used in both clinical and research settings; however, the effects of brain stimulation, particularly those of non-invasive stimulation, are variable. This variability can be partially explained by an incomplete mechanistic understanding, coupled with a combinatorial explosion of possible stimulation parameters. Computational models constitute a useful tool to explore the vast sea of stimulation parameters and characterise their effects on brain activity. Yet the utility of modelling stimulation in-silico relies on its biophysical relevance, which needs to account for the dynamics of large and diverse neural populations and how underlying networks shape those collective dynamics. The large number of parameters to consider when constructing a model is no less than those needed to consider when planning empirical studies. This piece is centred on the application of phenomenological and biophysical models in non-invasive brain stimulation. We first introduce common forms of brain stimulation and computational models, and provide typical construction choices made when building phenomenological and biophysical models. Through the lens of four case studies, we provide an account of the questions these models can address, commonalities, and limitations across studies. We conclude by proposing future directions to fully realise the potential of computational models of brain stimulation for the design of personalized, efficient, and effective stimulation strategies.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom; Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | | | - Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Anne C Skeldon
- Department of Mathematics, Centre for Mathematical and Computational Biology, University of Surrey, Guildford, United Kingdom
| | - Ines R Violante
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
10
|
Surendrakumar S, Rabelo TK, Campos ACP, Mollica A, Abrahao A, Lipsman N, Burke MJ, Hamani C. Neuromodulation Therapies in Pre-Clinical Models of Traumatic Brain Injury: Systematic Review and Translational Applications. J Neurotrauma 2023; 40:435-448. [PMID: 35983592 DOI: 10.1089/neu.2022.0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has been associated with several lasting impairments that affect quality of life. Pre-clinical models of TBI have been studied to further our understanding of the underlying short-term and long-term symptomatology. Neuromodulation techniques have become of great interest in recent years as potential rehabilitative therapies after injury because of their capacity to alter neuronal activity and neural circuits in targeted brain regions. This systematic review aims to provide an overlook of the behavioral and neurochemical effects of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS) in pre-clinical TBI models. After screening 629 abstracts, 30 articles were pooled for review. These studies showed that tDCS, TMS, DBS, or VNS delivered to rodents restored TBI-induced deficits in coordination, balance, locomotor activity and improved cognitive impairments in memory, learning, and impulsivity. Potential mechanisms for these effects included neuroprotection, a decrease in apoptosis, neuroplasticity, and the restoration of neural circuit abnormalities. The translational value, potential applicability, and the interpretation of these findings in light of outcome data from clinical trials in patients with TBI are discussed.
Collapse
Affiliation(s)
- Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Thallita Kelly Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Adriano Mollica
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Neuropsychiatry Program, Department of Psychiatry, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Agessandro Abrahao
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthew J Burke
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Neuropsychiatry Program, Department of Psychiatry, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Olgiati E, Malhotra PA. Using non-invasive transcranial direct current stimulation for neglect and associated attentional deficits following stroke. Neuropsychol Rehabil 2022; 32:732-763. [PMID: 32892712 DOI: 10.1080/09602011.2020.1805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neglect is a disabling neuropsychological syndrome that is frequently observed following right-hemispheric stroke. Affected individuals often present with multiple attentional deficits, ranging from reduced orienting towards contralesional space to a generalized impairment in maintaining attention over time. Although a degree of spontaneous recovery occurs in most patients, in some individuals this condition can be treatment-resistant with prominent ongoing non-spatial deficits. Further, there is a large inter-individual variability in response to different therapeutic approaches. Given its potential to alter neuronal excitability and affect neuroplasticity, non-invasive brain stimulation is a promising tool that could potentially be utilized to facilitate recovery. However, there are many outstanding questions regarding its implementation in this heterogeneous patient group. Here we provide a critical overview of the available evidence on the use of non-invasive electrical brain stimulation, focussing on transcranial direct current stimulation (tDCS), to improve neglect and associated attentional deficits after right-hemispheric stroke. At present, there is insufficient robust evidence supporting the clinical use of tDCS to alleviate symptoms of neglect. Future research would benefit from careful study design, enhanced precision of electrical montages, multi-modal approaches exploring predictors of response, tailored dose-control applications and increased efforts to evaluate standalone tDCS versus its incorporation into combination therapy.
Collapse
Affiliation(s)
- Elena Olgiati
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, London, UK
| |
Collapse
|
12
|
Functional Specificity of TPS Brain Stimulation Effects in Patients with Alzheimer's Disease: A Follow-up fMRI Analysis. Neurol Ther 2022; 11:1391-1398. [PMID: 35633496 PMCID: PMC9338196 DOI: 10.1007/s40120-022-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Transcranial pulse stimulation (TPS) has been recently introduced as a novel clinical brain stimulation technique based on highly focused ultrasound pressure pulses. In a first pilot study on clinical effects of navigated and focused ultrasound neuromodulation, a dichotomy of functional effects was found: patients with Alzheimer’s disease improved cognition and language but deteriorated with visuo-constructive functions. Methods We analyzed changes in functional connectivity measured with functional magnetic resonance imaging (fMRI) using graph analysis of a visuo-constructive network in 18 patients with Alzheimer’s disease. We calculated the network’s global efficiency and tested for correlation with visuo-constructive test scores to explain this dichotomy. Results Important visuo-constructive network nodes were not stimulated in the pilot setting and correspondingly global efficiency of a visuo-constructive network was decreased after TPS therapy, compatible with a natural progress of the disease. A correlation between visuo-constructive scores and changes in global efficiency was found. Conclusion Results argue for a high functional specificity of ultrasound-based neuromodulation with TPS. Over the last decade, there has been growing interest in ultrasound-based non-invasive brain stimulation techniques in neuroscience and as a potential therapy for disorders of the brain. Transcranial pulse stimulation (TPS) has been introduced as an innovative neuromodulation technique, applying ultrashort pressure pulses through the skull into neural tissue with 3D navigation in real time. In the first clinical pilot study, patients suffering from Alzheimer’s disease showed an increase in memory and language functions for up to 3 months after TPS therapy. However, visuo-constructive capacities (e.g., copying a geometrical figure) worsened. Notably, brain areas relevant for such processes had been left out during stimulation. This begged the question whether the brain areas that were targeted for brain stimulation as well as functional changes could explain this diverse response pattern. We therefore analyzed functional magnetic resonance data from patients. Specifically, we compared graph theoretical functional connectivity measures in a visuo-constructive network before and after TPS therapy. We found a decrease in connectivity in a central network node, which also correlated with visuo-constructive test scores. This deterioration is likely associated with normal disease progression. Together with the already reported improvement in global cognitive functions, these results argue for a functional specific effect of TPS.
Collapse
|
13
|
Treatment of Psychiatric Problems After Traumatic Brain Injury. Biol Psychiatry 2022; 91:508-521. [PMID: 34511181 DOI: 10.1016/j.biopsych.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric sequelae of traumatic brain injury (TBI) can cause significant and often chronic impairment in functioning and quality of life; however, their phenomenological and mechanistic complexities continue to present significant treatment challenges. The clinical presentation is often an amalgam of syndromes and co-occurring symptoms that require a highly nuanced and systematic approach to treatment. Although few randomized controlled trials have tested treatments for psychiatric problems after TBI and the synthesis of results continues to be compromised by the heterogeneity of study populations, small samples, and differing inclusion criteria and outcome measures, an increasing body of literature supports evidence-based treatment strategies. We provide a narrative review of pharmacological, psychoeducational/behavioral, and neuromodulation treatments for psychiatric conditions in adults with TBI and discuss known or postulated mechanisms of action for these treatment approaches. Where data are available, we focus on randomized controlled trials and large case series in which a psychiatric condition provides both a selection criterion and a primary or secondary outcome. We conclude by proposing directions for future research, particularly the need for novel neuropharmacological, behavioral, and neurophysiological studies and pragmatic trials of multicomponent and adaptive models that will increase understanding of the mechanisms underlying post-TBI psychiatric disorders and accelerate dissemination and implementation of effective person-centered care.
Collapse
|
14
|
Kurtin DL, Violante IR, Zimmerman K, Leech R, Hampshire A, Patel MC, Carmichael DW, Sharp DJ, Li LM. Investigating the interaction between white matter and brain state on tDCS-induced changes in brain network activity. Brain Stimul 2021; 14:1261-1270. [PMID: 34438046 PMCID: PMC8460997 DOI: 10.1016/j.brs.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a form of noninvasive brain stimulation whose potential as a cognitive therapy is hindered by our limited understanding of how participant and experimental factors influence its effects. Using functional MRI to study brain networks, we have previously shown in healthy controls that the physiological effects of tDCS are strongly influenced by brain state. We have additionally shown, in both healthy and traumatic brain injury (TBI) populations, that the behavioral effects of tDCS are positively correlated with white matter (WM) structure. Objectives In this study we investigate how these two factors, WM structure and brain state, interact to shape the effect of tDCS on brain network activity. Methods We applied anodal, cathodal and sham tDCS to the right inferior frontal gyrus (rIFG) of healthy (n = 22) and TBI participants (n = 34). We used the Choice Reaction Task (CRT) performance to manipulate brain state during tDCS. We acquired simultaneous fMRI to assess activity of cognitive brain networks and used Fractional Anisotropy (FA) as a measure of WM structure. Results We find that the effects of tDCS on brain network activity in TBI participants are highly dependent on brain state, replicating findings from our previous healthy control study in a separate, patient cohort. We then show that WM structure further modulates the brain-state dependent effects of tDCS on brain network activity. These effects are not unidirectional - in the absence of task with anodal and cathodal tDCS, FA is positively correlated with brain activity in several regions of the default mode network. Conversely, with cathodal tDCS during CRT performance, FA is negatively correlated with brain activity in a salience network region. Conclusions Our results show that experimental and participant factors interact to have unexpected effects on brain network activity, and that these effects are not fully predictable by studying the factors in isolation. We replicated the brain state and polarity dependent effects of tDCS. White matter structure influences tDCS's state-dependent changes in neural activity The parameters of tDCS may operate under a hierarchy of influence.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom.
| | - Ines R Violante
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Karl Zimmerman
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robert Leech
- Centre for Neuroimaging Science, King's College London, Denmark Hill, London, United Kingdom
| | - Adam Hampshire
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Department of Biomedical Imaging, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Maneesh C Patel
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - David W Carmichael
- Department of Biomedical Imaging, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - David J Sharp
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Imperial UK Dementia Research Institute at Imperial Care Research and Technology Centre, United Kingdom
| | - Lucia M Li
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Imperial UK Dementia Research Institute at Imperial Care Research and Technology Centre, United Kingdom.
| |
Collapse
|
15
|
Friehs MA, Frings C, Hartwigsen G. Effects of single-session transcranial direct current stimulation on reactive response inhibition. Neurosci Biobehav Rev 2021; 128:749-765. [PMID: 34271027 DOI: 10.1016/j.neubiorev.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
Transcranial direct current stimulation (tDCS) is widely used to explore the role of various cortical regions for reactive response inhibition. In recent years, tDCS studies reported polarity-, time- and stimulation-site dependent effects on response inhibition. Given the large parameter space in which study designs, tDCS procedures and task procedures can differ, it is crucial to systematically explore the existing tDCS literature to increase the current understanding of potential modulatory effects and limitations of different approaches. We performed a systematic review on the modulatory effects of tDCS on response inhibition as measured by the Stop-Signal Task. The final dataset shows a large variation in methodology and heterogeneous effects of tDCS on performance. The most consistent result across studies is a performance enhancement due to anodal tDCS over the right prefrontal cortex. Partially sub-optimal choices in study design, methodology and lacking consistency in reporting procedures may impede valid conclusions and obscured the effects of tDCS on response inhibition in some previous studies. Finally, we outline future directions and areas to improve research.
Collapse
Affiliation(s)
| | - Christian Frings
- Trier University, Department of Cognitive Psychology and Methodology, Trier, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Recovery after severe brain injury is variable and challenging to accurately predict at the individual patient level. This review highlights new developments in clinical prognostication with a special focus on the prediction of consciousness and increasing reliance on methods from data science. RECENT FINDINGS Recent research has leveraged serum biomarkers, quantitative electroencephalography, MRI, and physiological time-series to build models for recovery prediction. The analysis of high-resolution data and the integration of features from different modalities can be approached with efficient computational techniques. SUMMARY Advances in neurophysiology and neuroimaging, in combination with computational methods, represent a novel paradigm for prediction of consciousness and functional recovery after severe brain injury. Research is needed to produce reliable, patient-level predictions that could meaningfully impact clinical decision making.
Collapse
|
17
|
Development and Application of Medicine-Engineering Integration in the Rehabilitation of Traumatic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9962905. [PMID: 34235225 PMCID: PMC8216791 DOI: 10.1155/2021/9962905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 02/02/2023]
Abstract
The rapid progress of the combination of medicine and engineering provides better chances for the clinical treatment and healthcare engineering. Traumatic brain injury (TBI) and its related symptoms have become a major global health problem. At present, these techniques has been widely used in the rehabilitation of TBI. In this review article, we summarizes the progress of the combination of medicine and industry in the rehabilitation of traumatic brain injury in recent years, mainly from the following aspects: artificial intelligence (AI), brain-computer interfaces (BCI), noninvasive brain stimulation (NIBS), and wearable-assisted devices. We believe the summary of this article can improve insight into the combination of medicine and industry in the rehabilitation of traumatic brain injury.
Collapse
|
18
|
Mallas EJ, De Simoni S, Scott G, Jolly AE, Hampshire A, Li LM, Bourke NJ, Roberts SAG, Gorgoraptis N, Sharp DJ. Abnormal dorsal attention network activation in memory impairment after traumatic brain injury. Brain 2021; 144:114-127. [PMID: 33367761 DOI: 10.1093/brain/awaa380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 08/19/2020] [Indexed: 11/14/2022] Open
Abstract
Memory impairment is a common, disabling effect of traumatic brain injury. In healthy individuals, successful memory encoding is associated with activation of the dorsal attention network as well as suppression of the default mode network. Here, in traumatic brain injury patients we examined whether: (i) impairments in memory encoding are associated with abnormal brain activation in these networks; (ii) whether changes in this brain activity predict subsequent memory retrieval; and (iii) whether abnormal white matter integrity underpinning functional networks is associated with impaired subsequent memory. Thirty-five patients with moderate-severe traumatic brain injury aged 23-65 years (74% males) in the post-acute/chronic phase after injury and 16 healthy control subjects underwent functional MRI during performance of an abstract image memory encoding task. Diffusion tensor imaging was used to assess structural abnormalities across patient groups compared to 28 age-matched healthy controls. Successful memory encoding across all participants was associated with activation of the dorsal attention network, the ventral visual stream and medial temporal lobes. Decreased activation was seen in the default mode network. Patients with preserved episodic memory demonstrated increased activation in areas of the dorsal attention network. Patients with impaired memory showed increased left anterior prefrontal activity. White matter microstructure underpinning connectivity between core nodes of the encoding networks was significantly reduced in patients with memory impairment. Our results show for the first time that patients with impaired episodic memory show abnormal activation of key nodes within the dorsal attention network and regions regulating default mode network activity during encoding. Successful encoding was associated with an opposite direction of signal change between patients with and without memory impairment, suggesting that memory encoding mechanisms could be fundamentally altered in this population. We demonstrate a clear relationship between functional networks activated during encoding and underlying abnormalities within the structural connectome in patients with memory impairment. We suggest that encoding failures in this group are likely due to failed control of goal-directed attentional resources.
Collapse
Affiliation(s)
- Emma-Jane Mallas
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Adam Hampshire
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK.,UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK
| | - Lucia M Li
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK.,UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Stuart A G Roberts
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK.,Academic Department of Military Surgery and Trauma (ADMST), Royal Centre for Defence Medicine (RCDM), Birmingham, UK
| | - Nikos Gorgoraptis
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK.,UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK.,Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
19
|
Beliaeva V, Savvateev I, Zerbi V, Polania R. Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation. Nat Commun 2021; 12:2243. [PMID: 33854049 PMCID: PMC8047004 DOI: 10.1038/s41467-021-22468-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/15/2021] [Indexed: 11/12/2022] Open
Abstract
Diverse transcranial electrical stimulation (tES) techniques have recently been developed to elucidate the role of neural oscillations, but critically, it remains questionable whether neural entrainment genuinely occurs and is causally related to the resulting behavior. Here, we provide a perspective on an emerging integrative research program across systems, species, theoretical and experimental frameworks to elucidate the potential of tES to induce neural entrainment. We argue that such an integrative agenda is a requirement to establish tES as a tool to test the causal role of neural oscillations and highlight critical issues that should be considered when adopting a translational approach.
Collapse
Affiliation(s)
- Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland.
| | - Iurii Savvateev
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland
| | - Rafael Polania
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland.
| |
Collapse
|
20
|
Hannawi Y, Stevens RD. Precision Medicine for Traumatic Coma. Neurocrit Care 2020; 33:358-359. [PMID: 32794141 DOI: 10.1007/s12028-020-01065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Robert D Stevens
- Division of Neuroscience Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, and Radiology, Johns Hopkins University School of Medicine, 600N. Wolfe St, Phipps 455, Baltimore, MD, 21287, USA.
| |
Collapse
|
21
|
Traumatic brain injury in 2019: databases, biomarkers, and stratified treatment. Lancet Neurol 2019; 19:5-7. [PMID: 31839248 DOI: 10.1016/s1474-4422(19)30447-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022]
|