1
|
Yong CH, Trick S, Tylinski Sant'Ana T, Colantonio A, Mollayeva T. Sex differences in work-related traumatic brain injury: a concurrent mixed methods study employing the person-environment-occupation model. Brain Inj 2025; 39:211-220. [PMID: 39514244 DOI: 10.1080/02699052.2024.2419948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/31/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Work-related traumatic brain injury (wrTBI) is considered a critical injury that can be prevented. Few studies have integrated clinical data and workers' injury narratives to inform sex-specific wrTBI prevention. OBJECTIVE To examine sex differences in pre-injury factors and provide recommendations for primary prevention of wrTBI. METHODS Concurrent mixed methods study. The Person-Environment-Occupation (PEO) model served as a theoretical framework for qualitative and quantitative data analyses. RESULTS The sample consisted of 93 workers (51% female, 67% aged over 40) with wrTBI sustained as a result of being struck by/against an object (SBA, 46%), falls (30%), motor vehicle accident (13%), and assault (11%). Qualitative analysis of injury events revealed distinct patterns between male and female workers in the nature and physical/social load of occupational activities performed at the time of injury. Quantitative analysis enriched interpretation of observed sex differences across PEO factors. New insights emerged by stratifying SBA injury cases, revealing sex differences in Environment- and Occupation-related factors unique to workers struck by an object. IMPLICATIONS Sex- and cause-specific analysis of injury events is essential for surveillance and prevention of wrTBI. Addressing fitness for duty, supervisor-worker relationships, and industry-specific hazards in prevention strategies is essential to ensure workplace safety.
Collapse
Affiliation(s)
- Chung Hyun Yong
- Department of Occupational Sciences & Occupational Therapy, Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Canada
| | - Sarah Trick
- Department of Occupational Sciences & Occupational Therapy, Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Canada
| | - Thaisa Tylinski Sant'Ana
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Canada
| | - Angela Colantonio
- Department of Occupational Sciences & Occupational Therapy, Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Tatyana Mollayeva
- Department of Occupational Sciences & Occupational Therapy, Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Acquired Brain Injury Research Lab, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Trinity College Institute of Neuroscience, Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Kapapa T, Wernheimer V, Hoffmann A, Merz T, Zink F, Wolfschmitt EM, McCook O, Vogt J, Wepler M, Messerer DAC, Hartmann C, Scheuerle A, Mathieu R, Mayer S, Gröger M, Denoix N, Clazia E, Radermacher P, Röhrer S, Datzmann T. Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma. Cells 2024; 14:17. [PMID: 39791718 PMCID: PMC11720468 DOI: 10.3390/cells14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death. Because of the individual nature of the trauma (brain, circumstances and forces), humans experience individual TBIs. This makes it difficult to generalise therapies. Clinical management issues such as whether intracranial pressure (ICP), cerebral perfusion pressure (CPP) or decompressive craniectomy improve patient outcome remain partly unanswered. Experimental drug approaches for the treatment of secondary brain injury (SBI) have not found clinical application. The complex, cellular and molecular pathways of SBI remain incompletely understood, and there are insufficient experimental (animal) models that reflect the pathophysiology of human TBI to develop translational therapeutic approaches. Therefore, we investigated different injury patterns after acute subdural hematoma (ASDH) as TBI in a post-hoc approach to assess the impact on SBI in a long-term, human-sized porcine TBI animal model. Post-mortem brain tissue analysis, after ASDH, bilateral ICP, CPP, cerebral oxygenation and temperature monitoring, and biomarker analysis were performed. Extracerebral, intraparenchymal-extraventricular and intraventricular blood, combined with brainstem and basal ganglia injury, influenced the experiment and its outcome. Basal ganglia injury affects the duration of the experiment. Recognition of these different injury patterns is important for translational interpretation of results in this animal model of SBI after TBI.
Collapse
Affiliation(s)
- Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Vanida Wernheimer
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Andrea Hoffmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Tamara Merz
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Fabia Zink
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Oscar McCook
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Josef Vogt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Martin Wepler
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Claire Hartmann
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Angelika Scheuerle
- Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - René Mathieu
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Michael Gröger
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Nicole Denoix
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Enrico Clazia
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Stefan Röhrer
- Department of Neurosurgery, Ostalb-Hospital Aalen, Im Kälblesrain 1, 73430 Aalen, Germany
| | - Thomas Datzmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
3
|
Wofford KL, Browne KD, Loane DJ, Meaney DF, Cullen DK. Peripheral immune cell dysregulation following diffuse traumatic brain injury in pigs. J Neuroinflammation 2024; 21:324. [PMID: 39696519 DOI: 10.1186/s12974-024-03317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Traumatic brain injury (TBI) is a global health problem affecting millions of individuals annually, potentially resulting in persistent neuropathology, chronic neurological deficits, and death. However, TBI not only affects neural tissue, but also affects the peripheral immune system's homeostasis and physiology. TBI disrupts the balanced signaling between the brain and the peripheral organs, resulting in immunodysregulation and increasing infection susceptibility. Indeed, secondary infections following TBI worsen neurological outcomes and are a major source of mortality and morbidity. Despite the compelling link between the damaged brain and peripheral immune functionality, little is known about how injury severity affects the peripheral immune system in closed-head diffuse TBI, the most common clinical presentation including all concussions. Therefore, we characterized peripheral blood mononuclear cells (PBMCs) and plasma changes over time and across injury severity using an established large-animal TBI model of closed-head, non-impact diffuse rotational acceleration in pigs. Across all timepoints and injury levels, we did not detect any changes to plasma cytokine concentrations. However, changes to the PBMCs were detectable and much more robust. We observed the concentration and physiology of circulating PBMCs changed in an injury severity-dependent manner, with most cellular changes occurring within the first 10 days following a high rotational velocity injury. Here, we report changes in the concentrations of myeloid and T cells, changes in PBMC composition, and changes in phagocytic clearance over time. Together, these data suggest that following a diffuse brain injury in a clinically relevant large-animal TBI model, the immune system exhibits perturbations that are detectable into the subacute timeframe. These findings invite future investigations into therapeutic interventions targeting peripheral immunity and the potential for peripheral blood cellular characterization as a diagnostic tool.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA.
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Arena JD, Smith DH, Diaz Arrastia R, Cullen DK, Xiao R, Fan J, Harris DC, Lynch CE, Johnson VE. The neuropathological basis of elevated serum neurofilament light following experimental concussion. Acta Neuropathol Commun 2024; 12:189. [PMID: 39633506 PMCID: PMC11619522 DOI: 10.1186/s40478-024-01883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is a substantial health problem globally, with up to 15% of patients experiencing persisting symptoms that can significantly impact quality of life. Currently, the diagnosis of mTBI relies on clinical presentation with ancillary neuroimaging to exclude more severe forms of injury. However, identifying patients at risk for a poor outcome or protracted recovery is challenging, in part due to the lack of early objective tests that reflect the relevant underlying pathology. While the pathophysiology of mTBI is poorly understood, axonal damage caused by rotational forces is now recognized as an important consequence of injury. Moreover, serum measurement of the neurofilament light (NfL) protein has emerged as a potentially promising biomarker of injury. Understanding the pathological processes that determine serum NfL dynamics over time, and the ability of NfL to reflect underlying pathology will be critical for future clinical research aimed at reducing the burden of disability after mild TBI. Using a gyrencephalic model of head rotational acceleration scaled to human concussion, we demonstrate significant elevations in serum NfL, with a peak at 3 days post-injury. Moreover, increased serum NfL was detectable out to 2 weeks post-injury, with some evidence it follows a biphasic course. Subsequent quantitative histological examinations demonstrate that axonal pathology, including in the absence of neuronal somatic degeneration, was the likely source of elevated serum NfL. However, the extent of axonal pathology quantified via multiple markers did not correlate strongly with the extent of serum NfL. Interestingly, the extent of blood-brain barrier (BBB) permeability offered more robust correlations with serum NfL measured at multiple time points, suggesting BBB disruption is an important determinant of serum biomarker dynamics after mTBI. These data provide novel insights to the temporal course and pathological basis of serum NfL measurements that inform its utility as a biomarker in mTBI.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Diaz Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rui Xiao
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiaxin Fan
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle C Harris
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cillian E Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Song H, Tomasevich A, Paolini A, Browne KD, Wofford KL, Kelley B, Kantemneni E, Kennedy J, Qiu Y, Schneider ALC, Dolle JP, Cullen DK, Smith DH. Sex differences in the extent of acute axonal pathologies after experimental concussion. Acta Neuropathol 2024; 147:79. [PMID: 38705966 PMCID: PMC11070329 DOI: 10.1007/s00401-024-02735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.
Collapse
Affiliation(s)
- Hailong Song
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Alexandra Tomasevich
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrew Paolini
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Kathryn L Wofford
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Brian Kelley
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Eashwar Kantemneni
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Justin Kennedy
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Yue Qiu
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - Andrea L C Schneider
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Pierre Dolle
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Vintimilla A, Hooper T, James CR, Lu HC, Natesan K, Kapila J, Sizer P. The Effect of Exercise-Induced Central Fatigue on Cervical Spine Joint Position Error, Strength, and Endurance. Int J Sports Phys Ther 2024; 19:290-300. [PMID: 38439782 PMCID: PMC10909308 DOI: 10.26603/001c.92703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/06/2024] [Indexed: 03/06/2024] Open
Abstract
Background Fatigue is common in sports, impairing performance and increasing injury risk, yet little is known regarding fatigue and concussion. Impaired neck neuromuscular function may contribute to concussion at baseline, where central fatigue may further impair neck function resulting in increased concussion risk. These effects may be magnified in athletes with a history of concussion. Purpose To determine the effect of exercise induced central fatigue on neck joint position error, strength, and endurance in healthy subjects and those with a history of concussion. The investigators hypothesized that EICF would have a negative effect on all variables. Study Design Healthy subjects were examined using a single factor, within-subjects repeated measures design. Concussion history subjects were examined using a single-subject design. Methods Nineteen healthy subjects and five subjects with a history of concussion were recruited for the study. Cervical joint position error, muscle strength, and neck flexor endurance were tested before and after exercise induced fatigue. Results There was a significant increase in constant (p = 0.0027) and absolute joint position error (JPE) (p < 0.001); decrease in neck flexor endurance (p < 0.001); and decrease neck strength into cervical flexion (p = 0.01) in healthy subjects following fatigue. Among concussion history subjects, five demonstrated a significant increase in absolute and constant JPE (p < 0.05); four demonstrated a significant decrease in neck flexor endurance (p < 0.05); one in neck flexion muscle strength (p < 0.05); and three in neck extension and rotation muscle strength (p < 0.05) following fatigue. Conclusions Cervical neuromuscular function deteriorated following fatigue in healthy subjects. Resulting impairments may affect force alterations in cervical control, potentially increasing concussion risk. Concussion history subjects descriptively demonstrated similar results, however further research should examine formal comparisons involving subjects with and without concussion history. Level of Evidence 3b.
Collapse
Affiliation(s)
| | - Troy Hooper
- Rehabilitation Sciences Texas Tech University Health Sciences Center
| | - C Roger James
- Rehabilitation Sciences Texas Tech University Health Sciences Center
| | - Ho Cheng Lu
- Rehabilitation Sciences Texas Tech University Health Sciences Center
| | - Karthick Natesan
- Rehabilitation Sciences Texas Tech University Health Sciences Center
| | - Jeegisha Kapila
- Rehabilitation Sciences Texas Tech University Health Sciences Center
| | - Phil Sizer
- Rehabilitation Sciences Texas Tech University Health Sciences Center
| |
Collapse
|
7
|
O’Donnell JC, Petrov D. Porcine Models of Neurotrauma and Neurological Disorders. Biomedicines 2024; 12:245. [PMID: 38275416 PMCID: PMC10813658 DOI: 10.3390/biomedicines12010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
The translation of therapeutics from lab to clinic has a dismal record in the fields of neurotrauma and neurological disorders [...].
Collapse
Affiliation(s)
- John C. O’Donnell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Goutnik M, Goeckeritz J, Sabetta Z, Curry T, Willman M, Willman J, Thomas TC, Lucke-Wold B. Neurotrauma Prevention Review: Improving Helmet Design and Implementation. BIOMECHANICS (BASEL, SWITZERLAND) 2022; 2:500-512. [PMID: 36185779 PMCID: PMC9521172 DOI: 10.3390/biomechanics2040039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurotrauma continues to contribute to significant mortality and disability. The need for better protective equipment is apparent. This review focuses on improved helmet design and the necessity for continued research. We start by highlighting current innovations in helmet design for sport and subsequent utilization in the lay community for construction. The current standards by sport and organization are summarized. We then address current standards within the military environment. The pathophysiology is discussed with emphasis on how helmets provide protection. As innovative designs emerge, protection against secondary injury becomes apparent. Much research is needed, but this focused paper is intended to serve as a catalyst for improvement in helmet design and implementation to provide more efficient and reliable neuroprotection across broad arenas.
Collapse
Affiliation(s)
- Michael Goutnik
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| | - Joel Goeckeritz
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| | - Zackary Sabetta
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, AZ 85721, USA
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tala Curry
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, AZ 85721, USA
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Matthew Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| | - Jonathan Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, AZ 85721, USA
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Phoenix VA Healthcare System, Phoenix, AZ 85012, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|