1
|
Jensen NM, Fu Y, Betzer C, Li H, Elfarrash S, Shaib AH, Krah D, Vitic Z, Reimer L, Gram H, Buchman V, Denham M, Rizzoli SO, Halliday GM, Jensen PH. MJF-14 proximity ligation assay detects early non-inclusion alpha-synuclein pathology with enhanced specificity and sensitivity. NPJ Parkinsons Dis 2024; 10:227. [PMID: 39613827 DOI: 10.1038/s41531-024-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
α-Synuclein proximity ligation assay (PLA) has proved a sensitive technique for detection of non-Lewy body α-synuclein aggregate pathology. Here, we describe the MJF-14 PLA, a new PLA towards aggregated α-synuclein with unprecedented specificity, using the aggregate-selective α-synuclein antibody MJFR-14-6-4-2 (hereafter MJF-14). Signal in the assay correlates with α-synuclein aggregation in cell culture and human neurons, induced by α-synuclein overexpression or pre-formed fibrils. Co-labelling of MJF-14 PLA and pS129-α-synuclein immunofluorescence in post-mortem cases of dementia with Lewy bodies shows that while the MJF-14 PLA reveals extensive non-inclusion pathology, it is not sensitive towards pS129-α-synuclein-positive Lewy bodies. In Parkinson's disease brain, direct comparison of PLA and immunohistochemistry with the MJF-14 antibody shows widespread α-synuclein pathology preceding the formation of conventional Lewy pathology. In conclusion, we introduce an improved α-synuclein aggregate PLA to uncover abundant non-inclusion pathology, which deserves future validation with brain bank resources and in different synucleinopathies.
Collapse
Affiliation(s)
- Nanna Møller Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - YuHong Fu
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Cristine Betzer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Hongyun Li
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Sara Elfarrash
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ali H Shaib
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Donatus Krah
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Zagorka Vitic
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lasse Reimer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Hjalte Gram
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Mark Denham
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Neuroscience Research Australia & Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Poul Henning Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus C, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
2
|
Soares NM, da Silva PHR, Pereira GM, Leoni RF, Rieder CRDM, Alva TAP. Diffusion tensor metrics, motor and non-motor symptoms in de novo Parkinson's disease. Neuroradiology 2024; 66:1955-1966. [PMID: 39190159 DOI: 10.1007/s00234-024-03452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurons' degeneration of the substantia nigra, presenting with motor and non-motor symptoms. We hypothesized that altered diffusion metrics are associated with clinical symptoms in de novo PD patients. METHODS Fractional Anisotropy (FA) and Mean (MD), Axial (AD), and Radial Diffusivity (RD) were assessed in 55 de novo PD patients (58.62 ± 9.85 years, 37 men) and 55 age-matched healthy controls (59.92 ± 11.25 years, 34 men). Diffusion-weighted images and clinical variables were collected from the Parkinson's Progression Markers Initiative study. Tract-based spatial statistics were used to identify white matter (WM) changes, and fiber tracts were localized using the JHU-WM tractography atlas. Motor and non-motor symptoms were evaluated in patients. RESULTS We observed higher FA values and lower RD values in patients than controls in various fiber tracts (p-TFCE < 0.05). No significant MD or AD difference was observed between groups. Diffusion metrics of several regions significantly correlated with non-motor (state and trait anxiety and daytime sleepiness) and axial motor symptoms in the de novo PD group. No correlations were observed between diffusion metrics and other clinical symptoms evaluated. CONCLUSION Our findings suggest microstructural changes in de novo PD fiber tracts; however, limited associations with clinical symptoms reveal the complexity of PD pathology. They may contribute to understanding the neurobiological changes underlying PD and have implications for developing targeted interventions. However, further longitudinal research with larger cohorts and consideration of confounding factors are necessary to elucidate the underlying mechanisms of these diffusion alterations in de novo PD.
Collapse
Affiliation(s)
- Nayron Medeiros Soares
- Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil.
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil.
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, RS, Brazil.
| | - Pedro Henrique Rodrigues da Silva
- Serviço Interdisciplinar de Neuromodulação do Instituto de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, USP, São Paulo, SP, Brazil
| | - Gabriela Magalhães Pereira
- Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, RS, Brazil
| | - Renata Ferranti Leoni
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, USP, Ribeirao Preto, SP, Brazil
| | - Carlos Roberto de Mello Rieder
- Departamento de Clínica Médica, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil
- Serviço de Neurologia, Irmandade Santa Casa de Misericórdia de Porto Alegre, ISCMPA, Porto Alegre, RS, Brazil
| | - Thatiane Alves Pianoschi Alva
- Departamento de Ciências Exatas e Sociais Aplicadas, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Ahn JH, Kim BS, Han KD, Choi HL, Jung W, Cho JW, Youn J, Shin DW. Risk of Parkinson's disease in spinal cord injury: a nationwide cohort study in South Korea. Sci Rep 2024; 14:23016. [PMID: 39362952 PMCID: PMC11450175 DOI: 10.1038/s41598-024-74103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Despite the association between spinal cord injury (SCI) and various neurological diseases, the risk of Parkinson's disease (PD) in SCI is not elucidated yet. Especially, the role of SCI severity and injury level in the risk of PD development is not investigated. Based on the nation-wide cohort data the Korean National Health Insurance Service between 2010 and 2018, we investigated the incidence of PD in 7,182 patients with SCI compared with 24,844 age- and sex-matched controls. Adjusted hazard ratio and 95% confidence interval (CI) were calculated using Cox proportional hazards regression. We compared the risk of PD based on the degree of disability (without disability, mild, severe) and SCI level (cervical, thoracic, and lumbar). During the mean follow-up duration of 4.31 years, patients with SCI had a higher risk of PD compared with matched controls. The PD risk was greater among patients with SCI with disability than in those without disability, especially those with mild disability. Additionally, cervical-level injury was associated with the highest risk in patients with SCI without disability, while thoracic-level injury was associated with the highest risk in those with disability. Our study found patients with SCI have increased risk of PD, particularly those with disability and thoracic-level injuries.
Collapse
Affiliation(s)
- Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Neuroscience Centre, Samsung Medical Centre, Seoul, 06351, South Korea
| | - Bong-Seong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, 06978, South Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, 06978, South Korea
| | - Hea Lim Choi
- Department of Family Medicine/Executive Healthcare Clinic, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, South Korea
| | - Wonyoung Jung
- Department of Family Medicine, Kangdong Sacred Heart Hospital, 150, Seongan-ro, Gangdong- gu, Seoul, 05355, South Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Neuroscience Centre, Samsung Medical Centre, Seoul, 06351, South Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Neuroscience Centre, Samsung Medical Centre, Seoul, 06351, South Korea.
| | - Dong Wook Shin
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, South Korea.
- Department of Family Medicine and Supportive Care Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, 81 Irwon-rong, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
4
|
Hong JP, Kwon H, Park E, Lee SU, Lee CN, Kim BJ, Kim JS, Park KW. The semicircular canal function is preserved with little impact on falls in patients with mild Parkinson's disease. Parkinsonism Relat Disord 2024; 118:105933. [PMID: 38007917 DOI: 10.1016/j.parkreldis.2023.105933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Postural instability is a cardinal symptom of Parkinson's disease (PD), which suggests the vestibular system may be affected in PD. This study aimed to determine whether vestibular dysfunction is associated with the risk of falls in PD. METHODS We prospectively recruited patients with de-novo PD at a tertiary medical center between December 2019 and March 2023. During initial assessment, each patient was queried about falls within the preceding year. All patients underwent evaluation of video head-impulse tests (video-HITs), motion analysis, mini-mental state examination (MMSE), and Montreal Cognitive Assessment (MOCA). We determined whether head impulse gain of the vestibulo-ocular reflex (VOR) was associated with clinical severity of PD or risk of falls. RESULTS Overall, 133 patients (mean age ± SD = 68 ± 10, 59 men) were recruited. The median Movement Disorder Society-Unified Parkinson's Disease Rating Scale motor part (MDS-UPDRS-III) was 23 (interquartile range = 16-31), and 81 patients (61 %) scored 2 or less on the Hoehn and Yahr scale. Fallers were older (p = 0.001), had longer disease duration (p = 0.001), slower gait velocity (p = 0.009), higher MDS-UPDRS-III (p < 0.001) and H&Y scale (p < 0.001), lower MMSE (p = 0.018) and MOCA scores (p = 0.001) than non-fallers. Multiple logistic regression showed that MDS-UPDRS-III had a positive association with falling (p = 0.004). Falling was not associated with VOR gain (p = 0.405). The VOR gain for each semicircular canal showed no correlation with the MDS-UPDRS-III or disease duration. CONCLUSIONS The semicircular canal function, as determined by video-HITs, is relatively spared and has little effect on the risk of falls in patients with mild-to-moderate PD.
Collapse
Affiliation(s)
- Jun-Pyo Hong
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| | - Hanim Kwon
- Department of Neurology, Korea University Ansan Hospital, Ansan, South Korea
| | - Euyhyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea; Neurotology and Neuro-ophthalmology Laboratory, Korea University Anam Hospital, Seoul, South Korea
| | - Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, Seoul, South Korea; Neurotology and Neuro-ophthalmology Laboratory, Korea University Anam Hospital, Seoul, South Korea.
| | - Chan-Nyoung Lee
- Department of Neurology, Korea University Medical Center, Seoul, South Korea.
| | - Byung-Jo Kim
- Department of Neurology, Korea University Medical Center, Seoul, South Korea; BK21 FOUR Program in Learning Health Systems, Korea University, Seoul, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea; Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kun-Woo Park
- Department of Neurology, Korea University Medical Center, Seoul, South Korea
| |
Collapse
|
5
|
Wang X, Hu W, Qu L, Wang J, Wu A, Lo HH, Ng JPL, Tang Y, Yun X, Wu J, Wong VKW, Chung SK, Wang L, Luo W, Ji X, Law BYK. Tricin promoted ATG-7 dependent autophagic degradation of α-synuclein and dopamine release for improving cognitive and motor deficits in Parkinson's disease. Pharmacol Res 2023; 196:106874. [PMID: 37586619 DOI: 10.1016/j.phrs.2023.106874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Tricin, a natural nontoxic flavonoid distributed in grasses and euphorbia plants, has been reported to scavenge free radicals, possess anti-inflammatory and antioxidative effects. However, its autophagic effect on Parkinson's disease (PD) has not been elucidated. By adopting cellular and C. elegans models of PD, the autophagic effect of tricin was identified based on the level of autophagy markers (LC3-II and p62). Besides, the pharmacological effects on neurotransmitters (dopamine), inflammatory cytokines (IFN γ, TNFα, MCP-1, IL-10, IL-6 and IL-17A), histology (hematoxylin & eosin and Nissl staining) and behavioural pathology (open-field test, hindlimb clasping, Y-maze, Morris water-maze and nest building test) were also confirmed in the A53T-α-synuclein transgenic PD mouse model. Further experiments demonstrated that tricin induced autophagic flux and lowered the level of α-synuclein through AMPK-p70s6K- and ATG7-dependent mechanism. Compared to the existing clinical PD drugs, tricin mitigated pathogenesis and symptoms of PD with no observable side effects. In summary, tricin is proposed as a potential adjuvant remedy or nutraceutical for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Xingxia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Hu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jian Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jerome P L Ng
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Yong Tang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaoyun Yun
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jianhui Wu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Linna Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Weidan Luo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China.
| |
Collapse
|
6
|
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022; 11:cells11132023. [PMID: 35805109 PMCID: PMC9265397 DOI: 10.3390/cells11132023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer’s disease (AD) and Parkinson’s disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron–glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.
Collapse
|
7
|
Chavarría C, Ivagnes R, Souza JM. Extracellular Alpha-Synuclein: Mechanisms for Glial Cell Internalization and Activation. Biomolecules 2022; 12:655. [PMID: 35625583 PMCID: PMC9138387 DOI: 10.3390/biom12050655] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein composed of 140 amino acids and belongs to the group of intrinsically disordered proteins. It is a soluble protein that is highly expressed in neurons and expressed at low levels in glial cells. The monomeric protein aggregation process induces the formation of oligomeric intermediates and proceeds towards fibrillar species. These α-syn conformational species have been detected in the extracellular space and mediate consequences on surrounding neurons and glial cells. In particular, higher-ordered α-syn aggregates are involved in microglial and oligodendrocyte activation, as well as in the induction of astrogliosis. These phenomena lead to mitochondrial dysfunction, reactive oxygen and nitrogen species formation, and the induction of an inflammatory response, associated with neuronal cell death. Several receptors participate in cell activation and/or in the uptake of α-syn, which can vary depending on the α-syn aggregated state and cell types. The receptors involved in this process are of outstanding relevance because they may constitute potential therapeutic targets for the treatment of PD and related synucleinopathies. This review article focuses on the mechanism associated with extracellular α-syn uptake in glial cells and the consequent glial cell activation that contributes to the neuronal death associated with synucleinopathies.
Collapse
Affiliation(s)
| | | | - José M. Souza
- Departamento de Bioquímica, Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, 11400 Montevideo, Uruguay; (C.C.); (R.I.)
| |
Collapse
|
8
|
Macdonald JA, Chen JL, Masuda-Suzukake M, Schweighauser M, Jaunmuktane Z, Warner T, Holton JL, Grossman A, Berks R, Lavenir I, Goedert M. Assembly of α-synuclein and neurodegeneration in the central nervous system of heterozygous M83 mice following the peripheral administration of α-synuclein seeds. Acta Neuropathol Commun 2021; 9:189. [PMID: 34819144 PMCID: PMC8611835 DOI: 10.1186/s40478-021-01291-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Peripheral administration (oral, intranasal, intraperitoneal, intravenous) of assembled A53T α-synuclein induced synucleinopathy in heterozygous mice transgenic for human mutant A53T α-synuclein (line M83). The same was the case when cerebellar extracts from a case of multiple system atrophy with type II α-synuclein filaments were administered intraperitoneally, intravenously or intramuscularly. We observed abundant immunoreactivity for pS129 α-synuclein in nerve cells and severe motor impairment, resulting in hindlimb paralysis and shortened lifespan. Filaments immunoreactive for pS129 α-synuclein were in evidence. A 70% loss of motor neurons was present five months after an intraperitoneal injection of assembled A53T α-synuclein or cerebellar extract with type II α-synuclein filaments from an individual with a neuropathologically confirmed diagnosis of multiple system atrophy. Microglial cells changed from a predominantly ramified to a dystrophic appearance. Taken together, these findings establish a close relationship between the formation of α-synuclein inclusions in nerve cells and neurodegeneration, accompanied by a shift in microglial cell morphology. Propagation of α-synuclein inclusions depended on the characteristics of both seeds and transgenically expressed protein.
Collapse
Affiliation(s)
- Jennifer A Macdonald
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - John L Chen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - Manuel Schweighauser
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Thomas Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | | | - Richard Berks
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Isabelle Lavenir
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N. The Prion-Like Spreading of Alpha-Synuclein in Parkinson's Disease: Update on Models and Hypotheses. Int J Mol Sci 2021; 22:8338. [PMID: 34361100 PMCID: PMC8347623 DOI: 10.3390/ijms22158338] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson's disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.
Collapse
Affiliation(s)
- Asad Jan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nádia Pereira Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Christian Bjerggaard Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| |
Collapse
|