2
|
Song YT, Liu YB, Xiang HB, Manyande A, He ZG. The Application of Deep Brain Stimulation for Parkinson's Disease on the Motor Pathway: A Bibliometric Analysis across 10 Years. Curr Med Sci 2023; 43:1247-1257. [PMID: 38153631 DOI: 10.1007/s11596-023-2811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Since its initial report by James Parkinson in 1817, Parkinson's disease (PD) has remained a central subject of research and clinical advancement. The disease is estimated to affect approximately 1% of adults aged 60 and above. Deep brain stimulation, emerging as an alternative therapy for end-stage cases, has offered a lifeline to numerous patients. This review aimed to analyze publications pertaining to the impact of deep brain stimulation on the motor pathway in patients with PD over the last decade. METHODS Data were obtained from the Web of Science Core Collection through the library of Huazhong University of Science and Technology (China). The search strategy encompassed the following keywords: "deep brain stimulation", "Parkinson's disease", "motor pathway", and "human", from January 1, 2012, to December 1, 2022. Additionally, this review visualized the findings using the Citespace software. RESULTS The results indicated that the United States, the United Kingdom, Germany, and China were the primary contributors to this research field. University College London, Capital Medical University, and Maastricht University were the top 3 research institutions in the research area. Tom Foltynie ranked first with 6 publications, and the journals of Brain and Brain Stimulation published the greatest number of relevant articles. The prevailing research focal points in this domain, as determined by keywords "burst analysis", "encompassed neuronal activity", "nucleus", "hyper direct pathway", etc. CONCLUSION: This study has provided a new perspective through bibliometric analysis of the deep brain stimulation therapy for treating patients with PD, which can shed light on future research to advance our comprehension of this particular field of study.
Collapse
Affiliation(s)
- Yong-Tang Song
- Medical Association of Hubei Province, Wuhan, 430060, China
| | - Yan-Bo Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, 0044, UK
| | - Zhi-Gang He
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Zhao M, Chen H, Yan X, Li J, Lu C, Cui B, Huo W, Cao S, Guo H, Liu S, Yang C, Liu Y, Yin F. Subthalamic deep brain stimulation for primary dystonia: defining an optimal location using the medial subthalamic nucleus border as anatomical reference. Front Aging Neurosci 2023; 15:1187167. [PMID: 37547744 PMCID: PMC10400903 DOI: 10.3389/fnagi.2023.1187167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Although the subthalamic nucleus (STN) has proven to be a safe and effective target for deep brain stimulation (DBS) in the treatment of primary dystonia, the rates of individual improvement vary considerably. On the premise of selecting appropriate patients, the location of the stimulation contacts in the dorsolateral sensorimotor area of the STN may be an important factor affecting therapeutic effects, but the optimal location remains unclear. This study aimed to define an optimal location using the medial subthalamic nucleus border as an anatomical reference and to explore the influence of the location of active contacts on outcomes and programming strategies in a series of patients with primary dystonia. Methods Data from 18 patients who underwent bilateral STN-DBS were retrospectively acquired and analyzed. Patients were assessed preoperatively and postoperatively (1 month, 3 months, 6 months, 1 year, 2 years, and last follow-up after neurostimulator initiation) using the Toronto Western Spasmodic Torticollis Rating Scale (for cervical dystonia) and the Burke-Fahn-Marsden Dystonia Rating Scale (for other types). Optimal parameters and active contact locations were determined during clinical follow-up. The position of the active contacts relative to the medial STN border was determined using postoperative stereotactic MRI. Results The clinical improvement showed a significant negative correlation with the y-axis position (anterior-posterior; A+, P-). The more posterior the electrode contacts were positioned in the dorsolateral sensorimotor area of the STN, the better the therapeutic effects. Cluster analysis of the improvement rates delineated optimal and sub-optimal groups. The optimal contact coordinates from the optimal group were 2.56 mm lateral, 0.15 mm anterior, and 1.34 mm superior relative to the medial STN border. Conclusion STN-DBS was effective for primary dystonia, but outcomes were dependent on the active contact location. Bilateral stimulation contacts located behind or adjacent to Bejjani's line were most likely to produce ideal therapeutic effects. These findings may help guide STN-DBS preoperative planning, stimulation programming, and prognosis for optimal therapeutic efficacy in primary dystonia.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Hui Chen
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Xin Yan
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Jianguang Li
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Chao Lu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Bin Cui
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Wenjun Huo
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Shouming Cao
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Hui Guo
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Shuang Liu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Chunjuan Yang
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Ying Liu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Feng Yin
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
5
|
Zech M, Kumar KR, Reining S, Reunert J, Tchan M, Riley LG, Drew AP, Adam RJ, Berutti R, Biskup S, Derive N, Bakhtiari S, Jin SC, Kruer MC, Bardakjian T, Gonzalez-Alegre P, Keller Sarmiento IJ, Mencacci NE, Lubbe SJ, Kurian MA, Clot F, Méneret A, de Sainte Agathe JM, Fung VSC, Vidailhet M, Baumann M, Marquardt T, Winkelmann J, Boesch S. Biallelic AOPEP Loss-of-Function Variants Cause Progressive Dystonia with Prominent Limb Involvement. Mov Disord 2021; 37:137-147. [PMID: 34596301 DOI: 10.1002/mds.28804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Monogenic causes of isolated dystonia are heterogeneous. Assembling cohorts of affected individuals sufficiently large to establish new gene-disease relationships can be challenging. OBJECTIVE We sought to expand the catalogue of monogenic etiologies for isolated dystonia. METHODS After the discovery of a candidate variant in a multicenter exome-sequenced cohort of affected individuals with dystonia, we queried online platforms and genomic data repositories worldwide to identify subjects with matching genotypic profiles. RESULTS Seven different biallelic loss-of-function variants in AOPEP were detected in five probands from four unrelated families with strongly overlapping phenotypes. In one proband, we observed a homozygous nonsense variant (c.1477C>T [p.Arg493*]). A second proband harbored compound heterozygous nonsense variants (c.763C>T [p.Arg255*]; c.777G>A [p.Trp259*]), whereas a third proband possessed a frameshift variant (c.696_697delAG [p.Ala234Serfs*5]) in trans with a splice-disrupting alteration (c.2041-1G>A). Two probands (siblings) from a fourth family shared compound heterozygous frameshift alleles (c.1215delT [p.Val406Cysfs*14]; c.1744delA [p.Met582Cysfs*6]). All variants were rare and expected to result in truncated proteins devoid of functionally important amino acid sequence. AOPEP, widely expressed in developing and adult human brain, encodes a zinc-dependent aminopeptidase, a member of a class of proteolytic enzymes implicated in synaptogenesis and neural maintenance. The probands presented with disabling progressive dystonia predominantly affecting upper and lower extremities, with variable involvement of craniocervical muscles. Dystonia was unaccompanied by any additional symptoms in three families, whereas the fourth family presented co-occurring late-onset parkinsonism. CONCLUSIONS Our findings suggest a likely causative role of predicted inactivating biallelic AOPEP variants in cases of autosomal recessive dystonia. Additional studies are warranted to understand the pathophysiology associated with loss-of-function variation in AOPEP. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Institute of Human Genetics, Munich, Germany
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Sophie Reining
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Janine Reunert
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Lisa G Riley
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and The Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Robert J Adam
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Institute of Human Genetics, Munich, Germany
| | - Saskia Biskup
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Nicolas Derive
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Tanya Bardakjian
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ignacio J Keller Sarmiento
- Ken and Ruth Davee Department of Neurology, and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Niccolo E Mencacci
- Ken and Ruth Davee Department of Neurology, and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manju A Kurian
- Department of Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Fabienne Clot
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France.,AP-HP Sorbonne Université, Département de Génétique, UF de Neurogénétique Moléculaire et Cellulaire, Hôpital Pitié-Salpêtrière, Paris, France
| | - Aurélie Méneret
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, DMU Neurosciences, Paris, France
| | - Jean-Madeleine de Sainte Agathe
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France.,AP-HP Sorbonne Université, Laboratoire de Médecine Génomique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Victor S C Fung
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Marie Vidailhet
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, DMU Neurosciences, Paris, France
| | - Matthias Baumann
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thorsten Marquardt
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Institute of Human Genetics, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|