1
|
Kwon YN, Kim B, Kim JS, Park KS, Seo DY, Kim H, Lee EJ, Lim YM, Ju H, Chung YH, Min JH, Nam TS, Kim S, Sohn E, Shin KJ, Seok JM, Kim S, Bae JS, Lee S, Oh SI, Jung YJ, Park J, Kim SH, Kim KH, Kim HJ, Jung JH, Kim SJ, Kim SW, Jang MJ, Sung JJ, Waters P, Shin HY, Kim SM. Time to Treat First Acute Attack of Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. JAMA Neurol 2024; 81:1073-1084. [PMID: 39226035 PMCID: PMC11372657 DOI: 10.1001/jamaneurol.2024.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Importance A proportion of people with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) have a relapsing disease course and persistent anti-myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-IgG) seropositivity. Few studies have investigated whether treatment of the first MOGAD attack is associated with the long-term disease course and/or MOG-IgG seronegative conversion. Objective To investigate the association of time to treat the first acute MOGAD attack with relapse risk and MOG-IgG serostatus. Design, Setting, and Participants This was a retrospective, nationwide, multicenter cohort study involving 14 secondary or tertiary hospitals in South Korea between November 2009 and August 2023. People with adult-onset MOGAD, who either had a relapse or were followed up for more than 12 months after disease onset and had a detailed medical record of their first attack, were included. Individuals were excluded for adolescent-onset MOGAD or short disease duration. Exposures Patients were categorized based on the time to treat the first acute MOGAD attack: early (<5 days), intermediate (5-14 days), and late (not treated within 14 days). Main Outcomes and Measures A multivariable analysis for clinical and treatment factors associated with relapsing disease course and/or MOG-IgG seronegative conversion. Further subgroup analyses were conducted among those without long-term nonsteroidal immunosuppressant (NSIS) maintenance treatment. Results Among the 315 individuals screened, 75 were excluded. A total of 240 patients (median [IQR] age at onset, 40.4 [28.8-56.1] years; 125 female [52.1%]) with median (IQR) disease duration of 3.07 (1.95-6.15) years were included. A total of 110 of 240 patients (45.8%) relapsed after a median (IQR) of 0.45 (0.18-1.68) years, and 29 of 116 patients (25.0%) experienced a conversion to seronegative MOG-IgG. Both the time to treatment of the first MOGAD attack (late vs early: adjusted hazard ratio [aHR], 2.64; 95% CI, 1.43-4.84; P = .002; intermediate vs early: aHR, 2.02; 95% CI, 1.10-3.74; P = .02) and NSIS maintenance treatment (aHR, 0.24; 95% CI, 0.14-0.42; P < .001) were independently associated with the risk of relapse. In a subgroup without NSIS maintenance, the time to treat of the first MOGAD attack was still associated with higher risk of relapse (late vs early: aHR, 3.51; 95% CI, 1.64-7.50; P = .001; intermediate vs early: aHR, 2.68; 95% CI, 1.23-5.85; P = .01). Lastly, the time to treat of the first MOGAD attack was also associated with MOG-IgG seronegative conversion (early vs late: adjusted odds ratio, 7.04; 95% CI, 1.58-31.41; P = .01), whereas NSIS maintenance treatment was not. Conclusions and Relevance Results of this cohort study suggest that early treatment of the first acute MOGAD attack was associated with a reduction in the proportion of relapsing disease course and an increase in the likelihood of MOG-IgG seronegative conversion. These data suggest that timing of acute phase treatment for the first MOGAD attack can be associated with the long-term prognosis and autoimmune status of patients.
Collapse
Affiliation(s)
- Young Nam Kwon
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Boram Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun-Soon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Kyung Seok Park
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Da-Young Seo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyunjin Ju
- Department of Neurology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Yeon Hak Chung
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sooyoung Kim
- Department of Neurology, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Eunhee Sohn
- Department of Neurology, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae-Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Republic of Korea
| | - Sunyoung Kim
- Department of Neurology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Jong Seok Bae
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sukyoon Lee
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Seong-il Oh
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yu Jin Jung
- Department of Neurology, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ki Hoon Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Republic of Korea
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Republic of Korea
| | - Jae Ho Jung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Joon Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung-jin Jang
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ha Young Shin
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Min Kim
- Biomedical Research Institute, Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Tieck MP, Vasilenko N, Ruschil C, Kowarik MC. Peripheral memory B cells in multiple sclerosis vs. double negative B cells in neuromyelitis optica spectrum disorder: disease driving B cell subsets during CNS inflammation. Front Cell Neurosci 2024; 18:1337339. [PMID: 38385147 PMCID: PMC10879280 DOI: 10.3389/fncel.2024.1337339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
B cells are fundamental players in the pathophysiology of autoimmune diseases of the central nervous system, such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). A deeper understanding of disease-specific B cell functions has led to the differentiation of both diseases and the development of different treatment strategies. While NMOSD is strongly associated with pathogenic anti-AQP4 IgG antibodies and proinflammatory cytokine pathways, no valid autoantibodies have been identified in MS yet, apart from certain antigen targets that require further evaluation. Although both diseases can be effectively treated with B cell depleting therapies, there are distinct differences in the peripheral B cell subsets that influence CNS inflammation. An increased peripheral blood double negative B cells (DN B cells) and plasmablast populations has been demonstrated in NMOSD, but not consistently in MS patients. Furthermore, DN B cells are also elevated in rheumatic diseases and other autoimmune entities such as myasthenia gravis and Guillain-Barré syndrome, providing indirect evidence for a possible involvement of DN B cells in other autoantibody-mediated diseases. In MS, the peripheral memory B cell pool is affected by many treatments, providing indirect evidence for the involvement of memory B cells in MS pathophysiology. Moreover, it must be considered that an important effector function of B cells in MS may be the presentation of antigens to peripheral immune cells, including T cells, since B cells have been shown to be able to recirculate in the periphery after encountering CNS antigens. In conclusion, there are clear differences in the composition of B cell populations in MS and NMOSD and treatment strategies differ, with the exception of broad B cell depletion. This review provides a detailed overview of the role of different B cell subsets in MS and NMOSD and their implications for treatment options. Specifically targeting DN B cells and plasmablasts in NMOSD as opposed to memory B cells in MS may result in more precise B cell therapies for both diseases.
Collapse
Affiliation(s)
| | | | | | - M. C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, and Hertie-Institute for Clinical Brain Research Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Kim HJ, Park JE, Shin W, Seo D, Kim S, Kim H, Noh J, Lee Y, Kim H, Lim YM, Kim H, Lee EJ. Distinct features of B cell receptors in neuromyelitis optica spectrum disorder among CNS inflammatory demyelinating diseases. J Neuroinflammation 2023; 20:225. [PMID: 37794409 PMCID: PMC10548735 DOI: 10.1186/s12974-023-02896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) stands out among CNS inflammatory demyelinating diseases (CIDDs) due to its unique disease characteristics, including severe clinical attacks with extensive lesions and its association with systemic autoimmune diseases. We aimed to investigate whether characteristics of B cell receptors (BCRs) differ between NMOSD and other CIDDs using high-throughput sequencing. METHODS From a prospective cohort, we recruited patients with CIDDs and categorized them based on the presence and type of autoantibodies: NMOSD with anti-aquaporin-4 antibodies, myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) with anti-myelin oligodendrocyte glycoprotein antibodies, double-seronegative demyelinating disease (DSN), and healthy controls (HCs). The BCR features, including isotype class, clonality, somatic hypermutation (SHM), and the third complementarity-determining region (CDR3) length, were analyzed and compared among the different disease groups. RESULTS Blood samples from 33 patients with CIDDs (13 NMOSD, 12 MOGAD, and 8 DSN) and 34 HCs were investigated for BCR sequencing. Patients with NMOSD tended to have more activated BCR features compare to the other disease groups. They showed a lower proportion of unswitched isotypes (IgM and IgD) and a higher proportion of switched isotypes (IgG), increased clonality of BCRs, higher rates of SHM, and shorter lengths of CDR3. Notably, advanced age was identified as a clinical factor associated with these activated BCR features, including increased levels of clonality and SHM rates in the NMOSD group. Conversely, no such clinical factors were found to be associated with activated BCR features in the other CIDD groups. CONCLUSIONS NMOSD patients, among those with CIDDs, displayed the most pronounced B cell activation, characterized by higher levels of isotype class switching, clonality, SHM rates, and shorter CDR3 lengths. These findings suggest that B cell-mediated humoral immune responses and characteristics in NMOSD patients are distinct from those observed in the other CIDDs, including MOGAD. Age was identified as a clinical factor associated with BCR activation specifically in NMOSD, implying the significance of persistent B cell activation attributed to anti-aquaporin-4 antibodies, even in the absence of clinical relapses throughout an individual's lifetime.
Collapse
Affiliation(s)
- Hyo Jae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wangyong Shin
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dayoung Seo
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seungmi Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunji Kim
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinsung Noh
- Bio-MAX Institute, Seoul National University, Seoul, South Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, Ulsan University of Medicine, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, Ulsan University of Medicine, Seoul, South Korea
| | - Hyori Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.
| | - Eun-Jae Lee
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.
- Department of Neurology, Asan Medical Center, Ulsan University of Medicine, Seoul, South Korea.
| |
Collapse
|
5
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
Affiliation(s)
- Laurens Bogers
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Kirsten L Kuiper
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands; MS Center ErasMS, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands; Netherlands Institute for Neuroscience, Neuroimmunology research group, Amsterdam 1105 BA, The Netherlands
| | - Jasper Rip
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Marvin M van Luijn
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
6
|
Zografou C, Vakrakou AG, Stathopoulos P. Short- and Long-Lived Autoantibody-Secreting Cells in Autoimmune Neurological Disorders. Front Immunol 2021; 12:686466. [PMID: 34220839 PMCID: PMC8248361 DOI: 10.3389/fimmu.2021.686466] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts (SLPBs) are produced by a primary extrafollicular response, followed by the generation of memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur parallel to IgE, in response to chronic stimulation by allergens and helminths. Although IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding and cause a wide range of autoimmune disorders including neurological autoimmunity. In myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase (MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab commonly leads to long-term remission and a marked reduction in autoantibody titer, pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic inflammatory demyelinating polyneuropathy and autoimmune encephalitis with autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-mediated neurological disorders can also respond well to rituximab induction therapy in combination with an autoantibody titer drop, remission tends to be less long-lasting and cases where titers are refractory tend to occur more often than in IgG4 autoimmunity. Moreover, presence of GC-like structures in the thymus of myasthenic patients with predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to generate LLPCs. Here, we review available information on the short-and long-lived nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and highlight common mechanisms as well as differences, all of which can inform therapeutic strategies and personalized medical approaches.
Collapse
Affiliation(s)
- C Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - A G Vakrakou
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - P Stathopoulos
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
7
|
Janssen M, Rijvers L, Koetzier SC, Wierenga-Wolf AF, Melief MJ, van Langelaar J, Runia TF, de Groot CJM, Neuteboom R, Smolders J, van Luijn MM. Pregnancy-induced effects on memory B-cell development in multiple sclerosis. Sci Rep 2021; 11:12126. [PMID: 34108575 PMCID: PMC8190290 DOI: 10.1038/s41598-021-91655-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/01/2022] Open
Abstract
In MS, pathogenic memory B cells infiltrate the brain and develop into antibody-secreting cells. Chemokine receptors not only define their brain-infiltrating capacity, but also assist in their maturation in germinal centers. How this corresponds to pregnancy, as a naturally occurring modifier of MS, is underexplored. Here, we aimed to study the impact of pregnancy on both ex vivo and in vitro B-cell differentiation in MS. The composition and outgrowth of peripheral B cells were compared between 19 MS pregnant patients and 12 healthy controls during the third trimester of pregnancy (low relapse risk) and postpartum (high relapse risk). Transitional, and not naive mature, B-cell frequencies were found to drop in the third trimester, which was most prominent in patients who experienced a pre-pregnancy relapse. Early after delivery, these frequencies raised again, while memory B -cell frequencies modestly declined. CXCR4 was downregulated and CXCR5, CXCR3 and CCR6 were upregulated on postpartum memory B cells, implying enhanced recruitment into germinal center light zones for interaction with T follicular helper (TFH) cells. Postpartum memory B cells of MS patients expressed higher levels of CCR6 and preferentially developed into plasma cells under TFH-like in vitro conditions. These findings imply that memory B- cell differentiation contributes to postpartum relapse risk in MS.
Collapse
Affiliation(s)
- Malou Janssen
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Liza Rijvers
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Steven C Koetzier
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Marie-José Melief
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Tessel F Runia
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Christianne J M de Groot
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, VU Medical Center, Amsterdam, The Netherlands
| | - Rinze Neuteboom
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Joost Smolders
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands. .,MS Center ErasMS, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Toll-Like Receptor Homolog CD180 Expression Is Diminished on Natural Autoantibody-Producing B Cells of Patients with Autoimmune CNS Disorders. J Immunol Res 2021; 2021:9953317. [PMID: 34124274 PMCID: PMC8169253 DOI: 10.1155/2021/9953317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose Decreased expression of TLR homolog CD180 in peripheral blood B cells and its potential role in antibody production have been described in autoimmune diseases. Effectiveness of anti-CD20 therapy in neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) strengthens the role of B cells in the pathogenesis. Therefore, we aimed to investigate the CD180 expression of peripheral blood B cell subsets in NMOSD and MS patients and analyze the levels of natural anti-citrate synthase (CS) IgG autoantibodies and IgG antibodies induced by bacterial infections reported to play a role in the pathogenesis of NMOSD or MS. Methods We analyzed the distribution and CD180 expression of peripheral blood B cell subsets, defined by CD19/CD27/IgD staining, and measured anti-CS IgM/G natural autoantibody and antibacterial IgG serum levels in NMOSD, RRMS, and healthy controls (HC). Results We found decreased naïve and increased memory B cells in NMOSD compared to MS. Among the investigated four B cell subsets, CD180 expression was exclusively decreased in CD19+CD27+IgD+ nonswitched (NS) memory B cells in both NMOSD and MS compared to HC. Furthermore, the anti-CS IgM natural autoantibody serum level was lower in both NMOSD and MS. In addition, we found a tendency of higher anti-CS IgG natural autoantibody levels only in anti-Chlamydia IgG antibody-positive NMOSD and MS patients. Conclusions Our results suggest that reduced CD180 expression of NS B cells could contribute to the deficient natural IgM autoantibody production in NMOSD and MS, whereas natural IgG autoantibody levels show an association with antibacterial antibodies.
Collapse
|