1
|
Li Y, Gu J, Li R, Yi H, He J, Gao J. Sensory and motor cortices parcellations estimated via distance-weighted sparse representation with application to autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111125. [PMID: 39173993 DOI: 10.1016/j.pnpbp.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Motor impairments and sensory processing abnormalities are prevalent in autism spectrum disorder (ASD), closely related to the core functions of the primary motor cortex (M1) and the primary somatosensory cortex (S1). Currently, there is limited knowledge about potential therapeutic targets in the subregions of M1 and S1 in ASD patients. This study aims to map clinically significant functional subregions of M1 and S1. METHODS Resting-state functional magnetic resonance imaging data (NTD = 266) from Autism Brain Imaging Data Exchange (ABIDE) were used for subregion modeling. We proposed a distance-weighted sparse representation algorithm to construct brain functional networks. Functional subregions of M1 and S1 were identified through consensus clustering at the group level. Differences in the characteristics of functional subregions were analyzed, along with their correlation with clinical scores. RESULTS We observed symmetrical and continuous subregion organization from dorsal to ventral aspects in M1 and S1, with M1 subregions conforming to the functional pattern of the motor homunculus. Significant intergroup differences and clinical correlations were found in the dorsal and ventral aspects of M1 (p < 0.05/3, Bonferroni correction) and the ventromedial BA3 of S1 (p < 0.05/5). These functional characteristics were positively correlated with autism severity. All subregions showed significant results in the ROI-to-ROI intergroup differential analysis (p < 0.05/80). LIMITATIONS The generalizability of the segmentation model requires further evaluation. CONCLUSIONS This study highlights the significance of M1 and S1 in ASD treatment and may provide new insights into brain parcellation and the identification of therapeutic targets for ASD.
Collapse
Affiliation(s)
- Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Jiahe Gu
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Hongtao Yi
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Junbiao He
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-tech Zone (West Zone), Sichuan Province, Chengdu 611731, China.
| |
Collapse
|
2
|
España JC, Yasoda-Mohan A, Vanneste S. The Locus Coeruleus in Chronic Pain. Int J Mol Sci 2024; 25:8636. [PMID: 39201323 PMCID: PMC11354431 DOI: 10.3390/ijms25168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Pain perception is the consequence of a complex interplay between activation and inhibition. Noradrenergic pain modulation inhibits nociceptive transmission and pain perception. The main source of norepinephrine (NE) in the central nervous system is the Locus Coeruleus (LC), a small but complex cluster of cells in the pons. The aim of this study is to review the literature on the LC-NE inhibitory system, its influence on chronic pain pathways and its frequent comorbidities. The literature research showed that pain perception is the consequence of nociceptive and environmental processing and is modulated by the LC-NE system. If perpetuated in time, nociceptive inputs can generate neuroplastic changes in the central nervous system that reduce the inhibitory effects of the LC-NE complex and facilitate the development of chronic pain and frequent comorbidities, such as anxiety, depression or sleeping disturbances. The exact mechanisms involved in the LC functional shift remain unknown, but there is some evidence that they occur through plastic changes in the medial and lateral pathways and their brain projections. Additionally, there are other influencing factors, like developmental issues, neuroinflammatory glial changes, NE receptor affinity and changes in LC neuronal firing rates.
Collapse
Affiliation(s)
- Jorge Castejón España
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Compass Physio, A83 YW96 Enfield, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Brain Research Centre for Advanced, International, Innovative and Interdisciplinary Neuromodulation, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Choi M, Kim HC, Youn I, Lee SJ, Lee JH. Use of functional magnetic resonance imaging to identify cortical loci for lower limb movements and their efficacy for individuals after stroke. J Neuroeng Rehabil 2024; 21:58. [PMID: 38627779 PMCID: PMC11020805 DOI: 10.1186/s12984-024-01319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better rehabilitation outcomes via noninvasive brain stimulation by targeting the fine-grained cortical loci of the movements. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom-made MR-compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted multivariate analysis on the fMRI data. We evaluated the validity of the identified loci using both fMRI and behavioral data, obtained from healthy participants as well as individuals after stroke. METHODS We recruited 33 healthy participants who performed four different lower limb movements (ankle dorsiflexion, ankle rotation, knee extension, and toe flexion) using our custom-built equipment while fMRI data were acquired. A subgroup of these participants (Dataset 1; n = 21) was used to identify the cortical loci associated with each lower limb movement in the paracentral lobule (PCL) using multivoxel pattern analysis and representational similarity analysis. The identified cortical loci were then evaluated using the remaining healthy participants (Dataset 2; n = 11), for whom the laterality index (LI) was calculated for each lower limb movement using the cortical loci identified for the left and right lower limbs. In addition, we acquired a dataset from 15 individuals with chronic stroke for regression analysis using the LI and the Fugl-Meyer Assessment (FMA) scale. RESULTS The cortical loci associated with the lower limb movements were hierarchically organized in the medial wall of the PCL following the cortical homunculus. The LI was clearer using the identified cortical loci than using the PCL. The healthy participants (mean ± standard deviation: 0.12 ± 0.30; range: - 0.63 to 0.91) exhibited a higher contralateral LI than the individuals after stroke (0.07 ± 0.47; - 0.83 to 0.97). The corresponding LI scores for individuals after stroke showed a significant positive correlation with the FMA scale for paretic side movement in ankle dorsiflexion (R2 = 0.33, p = 0.025) and toe flexion (R2 = 0.37, p = 0.016). CONCLUSIONS The cortical loci associated with lower limb movements in the PCL identified in healthy participants were validated using independent groups of healthy participants and individuals after stroke. Our findings suggest that these cortical loci may be beneficial for the neurorehabilitation of lower limb movement in individuals after stroke, such as in developing effective rehabilitation interventions guided by the LI scores obtained for neuronal activations calculated from the identified cortical loci across the paretic and non-paretic sides of the brain.
Collapse
Affiliation(s)
- Minseok Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu, South Korea
| | - Inchan Youn
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
| | - Song Joo Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea.
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Abdullahi A, Wong TWL, Ng SSM. Variation in the rate of recovery in motor function between the upper and lower limbs in patients with stroke: some proposed hypotheses and their implications for research and practice. Front Neurol 2023; 14:1225924. [PMID: 37602245 PMCID: PMC10435271 DOI: 10.3389/fneur.2023.1225924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background Stroke results in impairment of motor function of both the upper and lower limbs. However, although it is debatable, motor function of the lower limb is believed to recover faster than that of the upper limb. The aim of this paper is to propose some hypotheses to explain the reasons for that, and discuss their implications for research and practice. Method We searched PubMED, Web of Science, Scopus, Embase and CENTRAL using the key words, stroke, cerebrovascular accident, upper extremity, lower extremity, and motor recovery for relevant literature. Result The search generated a total of 2,551 hits. However, out of this number, 51 duplicates were removed. Following review of the relevant literature, we proposed four hypotheses: natural instinct for walking hypothesis, bipedal locomotion hypothesis, central pattern generators (CPGs) hypothesis and role of spasticity hypothesis on the subject matter. Conclusion We opine that, what may eventually account for the difference, is the frequency of use of the affected limb or intensity of the rehabilitation intervention. This is because, from the above hypotheses, the lower limb seems to be used more frequently. When limbs are used frequently, this will result in use-dependent plasticity and eventual recovery. Thus, rehabilitation techniques that involve high repetitive tasks practice such as robotic rehabilitation, Wii gaming and constraint induced movement therapy should be used during upper limb rehabilitation.
Collapse
|
6
|
Veronese S, Zoccante L, Smania N, Sbarbati A. Stretch marks: a visible expression of connective's involvement in autism spectrum disorders. Front Psychiatry 2023; 14:1155854. [PMID: 37448494 PMCID: PMC10338011 DOI: 10.3389/fpsyt.2023.1155854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
In autism spectrum disorders (ASDs) in the pediatric population, skin manifestations are generally attributable to the concomitance of allergic forms or to accidental, self-inflicted or abusive lesions. However, clinical evidence has highlighted the presence of an increasing number of abdominal stretch marks, probably caused by the increase in the number of obesity cases in the pediatric population, in general, and therefore also among children with ASD. Stretch marks are often attributed to obesity, as they have an incidence of more than 50% in obese individuals. In the first part of this article we hypothesized that in addition to obesity there are other factors, such as a structural alteration on the skin in people with ASD, which can contribute/aggravate the phenomenon of stretch marks. Despite the high frequency with which stretch marks are found in children with ASD, this aspect has never been studied, the structure of the skin of children with ASD is not known. Furthermore, it is not known whether this structure is different from that of subjects without ASD. In the second part of the article, we hypothesized the mechanisms of the negative impact of simple abdominal stretch marks on the symptomatic picture of children with ASD. The presence of stretch marks, altered tactile perception, altered sensitivity to clothing fabrics can be a combination that influences development and determines negative consequences in the neurological picture of a child with ASD, as it is already known that the altered sensory perception in children with ASD contributes to the deterioration of social behavior. Furthermore, the presence of stretch marks may play a role in the postural and motor defects of children with ASD.
Collapse
Affiliation(s)
- Sheila Veronese
- Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Verona, Italy
| | - Leonardo Zoccante
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital Verona, Verona, Italy
- Autism Spectrum Disorders Regional Centre of Verona, Verona, Italy
| | - Nicola Smania
- Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Verona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Abdullahi A, Wong TW, Van Criekinge T, Ng SS. Combination of noninvasive brain stimulation and constraint-induced movement therapy in patients with stroke: a systematic review and meta-analysis. Expert Rev Neurother 2023; 23:187-203. [PMID: 36745928 DOI: 10.1080/14737175.2023.2177154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Constraint-induced movement therapy (CIMT) and noninvasive brain stimulation (NIBS) are used to counteract learned nonuse phenomenon and imbalance in interhemispheric inhibition following stroke. The aim of this study is to summarize the available evidence on the effects of combining NIBS with CIMT in patients with stroke. METHOD PubMed, Embase, Web of Science (WoS), PEDro, OTSeeker, and CENTRAL were searched for randomized controlled trials comparing the use of NIBS+CIMT with sham NIBS+CIMT. Data on variables such as time since stroke and mean scores and standard deviations on outcomes assessed such as motor function were extracted. Cochrane risks of bias assessment tool and PEDro scale were used to assess the risk of bias and methodological quality of the included studies. RESULTS The results showed that both NIBS+CIMT and sham NIBS+CIMT improved all outcomes post-intervention and at follow-up. However, NIBS+CIMT is superior to sham NIBS+CIMT at improving level of motor impairment (SMD = 1.75, 95% CI = 0.49 to 3.01, P = 0.007) post-intervention and hand function (SMD = 1.21, 95% CI = 0.07 to 2.35, P = 0.04) at follow-up. CONCLUSIONS The addition of NIBS to CIMT seems to provide additional benefits to the recovery of function following stroke.
Collapse
Affiliation(s)
- Auwal Abdullahi
- The Hong Kong Polytechnic University - Rehabilitation Sciences, Hong Kong
| | - Thomson Wl Wong
- The Hong Kong Polytechnic University - Rehabilitation Sciences, Hong Kong
| | | | - Shamay Sm Ng
- The Hong Kong Polytechnic University - Rehabilitation Sciences, Hong Kong
| |
Collapse
|
8
|
Bosak N, Branco P, Kuperman P, Buxbaum C, Cohen RM, Fadel S, Zubeidat R, Hadad R, Lawen A, Saadon‐Grosman N, Sterling M, Granovsky Y, Apkarian AV, Yarnitsky D, Kahn I. Brain Connectivity Predicts Chronic Pain in Acute Mild Traumatic Brain Injury. Ann Neurol 2022; 92:819-833. [PMID: 36082761 PMCID: PMC9826527 DOI: 10.1002/ana.26463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Previous studies have established the role of the cortico-mesolimbic and descending pain modulation systems in chronic pain prediction. Mild traumatic brain injury (mTBI) is an acute pain model where chronic pain is prevalent and complicated for prediction. In this study, we set out to study whether functional connectivity (FC) of the nucleus accumbens (NAc) and the periaqueductal gray matter (PAG) is predictive of pain chronification in early-acute mTBI. METHODS To estimate FC, resting-state functional magnetic resonance imaging (fMRI) of 105 participants with mTBI following a motor vehicle collision was acquired within 72 hours post-accident. Participants were classified according to pain ratings provided at 12-months post-collision into chronic pain (head/neck pain ≥30/100, n = 44) and recovery (n = 61) groups, and their FC maps were compared. RESULTS The chronic pain group exhibited reduced negative FC between NAc and a region within the primary motor cortex corresponding with the expected representation of the area of injury. A complementary pattern was also demonstrated between PAG and the primary somatosensory cortex. PAG and NAc also shared increased FC to the rostral anterior cingulate cortex (rACC) within the recovery group. Brain connectivity further shows high classification accuracy (area under the curve [AUC] = .86) for future chronic pain, when combined with an acute pain intensity report. INTERPRETATION FC features obtained shortly after mTBI predict its transition to long-term chronic pain, and may reflect an underlying interaction of injury-related primary sensorimotor cortical areas with the mesolimbic and pain modulation systems. Our findings indicate a potential predictive biomarker and highlight targets for future early preventive interventions. ANN NEUROL 2022;92:819-833.
Collapse
Affiliation(s)
- Noam Bosak
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Paulo Branco
- Department of NeuroscienceNorthwestern University Medical SchoolChicagoIL
| | - Pora Kuperman
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Chen Buxbaum
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Ruth Manor Cohen
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Shiri Fadel
- Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Rabab Zubeidat
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Rafi Hadad
- Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Amir Lawen
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Noam Saadon‐Grosman
- Department of Medical Neurobiology, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Road Traffic Injury RecoveryThe University of QueenslandBrisbaneAustralia
| | - Yelena Granovsky
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | | | - David Yarnitsky
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Itamar Kahn
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
9
|
Khalife S, Francis ST, Schluppeck D, Sánchez-Panchuelo RM, Besle J. Fast Event-Related Mapping of Population Fingertip Tuning Properties in Human Sensorimotor Cortex at 7T. eNeuro 2022; 9:ENEURO.0069-22.2022. [PMID: 36194620 PMCID: PMC9480917 DOI: 10.1523/eneuro.0069-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 12/15/2022] Open
Abstract
fMRI studies that investigate somatotopic tactile representations in the human cortex typically use either block or phase-encoded stimulation designs. Event-related (ER) designs allow for more flexible and unpredictable stimulation sequences than the other methods, but they are less efficient. Here, we compared an efficiency-optimized fast ER design (2.8-s average intertrial interval; ITI) to a conventional slow ER design (8-s average ITI) for mapping voxelwise fingertip tactile tuning properties in the sensorimotor cortex of six participants at 7 Tesla. The fast ER design yielded more reliable responses compared with the slow ER design, but with otherwise similar tuning properties. Concatenating the fast and slow ER data, we demonstrate in each individual brain the existence of two separate somatotopically-organized tactile representations of the fingertips, one in the primary somatosensory cortex (S1) on the postcentral gyrus, and the other shared across the motor and premotor cortices on the precentral gyrus. In both S1 and motor representations, fingertip selectivity decreased progressively, from narrowly-tuned Brodmann area (BA) 3b and BA4a, respectively, toward associative parietal and frontal regions that responded equally to all fingertips, suggesting increasing information integration along these two pathways. In addition, fingertip selectivity in S1 decreased from the cortical representation of the thumb to that of the pinky.
Collapse
Affiliation(s)
- Sarah Khalife
- Department of Psychology, American University of Beirut, Beirut, 11072020, Lebanon
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG72RD, United Kingdom
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Denis Schluppeck
- Visual Neuroscience Group, School of Psychology, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Rosa-Maria Sánchez-Panchuelo
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Julien Besle
- Department of Psychology, American University of Beirut, Beirut, 11072020, Lebanon
| |
Collapse
|
10
|
Wu J, Wang C, Wang L, Wang Y, Yang J, Yan T, Suo D, Wang L, Liu X, Zhang J. Development of a Piezoelectric Actuated Tactile Stimulation Device for Population Receptive Field Mapping in Human Somatosensory Cortex With fMRI. J Magn Reson Imaging 2022; 56:1055-1065. [PMID: 35324031 DOI: 10.1002/jmri.28173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multichannel tactile stimulation devices is need to investigate human finger population receptive field (pRF) characteristics in the primary somatosensory cortex during functional magnetic resonance imaging (fMRI). PURPOSE To accurately characterize right-hand somatosensory representation based on the Bayesian pRF model. STUDY TYPE Prospective. POPULATION A water phantom and six healthy participants (four males, mean 23.8 years old). FIELD STRENGTH/SEQUENCE T1-weighted magnetization-prepared rapid gradient-echo, T2*-weighted echo planar imaging at 3 T. ASSESSMENT The piezoelectric actuated tactile stimulation device consisted of execution unit and control unit. The output performance of the device was measured by a laser displacement sensor. The effect of the device on images' signal-to-noise ratio (SNR) was measured by phantom experiments. The activation representation arrangement order, relative volumes, and receptive field size of the right hand were assessed during the along-digits and cross-digits paradigms. STATISTICAL TESTS The normality of the data was tested by the Shapiro-Wilk method. A paired-sample t test was performed to test pRF characteristics for all digit pairings. The significance level was set to P = 0.05 (false discovery rate [FDR] correct). RESULTS Percussive stimulation provided by the piezoelectric actuated tactile stimulator had a stable displacement (2.64 mm) over a wide range of vibration frequencies (0-30 Hz). The output delay of the device was 1 millisecond. The device did not affect the image's SNR (without the device: SNR = 138.24 ± 7.87, temporal SNR [TSNR] = 440.03 ± 52.08. With the device: SNR = 138.06 ± 8.44, TSNR = 438.52 ± 56.38. PSNR = 0.88, PTSNR = 0.46). Representations of right-hand fingers showed the same arrangement order in both experiments (D1-D5 arranged along the central sulcus). However, the relative volumes of D3 showed significant differences in S1 (P = 0.003). Among four subareas, the relative volumes of D3 were significantly different in area 1 (P = 0.047). DATA CONCLUSION This developed stimulator, through experimental verification, could play a role in pRF mapping exploration. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.,Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Chenyu Wang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Luyao Wang
- School of Life Science, Shanghai University, Shanghai, China
| | - Yutong Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xin Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
11
|
Context dependent differences in working memory related brain activity in heavy cannabis users. Psychopharmacology (Berl) 2022; 239:1373-1385. [PMID: 34448889 PMCID: PMC9110519 DOI: 10.1007/s00213-021-05956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE Compromised cognitive control in cannabis use-tempting situations is thought to play a key role in the development of cannabis use disorders. However, little is known about how exposure to cannabis cues and contexts may influence cognitive control and the underlying neural mechanisms in cannabis users. OBJECTIVES Working memory (WM) is an attention reliant executive function central to cognitive control. In this study, we investigated how distracting cannabis words affected WM load-dependent performance and related brain activity in near-daily cannabis users (N = 36) relative to controls (N = 33). METHODS Brain activity was recorded during a novel N-back flanker WM task with neutral and cannabis flankers added as task-irrelevant distractors. RESULTS On a behavioural level, WM performance did not differ between groups, and the presence of cannabis flankers did not affect performance. However, in cannabis users compared to controls, the presence of cannabis flankers reduced WM load-related activity in multiple regions, including the insula, thalamus, superior parietal lobe and supramarginal gyrus. CONCLUSIONS The group specificity of these effects suggest that cannabis users might differ from controls in the way they process cannabis-related cues and that cannabis cue exposure could interfere with other cognitive processes under cognitively demanding circumstances. Future studies should focus on the role of context in cognitive control-related processes like WM and attention to further elucidate potential cognitive impairments in heavy cannabis users and how these relate to loss of control over drug seeking itself.
Collapse
|
12
|
Willoughby WR, Thoenes K, Bolding M. Somatotopic Arrangement of the Human Primary Somatosensory Cortex Derived From Functional Magnetic Resonance Imaging. Front Neurosci 2021; 14:598482. [PMID: 33488347 PMCID: PMC7817621 DOI: 10.3389/fnins.2020.598482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to estimate neuronal activity in the primary somatosensory cortex of six participants undergoing cutaneous tactile stimulation on skin areas spread across the entire body. Differences between the accepted somatotopic maps derived from Penfield's work and those generated by this fMRI study were sought, including representational transpositions or replications across the cortex. MR-safe pneumatic devices mimicking the action of a Wartenberg wheel supplied touch stimuli in eight areas. Seven were on the left side of the body: foot, lower, and upper leg, trunk beneath ribcage, anterior forearm, middle fingertip, and neck above the collarbone. The eighth area was the glabella. Activation magnitude was estimated as the maximum cross-correlation coefficient at a certain phase shift between ideal time series and measured blood oxygen level dependent (BOLD) time courses on the cortical surface. Maximally correlated clusters associated with each cutaneous area were calculated, and cortical magnification factors were estimated. Activity correlated to lower limb stimulation was observed in the paracentral lobule and superomedial postcentral region. Correlations to upper extremity stimulation were observed in the postcentral area adjacent to the motor hand knob. Activity correlated to trunk, face and neck stimulation was localized in the superomedial one-third of the postcentral region, which differed from Penfield's cortical homunculus.
Collapse
Affiliation(s)
- W. R. Willoughby
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristina Thoenes
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mark Bolding
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|