1
|
Vidovic M, Lapp HS, Weber C, Plitzko L, Seifert M, Steinacker P, Otto M, Hermann A, Günther R. Comparative analysis of neurofilaments and biomarkers of muscular damage in amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae288. [PMID: 39239150 PMCID: PMC11375854 DOI: 10.1093/braincomms/fcae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
Diagnosis of the fatal neurodegenerative disease amyotrophic lateral sclerosis is challenging. Neurofilaments, indicative of neuronal damage, along with creatine kinase, creatinine, myoglobin, and troponin T, representing muscular damage, have been identified as promising fluid biomarkers. This study aims to comprehensively assess and compare their diagnostic and prognostic potential in a 'real-world' cohort of patients with amyotrophic lateral sclerosis. About 77 patients with amyotrophic lateral sclerosis and its clinical variants, and 26 age- and sex-matched controls with various neuromuscular and neurodegenerative diseases, were retrospectively included in this monocentric, cross-sectional study. Neurofilaments in cerebrospinal fluid and biomarkers of muscular damage in serum were measured and correlated with demographic features, motor function, survival time, clinical phenotypes, and the extent of upper and lower motor neuron involvement. Neurofilament, myoglobin, and troponin T concentrations were higher in patients with amyotrophic lateral sclerosis compared to disease controls. Higher neurofilament levels correlated with lower motor function and faster disease progression rate, while higher creatine kinase and creatinine concentrations were linked to preserved motor function. In contrast, troponin T elevation indicated poorer fine and gross motor functions. Increased neurofilament levels were associated with shorter survival, whereas biomarkers of muscular damage lacked survival correlation. Neurofilament concentrations were higher in classical amyotrophic lateral sclerosis than in progressive muscular atrophy, while myoglobin and troponin T levels were elevated in progressive muscular atrophy compared to primary lateral sclerosis. Neurofilaments were predominantly linked to upper motor neuron involvement. Our findings confirmed the robust diagnostic and prognostic value of neurofilaments in amyotrophic lateral sclerosis. Elevated neurofilament concentrations were associated with higher disease severity, faster disease progression, shorter survival, and predominant upper motor neuron degeneration. Biomarkers of muscular damage were inferior in distinguishing amyotrophic lateral sclerosis from other neuromuscular and neurodegenerative diseases. However, they may serve as complementary biomarkers and support in discriminating clinical variants of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
| | - Hanna Sophie Lapp
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
| | - Constanze Weber
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
| | - Lydia Plitzko
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
| | - Michael Seifert
- Carl Gustav Carus Faculty of Medicine, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Dresden 01307, Germany
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section 'Albrecht Kossel', Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Rostock 18147, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307 Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Dresden, Dresden 01307, Germany
| |
Collapse
|
2
|
Koch T, Fabian R, Weinhold L, Koch F, Barakat S, Castro‐Gomez S, Grehl T, Bernsen S, Weydt P. Cardiac troponin T as a serum biomarker of respiratory impairment in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2024; 11:2063-2072. [PMID: 38923228 PMCID: PMC11330226 DOI: 10.1002/acn3.52126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Informative biomarkers are an urgent need in the management of amyotrophic lateral sclerosis. Serum cardiac troponin T is elevated in the majority of amyotrophic lateral sclerosis patients and increases with disease progression. We sought to establish the informative value of cardiac troponin T with regard to respiratory function, a major prognostic factor in amyotrophic lateral sclerosis. METHODS In this retrospective observation, we analyzed two independent hospital-based cohorts (d = discovery cohort; v = validation cohort) regarding serum cardiac troponin T (nd = 298; nv = 49), serum neurofilament light chain (nd = 117; nv = 17), and respiratory tests (nd = 93; nv = 49). RESULTS Serum cardiac troponin T, in contrast to serum neurofilament levels, was associated with the respiratory domain of the revised amyotrophic lateral sclerosis functional rating scale and with pulmonary function parameters, namely forced vital capacity % (r = -0.45, p = 0.001) and slow vital capacity % (r = -0.50, p = 0.001). Serum cardiac troponin T reliably discriminated benchmarks of slow vital capacity <80% (AUC 0.73, 95% CI 0.62-0.84) and <50% (AUC 0.80, 95% CI 0.68-0.93), forced vital capacity <80% (AUC 0.72, 95% CI 0.61-0.83) and <50% (AUC 0.79, 95% CI 0.67-0.91). INTERPRETATION Our findings position cardiac Troponin T as a valuable serum biomarker in amyotrophic lateral sclerosis, complementing neurofilaments and expanding the understanding of underlying physiological mechanisms. In clinical practice, serum cardiac troponin T can flag benchmarks of compromised respiratory function.
Collapse
Affiliation(s)
- Teresa Koch
- Department of Neuromuscular Diseases, Center for NeurologyUniversity Hospital BonnBonn53127Germany
| | - Rachel Fabian
- Department of Neuromuscular Diseases, Center for NeurologyUniversity Hospital BonnBonn53127Germany
| | - Leonie Weinhold
- Department for Medical Biometry, Informatics and EpidemiologyUniversity Hospital BonnBonn53127Germany
| | - Franz‐W. Koch
- Department of PulmologyNeukölln HospitalBerlinGermany
| | - Saman Barakat
- Department of Neuromuscular Diseases, Center for NeurologyUniversity Hospital BonnBonn53127Germany
| | - Sergio Castro‐Gomez
- Department of Parkinson, Sleep and Movement Disorders, Center for NeurologyUniversity Hospital BonnBonn53127Germany
- Institute of Physiology IIUniversity Hospital BonnBonn53115Germany
| | - Torsten Grehl
- Department of NeurologyAlfried ‐ Krupp‐HospitalEssenGermany
| | - Sarah Bernsen
- Department of Neuromuscular Diseases, Center for NeurologyUniversity Hospital BonnBonn53127Germany
- German Center for Neurodegenerative Diseases (DZNE)Bonn53127Germany
| | - Patrick Weydt
- Department of Neuromuscular Diseases, Center for NeurologyUniversity Hospital BonnBonn53127Germany
- Department of Parkinson, Sleep and Movement Disorders, Center for NeurologyUniversity Hospital BonnBonn53127Germany
- German Center for Neurodegenerative Diseases (DZNE)Bonn53127Germany
| |
Collapse
|
3
|
Wohnrade C, Seeliger T, Gingele S, Bjelica B, Skripuletz T, Petri S. Diagnostic value of neurofilaments in differentiating motor neuron disease from multifocal motor neuropathy. J Neurol 2024; 271:4441-4452. [PMID: 38683209 PMCID: PMC11233354 DOI: 10.1007/s00415-024-12355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE To evaluate the performance of serum neurofilament light chain (NfL) and cerebrospinal fluid (CSF) phosphorylated neurofilament heavy chain (pNfH) as diagnostic biomarkers for the differentiation between motor neuron disease (MND) and multifocal motor neuropathy (MMN). METHODS This retrospective, monocentric study included 16 patients with MMN and 34 incident patients with MND. A subgroup of lower motor neuron (MN) dominant MND patients (n = 24) was analyzed separately. Serum NfL was measured using Ella automated immunoassay, and CSF pNfH was measured using enzyme-linked immunosorbent assay. Area under the curve (AUC), optimal cutoff values (Youden's index), and correlations with demographic characteristics were calculated. RESULTS Neurofilament concentrations were significantly higher in MND compared to MMN (p < 0.001), and serum NfL and CSF pNfH correlated strongly with each other (Spearman's rho 0.68, p < 0.001). Serum NfL (AUC 0.946, sensitivity and specificity 94%) and CSF pNfH (AUC 0.937, sensitivity 90.0%, specificity 100%) performed excellent in differentiating MND from MMN. Optimal cutoff values were ≥ 44.15 pg/mL (serum NfL) and ≥ 715.5 pg/mL (CSF pNfH), respectively. Similar results were found when restricting the MND cohort to lower MN dominant patients. Only one MMN patient had serum NfL above the cutoff. Two MND patients presented with neurofilament concentrations below the cutoffs, both featuring a slowly progressive disease. CONCLUSION Neurofilaments are valuable supportive biomarkers for the differentiation between MND and MMN. Serum NfL and CSF pNfH perform similarly well and elevated neurofilaments in case of diagnostic uncertainty underpin MND diagnosis.
Collapse
Affiliation(s)
- Camilla Wohnrade
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| | - Tabea Seeliger
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Bogdan Bjelica
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
- Center for Systems Neuroscience (ZSN) Hannover, 30559, Hannover, Germany
| |
Collapse
|
4
|
Lapp HS, Freigang M, Friese J, Bernsen S, Tüngler V, von der Hagen M, Weydt P, Günther R. Troponin T is elevated in a relevant proportion of patients with 5q-associated spinal muscular atrophy. Sci Rep 2024; 14:6634. [PMID: 38503830 PMCID: PMC10951305 DOI: 10.1038/s41598-024-57185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Troponin T concentration (TNT) is commonly considered a marker of myocardial damage. However, elevated concentrations have been demonstrated in numerous neuromuscular disorders, pointing to the skeletal muscle as a possible extracardiac origin. The aim of this study was to determine disease-related changes of TNT in 5q-associated spinal muscular atrophy (SMA) and to screen for its biomarker potential in SMA. We therefore included 48 pediatric and 45 adult SMA patients in this retrospective cross-sequential observational study. Fluid muscle integrity and cardiac markers were analyzed in the serum of treatment-naïve patients and subsequently under disease-modifying therapies. We found a TNT elevation in 61% of SMA patients but no elevation of the cardiospecific isoform Troponin I (TNI). TNT elevation was more pronounced in children and particularly infants with aggressive phenotypes. In adults, TNT correlated to muscle destruction and decreased under therapy only in the subgroup with elevated TNT at baseline. In conclusion, TNT was elevated in a relevant proportion of patients with SMA with emphasis in infants and more aggressive phenotypes. Normal TNI levels support a likely extracardiac origin. Although its stand-alone biomarker potential seems to be limited, exploring TNT in SMA underlines the investigation of skeletal muscle integrity markers.
Collapse
Affiliation(s)
- Hanna Sophie Lapp
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maren Freigang
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Johannes Friese
- Department of Neuropediatrics, University Hospital Bonn, Bonn, Germany
| | - Sarah Bernsen
- Department of Neurodegenerative Diseases, University Hospital Bonn, Bonn, Germany
| | - Victoria Tüngler
- Department of Neuropediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maja von der Hagen
- Department of Neuropediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Patrick Weydt
- Department of Neurodegenerative Diseases, University Hospital Bonn, Bonn, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases, Dresden, Germany.
| |
Collapse
|
5
|
Musso G, Blasi L, Mion MM, Fortuna A, Sabbatini D, Zaninotto M, Bello L, Pegoraro E, Basso D, Plebani M, Sorarù G. Troponin T in spinal and bulbar muscular atrophy (SBMA). J Neurol Sci 2024; 456:122816. [PMID: 38071852 DOI: 10.1016/j.jns.2023.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Serum biomarkers that might detect clinical progression are currently lacking for Spinal and bulbar muscular atrophy (SBMA), thus limiting the effectiveness of possible future pharmacological trials. Elevation of cardiac troponin T (cTnT) unrelated to myocardial damage in a motor neuron (MN) disease as amyotrophic lateral sclerosis (ALS) was associated to disease severity. We enrolled 47 SBMA patients and 5 Spinal muscular atrophy (SMA) type 3 adult patients as control group; each SBMA patient was evaluated at baseline and at one-year follow-up visit. Demographic and clinical data including functional scores (SBMAFRS) were collected; serum was collected as standard of care and tested for cardiac troponins. Levels of cTnT but not cTnI were increased in SBMA with respect to reference values; unlike other neuromuscular diseases, SMA patients had overall normal cTnT values. Median cTnT concentrations did not change after one year and values were correlated to motor function, particularly with lower limb subdomain, at baseline only. Variations of cTnT and of SBMAFRS were unrelated. The cautiously promising results of cTnT as potential biomarker should undergo a more extensive clinical validation, including studies with longer follow-up period. When evaluating SBMA patients for a potential cardiac damage cTnI testing should be coupled or preferred to cTnT.
Collapse
Affiliation(s)
- Giulia Musso
- Department of Medicine - DIMED, University of Padova, Italy; Laboratory Medicine Unit, University-Hospital of Padova, Italy.
| | - Lorenzo Blasi
- Department of Neurosciences, Neuromuscular Center, University of Padova, Italy
| | | | - Andrea Fortuna
- Department of Neurosciences, Neuromuscular Center, University of Padova, Italy
| | - Daniele Sabbatini
- Department of Neurosciences, Neuromuscular Center, University of Padova, Italy
| | | | - Luca Bello
- Department of Neurosciences, Neuromuscular Center, University of Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, Neuromuscular Center, University of Padova, Italy
| | - Daniela Basso
- Department of Medicine - DIMED, University of Padova, Italy; Laboratory Medicine Unit, University-Hospital of Padova, Italy
| | - Mario Plebani
- Department of Medicine - DIMED, University of Padova, Italy; Laboratory Medicine Unit, University-Hospital of Padova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, Neuromuscular Center, University of Padova, Italy.
| |
Collapse
|
6
|
Donini L, Tanel R, Zuccarino R, Basso M. Protein biomarkers for the diagnosis and prognosis of Amyotrophic Lateral Sclerosis. Neurosci Res 2023; 197:31-41. [PMID: 37689321 DOI: 10.1016/j.neures.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease, still incurable. The disease is highly heterogenous both genetically and phenotypically. Therefore, developing efficacious treatments is challenging in many aspects because it is difficult to predict the rate of disease progression and stratify the patients to minimize statistical variability in clinical studies. Moreover, there is a lack of sensitive measures of therapeutic effect to assess whether a pharmacological intervention ameliorates the disease. There is also urgency of markers that reflect a molecular mechanism dysregulated by ALS pathology and can be rescued when a treatment relieves the condition. Here, we summarize and discuss biomarkers tested in multicentered studies and across different laboratories like neurofilaments, the most used marker in ALS clinical studies, neuroinflammatory-related proteins, p75ECD, p-Tau/t-Tau, and UCHL1. We also explore the applicability of muscle proteins and extracellular vesicles as potential biomarkers.
Collapse
Affiliation(s)
- Luisa Donini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| | - Raffaella Tanel
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy.
| | - Riccardo Zuccarino
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| |
Collapse
|
7
|
Lapp HS, Freigang M, Hagenacker T, Weiler M, Wurster CD, Günther R. Biomarkers in 5q-associated spinal muscular atrophy-a narrative review. J Neurol 2023; 270:4157-4178. [PMID: 37289324 PMCID: PMC10421827 DOI: 10.1007/s00415-023-11787-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
5q-associated spinal muscular atrophy (SMA) is a rare genetic disease caused by mutations in the SMN1 gene, resulting in a loss of functional SMN protein and consecutive degeneration of motor neurons in the ventral horn. The disease is clinically characterized by proximal paralysis and secondary skeletal muscle atrophy. New disease-modifying drugs driving SMN gene expression have been developed in the past decade and have revolutionized SMA treatment. The rise of treatment options led to a concomitant need of biomarkers for therapeutic guidance and an improved disease monitoring. Intensive efforts have been undertaken to develop suitable markers, and numerous candidate biomarkers for diagnostic, prognostic, and predictive values have been identified. The most promising markers include appliance-based measures such as electrophysiological and imaging-based indices as well as molecular markers including SMN-related proteins and markers of neurodegeneration and skeletal muscle integrity. However, none of the proposed biomarkers have been validated for the clinical routine yet. In this narrative review, we discuss the most promising candidate biomarkers for SMA and expand the discussion by addressing the largely unfolded potential of muscle integrity markers, especially in the context of upcoming muscle-targeting therapies. While the discussed candidate biomarkers hold potential as either diagnostic (e.g., SMN-related biomarkers), prognostic (e.g., markers of neurodegeneration, imaging-based markers), predictive (e.g., electrophysiological markers) or response markers (e.g., muscle integrity markers), no single measure seems to be suitable to cover all biomarker categories. Hence, a combination of different biomarkers and clinical assessments appears to be the most expedient solution at the time.
Collapse
Affiliation(s)
- H S Lapp
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - M Freigang
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - T Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Science (C-TNBS), University Medicine Essen, Essen, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - C D Wurster
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Kittipeerapat N, Fabian R, Bernsen S, Weydt P, Castro-Gomez S. Creatine Kinase MB Isoenzyme Is a Complementary Biomarker in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:11682. [PMID: 37511443 PMCID: PMC10380590 DOI: 10.3390/ijms241411682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an invariably fatal neurodegenerative disease with limited therapeutic options. There is an urgent need for novel biomarkers to be used as surrogates for new therapeutic trials and disease monitoring. In this study, we sought to systematically study creatine kinase isoenzyme MB (CK-MB) in a real-world cohort of ALS patients, assess the diagnostic performance, and evaluate its association with other laboratory and clinical parameters. We reviewed data from 194 consecutive patients that included 130 ALS patients and 64 disease control patients (primary lateral sclerosis [PLS], benign fasciculations syndrome [BFS], Huntington's disease [HD] and Alzheimer's disease [AD]). CK-MB was elevated in the sera of more than half of all patients with ALS. In patients with spinal-onset ALS, CK-MB levels were significantly higher than in patients with other neurodegenerative diseases. Patients with slower rates of functional decline had a significantly higher baseline CK-MB. Furthermore, CK-MB elevations correlated with cardiac troponin T (cTnT) and with revised ALS Functional Rating Scale (ALSFRS-R) bulbar subcategory. We posit that measuring CK-MB in ALS patients in a complimentary fashion could potentially aid in the diagnostic workup of ALS and help discriminate the disease from some ALS mimics and other neurodegenerative diseases. CK-MB levels also may provide valuable prognostic information regarding disease aggressiveness as well as correlations with specific phenotypic presentations.
Collapse
Affiliation(s)
- Natsinee Kittipeerapat
- Department of Neurodegenerative Diseases/Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Rachel Fabian
- Department of Neurodegenerative Diseases/Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Sarah Bernsen
- Department of Neurodegenerative Diseases/Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Patrick Weydt
- Department of Neurodegenerative Diseases/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Diseases/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| |
Collapse
|
9
|
Sanchez-Tejerina D, Llaurado A, Sotoca J, Lopez-Diego V, Vidal Taboada JM, Salvado M, Juntas-Morales R. Biofluid Biomarkers in the Prognosis of Amyotrophic Lateral Sclerosis: Recent Developments and Therapeutic Applications. Cells 2023; 12:cells12081180. [PMID: 37190090 DOI: 10.3390/cells12081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons for which effective therapies are lacking. One of the most explored areas of research in ALS is the discovery and validation of biomarkers that can be applied to clinical practice and incorporated into the development of innovative therapies. The study of biomarkers requires an adequate theoretical and operational framework, highlighting the "fit-for-purpose" concept and distinguishing different types of biomarkers based on common terminology. In this review, we aim to discuss the current status of fluid-based prognostic and predictive biomarkers in ALS, with particular emphasis on those that are the most promising ones for clinical trial design and routine clinical practice. Neurofilaments in cerebrospinal fluid and blood are the main prognostic and pharmacodynamic biomarkers. Furthermore, several candidates exist covering various pathological aspects of the disease, such as immune, metabolic and muscle damage markers. Urine has been studied less often and should be explored for its possible advantages. New advances in the knowledge of cryptic exons introduce the possibility of discovering new biomarkers. Collaborative efforts, prospective studies and standardized procedures are needed to validate candidate biomarkers. A combined biomarkers panel can provide a more detailed disease status.
Collapse
Affiliation(s)
- Daniel Sanchez-Tejerina
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Arnau Llaurado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Javier Sotoca
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Veronica Lopez-Diego
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Jose M Vidal Taboada
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| | - Maria Salvado
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raul Juntas-Morales
- Neuromuscular Diseases Unit, Neurology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Peripheral Nervous System Group, Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Medicine Department, Universitat Autónoma de Barcelona, 08035 Barcelon, Spain
| |
Collapse
|
10
|
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:736. [PMID: 36899872 PMCID: PMC10000757 DOI: 10.3390/cells12050736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Department of Neuroimmunology, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
11
|
Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and Scope in Neurological Disorders. Neurochem Res 2023; 48:2029-2058. [PMID: 36795184 DOI: 10.1007/s11064-023-03873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Neurological disorders pose a great threat to social health and are a major cause for mortality and morbidity. Effective drug development complemented with the improved drug therapy has made considerable progress towards easing symptoms associated with neurological illnesses, yet poor diagnosis and imprecise understanding of these disorders has led to imperfect treatment options. The scenario is complicated by the inability to extrapolate results of cell culture studies and transgenic models to clinical applications which has stagnated the process of improving drug therapy. In this context, the development of biomarkers has been viewed as beneficial to easing various pathological complications. A biomarker is measured and evaluated in order to gauge the physiological process or a pathological progression of a disease and such a marker can also indicate the clinical or pharmacological response to a therapeutic intervention. The development and identification of biomarkers for neurological disorders involves several issues including the complexity of the brain, unresolved discrepant data from experimental and clinical studies, poor clinical diagnostics, lack of functional endpoints, and high cost and complexity of techniques yet research in the area of biomarkers is highly desired. The present work describes existing biomarkers for various neurological disorders, provides support for the idea that biomarker development may ease our understanding underlying pathophysiology of these disorders and help to design and explore therapeutic targets for effective intervention.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.,Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| |
Collapse
|
12
|
Zonneveld MH, Abbel D, le Cessie S, Jukema JW, Noordam R, Trompet S. Cardiac Troponin, Cognitive Function, and Dementia: A Systematic Review. Aging Dis 2022; 14:386-397. [PMID: 37008066 PMCID: PMC10017151 DOI: 10.14336/ad.2022.0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Elevated cardiac troponin, a biomarker of myocardial injury, has been found in individuals with brain damage and lower cognitive function. We conducted a systematic review to examine the association of troponin with cognitive function, incidence of dementia and dementia-related outcomes. PubMed, Web of Science and EMBASE were searched from inception to August 2022. Inclusion criteria were: (i) population-based cohort studies; (ii) troponin measured as determinant; and (iii) cognitive function in any metric or diagnosis of any type of dementia or dementia-related measures as outcomes. Fourteen studies were identified and included, with a combined total of 38,286 participants. Of these studies, four examined dementia-related outcomes, eight studies examined cognitive function, and two studies examined both dementia-related outcomes and cognitive function. Studies report higher troponin to be associated with higher prevalence of cognitive impairment (n=1), incident dementia (n=1), increased risk of dementia hospitalization (specifically due to vascular dementia) (n=1), but not with incident Alzheimer's Disease (n=2). Majority of studies on cognitive function found elevated troponin also associated with worse global cognitive function (n=3), attention (n=2), reaction time (n=1) and visuomotor speed (n=1), both cross-sectionally and prospectively. Evidence regarding the association between higher troponin and memory, executive function, processing speed, language and visuospatial function was mixed. This was the first systematic review on the association between troponin, cognitive function, and dementia. Higher troponin is associated with subclinical cerebrovascular damage and might act as a risk-marker of cognitive vulnerability.
Collapse
Affiliation(s)
- Michelle H Zonneveld
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
- Department of Cardiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
- Correspondence should be addressed to: Michelle Zonneveld, M.S., Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | - Denise Abbel
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
- Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|