1
|
Weiss SA, Sperling MR, Engel J, Liu A, Fried I, Wu C, Doyle W, Mikell C, Mofakham S, Salamon N, Sim MS, Bragin A, Staba R. Simulated resections and responsive neurostimulator placement can optimize postoperative seizure outcomes when guided by fast ripple networks. Brain Commun 2024; 6:fcae367. [PMID: 39464217 PMCID: PMC11503960 DOI: 10.1093/braincomms/fcae367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure-onset zone and incorporation of neuroimaging findings from MRI, PET, single-photon emission CT and magnetoencephalography modalities. Resecting cortical tissue generating high-frequency oscillations has been investigated as a more efficacious alternative to targeting the seizure-onset zone. In this study, we used a support vector machine (SVM), with four distinct fast ripple (FR: 350-600 Hz on oscillations, 200-600 Hz on spikes) metrics as factors. These metrics included the FR resection ratio, a spatial FR network measure and two temporal FR network measures. The SVM was trained by the value of these four factors with respect to the actual resection boundaries and actual seizure-free labels of 18 patients with medically refractory focal epilepsy. Leave-one-out cross-validation of the trained SVM in this training set had an accuracy of 0.78. We next used a simulated iterative virtual resection targeting the FR sites that were of highest rate and showed most temporal autonomy. The trained SVM utilized the four virtual FR metrics to predict virtual seizure freedom. In all but one of the nine patients who were seizure free after surgery, we found that the virtual resections sufficient for virtual seizure freedom were larger in volume (P < 0.05). In nine patients who were not seizure free, a larger virtual resection made five virtually seizure free. We also examined 10 medically refractory focal epilepsy patients implanted with the responsive neurostimulator system and virtually targeted the responsive neurostimulator system stimulation contacts proximal to sites generating FR at highest rates to determine if the simulated value of the stimulated seizure-onset zone and stimulated FR metrics would trend towards those patients with a better seizure outcome. Our results suggest the following: (i) FR measures can accurately predict whether a resection, defined by the standard of care, will result in seizure freedom; (ii) utilizing FR alone for planning an efficacious surgery can be associated with larger resections; (iii) when FR metrics predict the standard-of-care resection will fail, amending the boundaries of the planned resection with certain FR-generating sites may improve outcome and (iv) more work is required to determine whether targeting responsive neurostimulator system stimulation contact proximal to FR generating sites will improve seizure outcome.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY 11203, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anli Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Chengyuan Wu
- Department of Neuroradiology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Werner Doyle
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Charles Mikell
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, NY 11790, USA
| | - Sima Mofakham
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, NY 11790, USA
| | - Noriko Salamon
- Department of Neuroradiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Myung Shin Sim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Pinto-Orellana M, Lopour B. Connectivity of high-frequency bursts as SOZ localization biomarker. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1441998. [PMID: 39372659 PMCID: PMC11449702 DOI: 10.3389/fnetp.2024.1441998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
For patients with refractory epilepsy, the seizure onset zone (SOZ) plays an essential role in determining the specific regions of the brain that will be surgically resected. High-frequency oscillations (HFOs) and connectivity-based approaches have been identified among the potential biomarkers to localize the SOZ. However, there is no consensus on how connectivity between HFO events should be estimated, nor on its subject-specific short-term reliability. Therefore, we propose the channel-level connectivity dispersion (CLCD) as a metric to quantify the variability in synchronization between individual electrodes and to identify clusters of electrodes with abnormal synchronization, which we hypothesize to be associated with the SOZ. In addition, we developed a specialized filtering method that reduces oscillatory components caused by filtering broadband artifacts, such as sharp transients, spikes, or direct current shifts. Our connectivity estimates are therefore robust to the presence of these waveforms. To calculate our metric, we start by creating binary signals indicating the presence of high-frequency bursts in each channel, from which we calculate the pairwise connectivity between channels. Then, the CLCD is calculated by combining the connectivity matrices and measuring the variability in each electrode's combined connectivity values. We test our method using two independent open-access datasets comprising intracranial electroencephalography signals from 89 to 15 patients with refractory epilepsy, respectively. Recordings in these datasets were sampled at approximately 1000 Hz, and our proposed CLCDs were estimated in the ripple band (80-200 Hz). Across all patients in the first dataset, the average ROC-AUC was 0.73, and the average Cohen's d was 1.05, while in the second dataset, the average ROC-AUC was 0.78 and Cohen's d was 1.07. On average, SOZ channels had lower CLCD values than non-SOZ channels. Furthermore, based on the second dataset, which includes surgical outcomes (Engel I-IV), our analysis suggested that higher CLCD interquartile (as a measure of CLCD distribution spread) is associated with favorable outcomes (Engel I). This suggests that CLCD could significantly assist in identifying SOZ clusters and, therefore, provide an additional tool in surgical planning for epilepsy patients.
Collapse
Affiliation(s)
- Marco Pinto-Orellana
- Biomedical Engineering Department, University of California, Irvine, Irvine, CA, United States
| | - Beth Lopour
- Biomedical Engineering Department, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Padmasola GP, Friscourt F, Rigoni I, Vulliémoz S, Schaller K, Michel CM, Sheybani L, Quairiaux C. Involvement of the contralateral hippocampus in ictal-like but not interictal epileptic activities in the kainate mouse model of temporal lobe epilepsy. Epilepsia 2024; 65:2082-2098. [PMID: 38758110 DOI: 10.1111/epi.17970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Animal and human studies have shown that the seizure-generating region is vastly dependent on distant neuronal hubs that can decrease duration and propagation of ongoing seizures. However, we still lack a comprehensive understanding of the impact of distant brain areas on specific interictal and ictal epileptic activities (e.g., isolated spikes, spike trains, seizures). Such knowledge is critically needed, because all kinds of epileptic activities are not equivalent in terms of clinical expression and impact on the progression of the disease. METHODS We used surface high-density electroencephalography and multisite intracortical recordings, combined with pharmacological silencing of specific brain regions in the well-known kainate mouse model of temporal lobe epilepsy. We tested the impact of selective regional silencing on the generation of epileptic activities within a continuum ranging from very transient to more sustained and long-lasting discharges reminiscent of seizures. RESULTS Silencing the contralateral hippocampus completely suppresses sustained ictal activities in the focus, as efficiently as silencing the focus itself, but whereas focus silencing abolishes all focus activities, contralateral silencing fails to control transient spikes. In parallel, we observed that sustained focus epileptiform discharges in the focus are preceded by contralateral firing and more strongly phase-locked to bihippocampal delta/theta oscillations than transient spiking activities, reinforcing the presumed dominant role of the contralateral hippocampus in promoting long-lasting, but not transient, epileptic activities. SIGNIFICANCE Altogether, our work provides suggestive evidence that the contralateral hippocampus is necessary for the interictal to ictal state transition and proposes that crosstalk between contralateral neuronal activity and ipsilateral delta/theta oscillation could be a candidate mechanism underlying the progression from short- to long-lasting epileptic activities.
Collapse
Affiliation(s)
- Guru Prasad Padmasola
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Fabien Friscourt
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
| | - Isotta Rigoni
- EEG and Epilepsy Unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Department of Neuroscience, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, Geneva, Switzerland
- Department of Clinical and Experimental Epilepsy, Queen's Square Institute of Neurology, London, UK
| | - Charles Quairiaux
- Functional Brain Mapping Lab, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Weiss SA, Sperling MR, Engel J, Liu A, Fried I, Wu C, Doyle W, Mikell C, Mofakham S, Salamon N, Sim MS, Bragin A, Staba R. Simulated resections and RNS placement can optimize post-operative seizure outcomes when guided by fast ripple networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.26.24304802. [PMID: 38585730 PMCID: PMC10996761 DOI: 10.1101/2024.03.26.24304802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure onset zone (SOZ) and incorporation of neuroimaging findings from MRI, PET, SPECT, and MEG modalities. Resecting cortical tissue generating high-frequency oscillations (HFOs) has been investigated as a more efficacious alternative to targeting the SOZ. In this study, we used a support vector machine (SVM), with four distinct fast ripple (FR: 350-600 Hz on oscillations, 200-600 Hz on spikes) metrics as factors. These metrics included the FR resection ratio (RR), a spatial FR network measure, and two temporal FR network measures. The SVM was trained by the value of these four factors with respect to the actual resection boundaries and actual seizure free labels of 18 patients with medically refractory focal epilepsy. Leave one out cross-validation of the trained SVM in this training set had an accuracy of 0.78. We next used a simulated iterative virtual resection targeting the FR sites that were highest rate and showed most temporal autonomy. The trained SVM utilized the four virtual FR metrics to predict virtual seizure freedom. In all but one of the nine patients seizure free after surgery, we found that the virtual resections sufficient for virtual seizure freedom were larger in volume (p<0.05). In nine patients who were not seizure free, a larger virtual resection made five virtually seizure free. We also examined 10 medically refractory focal epilepsy patients implanted with the responsive neurostimulator system (RNS) and virtually targeted the RNS stimulation contacts proximal to sites generating FR at highest rates to determine if the simulated value of the stimulated SOZ and stimulated FR metrics would trend toward those patients with a better seizure outcome. Our results suggest: 1) FR measures can accurately predict whether a resection, defined by the standard of care, will result in seizure freedom; 2) utilizing FR alone for planning an efficacious surgery can be associated with larger resections; 3) when FR metrics predict the standard of care resection will fail, amending the boundaries of the planned resection with certain FR generating sites may improve outcome; and 4) more work is required to determine if targeting RNS stimulation contact proximal to FR generating sites will improve seizure outcome.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York 11203, USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York 11203, USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, 11203 USA
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Anli Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, 10016 USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016 USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Chengyuan Wu
- Dept. of Neuroradiology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Dept. of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Werner Doyle
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, 10016 USA
| | - Charles Mikell
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, New York 11790, USA
| | - Sima Mofakham
- Department of Neurosurgery, State University of New York Stony Brook, Stony Brook, New York 11790, USA
| | - Noriko Salamon
- Dept. of Neuroradiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Myung Shin Sim
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Anatol Bragin
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Richard Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Ye H, Chen C, Weiss SA, Wang S. Pathological and Physiological High-frequency Oscillations on Electroencephalography in Patients with Epilepsy. Neurosci Bull 2024; 40:609-620. [PMID: 37999861 PMCID: PMC11127900 DOI: 10.1007/s12264-023-01150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023] Open
Abstract
High-frequency oscillations (HFOs) encompass ripples (80 Hz-200 Hz) and fast ripples (200 Hz-600 Hz), serving as a promising biomarker for localizing the epileptogenic zone in epilepsy. Spontaneous fast ripples are always pathological, while ripples may be physiological or pathological. Distinguishing physiological from pathological ripples is important not only for designating epileptogenic brain regions, but also for investigations that study ripples in the context of memory encoding, consolidation, and recall in patients with epilepsy. Many studies have sought to identify distinguishing features between pathological and physiological ripples over the past two decades. Physiological and pathological ripples differ with respect to their spatial location, cellular mechanisms, morphology, and coupling with background electroencephalographic activity. Retrospective studies have demonstrated that differentiating between pathological and physiological ripples can improve surgical outcome prediction. In this review, we summarize the characteristics, differences, and applications of pathological and physiological HFOs and discuss strategies for their clinical translation.
Collapse
Affiliation(s)
- Hongyi Ye
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shennan A Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY, 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY, 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, 11203, USA
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
6
|
Stergiadis C, Kazis D, Klados MA. Epileptic tissue localization using graph-based networks in the high frequency oscillation range of intracranial electroencephalography. Seizure 2024; 117:28-35. [PMID: 38308906 DOI: 10.1016/j.seizure.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
PURPOSE High frequency oscillations (HFOs) are an emerging biomarker of epilepsy. However, very few studies have investigated the functional connectivity of interictal iEEG signals in the frequency range of HFOs. Here, we study the corresponding functional networks using graph theory, and we assess their predictive value for automatic electrode classification in a cohort of 20 drug resistant patients. METHODS Coherence-based connectivity analysis was performed on the iEEG recordings, and six different local graph measures were computed in both sub-bands of the HFO frequency range (80-250 Hz and 250-500 Hz). Correlation analysis was implemented between the local graph measures and the ripple and fast ripple rates. Finally, the WEKA software was employed for training and testing different predictive models on the aforementioned local graph measures. RESULTS The ripple rate was significantly correlated with five out of six local graph measures in the functional network. For fast ripples, their rate was also significantly (but negatively) correlated with most of the local metrics. The results from WEKA showed that the Logistic Regression algorithm was able to classify highly HFO-contaminated electrodes with an accuracy of 82.5 % for ripples and 75.4 % for fast ripples. CONCLUSION Functional connectivity networks in the HFO band could represent an alternative to the direct use of distinct HFO events, while also providing important insights about hub epileptic areas that can represent possible surgical targets. Automatic electrode classification through FC-based classifiers can help bypass the burden of manual HFO annotation, providing at the same time similar amount of information about the epileptic tissue.
Collapse
Affiliation(s)
- Christos Stergiadis
- Department of Electronic Engineering, University of York, York, YO10 5DD, UK
| | - Dimitrios Kazis
- 3rd Neurological Department, Aristotle University of Thessaloniki Faculty of Health Sciences, Exohi, 57010 Thessaloniki, Greece
| | - Manousos A Klados
- Department of Psychology, University of York Europe Campus, CITY College 24, Proxenou Koromila Street, 546 22 Thessaloniki, Greece; Neuroscience Research Center (NEUREC), University of York Europe Campus, City College, Thessaloniki, Greece.
| |
Collapse
|
7
|
Weiss SA, Fried I, Engel J, Bragin A, Wang S, Sperling MR, Wong RK, Nir Y, Staba RJ. Pathological neurons generate ripples at the UP-DOWN transition disrupting information transfer. Epilepsia 2024; 65:362-377. [PMID: 38041560 PMCID: PMC10922301 DOI: 10.1111/epi.17845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE To confirm and investigate why pathological high-frequency oscillations (pHFOs), including ripples (80-200 Hz) and fast ripples (200-600 Hz), are generated during the UP-DOWN transition of the slow wave and if information transmission mediated by ripple temporal coupling is disrupted in the seizure-onset zone (SOZ). METHODS We isolated 217 total units from 175.95 intracranial electroencephalography (iEEG) contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the SOZ, HFOs and associated action potentials (APs) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross-correlograms. RESULTS At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p < < .001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p < < .001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen's d = .11-.83) and fast ripples (d = .36-.90) at the UP-DOWN transition (p < .05 f.d.r. corrected), respectively. By comparison, also in the SOZ, 6.6% (d = .14-.30) and 8.5% (d = .33-.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows that ripple and fast ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by >50% in the SOZ compared to the non-SOZ (N = 3). SIGNIFICANCE The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. Ripple temporal correlations across brain regions may be important in memory consolidation and are disrupted in the SOZ, perhaps by pHFO generation.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Anatol Bragin
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Shuang Wang
- Depts of Neurology, Epilepsy Center, Second Affiliated Hospital of Medical College, Zhejiang University, Zhejiang, China
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Robert K.S. Wong
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| |
Collapse
|
8
|
Bröhl T, Rings T, Pukropski J, von Wrede R, Lehnertz K. The time-evolving epileptic brain network: concepts, definitions, accomplishments, perspectives. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 3:1338864. [PMID: 38293249 PMCID: PMC10825060 DOI: 10.3389/fnetp.2023.1338864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Epilepsy is now considered a network disease that affects the brain across multiple levels of spatial and temporal scales. The paradigm shift from an epileptic focus-a discrete cortical area from which seizures originate-to a widespread epileptic network-spanning lobes and hemispheres-considerably advanced our understanding of epilepsy and continues to influence both research and clinical treatment of this multi-faceted high-impact neurological disorder. The epileptic network, however, is not static but evolves in time which requires novel approaches for an in-depth characterization. In this review, we discuss conceptual basics of network theory and critically examine state-of-the-art recording techniques and analysis tools used to assess and characterize a time-evolving human epileptic brain network. We give an account on current shortcomings and highlight potential developments towards an improved clinical management of epilepsy.
Collapse
Affiliation(s)
- Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Nanda P, Richardson RM. Evolution of Stereo-Electroencephalography at Massachusetts General Hospital. Neurosurg Clin N Am 2024; 35:87-94. [PMID: 38000845 DOI: 10.1016/j.nec.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
The practice of invasive monitoring for presurgical epilepsy workup has evolved at Massachusetts General Hospital (MGH) in parallel to the evolution in the field's understanding of epilepsy as a network disorder. Implantations have shifted from an emphasis on singularly finding single foci for the purpose of resection to a network-hypothesis-driven approach aiming to delineate patients' seizure networks with the goal of developing surgical interventions that disrupt critical nodes of these networks. Here, the authors review all invasive monitoring cases at MGH from April 2016 through June 2023 to describe how this paradigm shift has taken form.
Collapse
Affiliation(s)
- Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA.
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Weiss SA, Fried I, Engel J, Sperling MR, Wong RKS, Nir Y, Staba RJ. Fast ripples reflect increased excitability that primes epileptiform spikes. Brain Commun 2023; 5:fcad242. [PMID: 37869578 PMCID: PMC10587774 DOI: 10.1093/braincomms/fcad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023] Open
Abstract
The neuronal circuit disturbances that drive inter-ictal and ictal epileptiform discharges remain elusive. Using a combination of extra-operative macro-electrode and micro-electrode inter-ictal recordings in six pre-surgical patients during non-rapid eye movement sleep, we found that, exclusively in the seizure onset zone, fast ripples (200-600 Hz), but not ripples (80-200 Hz), frequently occur <300 ms before an inter-ictal intra-cranial EEG spike with a probability exceeding chance (bootstrapping, P < 1e-5). Such fast ripple events are associated with higher spectral power (P < 1e-10) and correlated with more vigorous neuronal firing than solitary fast ripple (generalized linear mixed-effects model, P < 1e-9). During the intra-cranial EEG spike that follows a fast ripple, action potential firing is lower than during an intra-cranial EEG spike alone (generalized linear mixed-effects model, P < 0.05), reflecting an inhibitory restraint of intra-cranial EEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike fast ripple in a separate cohort of 23 patients implanted with stereo EEG electrodes, who underwent resections. In non-rapid eye movement sleep recordings, sites containing a high proportion of fast ripple preceding intra-cranial EEG spikes correlate with brain areas where seizures begin more than solitary fast ripple (P < 1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that fast ripple preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating inter-ictal epileptiform discharges.
Collapse
Affiliation(s)
- Shennan A Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY 11203, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jerome Engel
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael R Sperling
- Departments of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert K S Wong
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY 11203, USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Weiss SA, Fried I, Engel J, Sperling MR, Wong RK, Nir Y, Staba RJ. Fast ripples reflect increased excitability that primes epileptiform spikes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.26.23287702. [PMID: 37034609 PMCID: PMC10081394 DOI: 10.1101/2023.03.26.23287702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The neuronal circuit disturbances that drive interictal and ictal epileptiform discharges remains elusive. Using a combination of extraoperative macro- and micro-electrode interictal recordings in six presurgical patients during non-rapid eye movement (REM) sleep we found that, exclusively in the seizure onset zone, fast ripples (FR; 200-600Hz), but not ripples (80-200 Hz), frequently occur <300 msec before an interictal intracranial EEG (iEEG) spike with a probability exceeding chance (bootstrapping, p<1e-5). Such FR events are associated with higher spectral power (p<1e-10) and correlated with more vigorous neuronal firing than solitary FR (generalized linear mixed-effects model, GLMM, p<1e-3) irrespective of FR power. During the iEEG spike that follows a FR, action potential firing is lower than during a iEEG spike alone (GLMM, p<1e-10), reflecting an inhibitory restraint of iEEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike FR in a separate cohort of 23 patients implanted with stereo EEG electrodes who underwent resections. In non-REM sleep recordings, sites containing a high proportion of FR preceding iEEG spikes correlate with brain areas where seizures begin more than solitary FR (p<1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that FR preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating interictal epileptiform discharges.
Collapse
Affiliation(s)
- Shennan A Weiss
- Dept. of Neurology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
- Dept. of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Itzhak Fried
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Michael R. Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Robert K.S. Wong
- Dept. of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203 USA
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Richard J Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| |
Collapse
|
12
|
Shen M, Zhang L, Gong Y, Li L, Liu X. Epileptic Tissue Localization through Skewness-Based Functional Connectivity in the High-Frequency Band of Intracranial EEG. Bioengineering (Basel) 2023; 10:bioengineering10040461. [PMID: 37106648 PMCID: PMC10136084 DOI: 10.3390/bioengineering10040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Functional connectivity analysis of intracranial electroencephalography (iEEG) plays an important role in understanding the mechanism of epilepsy and seizure dynamics. However, existing connectivity analysis is only suitable for low-frequency bands below 80 Hz. High-frequency oscillations (HFOs) and high-frequency activity (HFA) in the high-frequency band (80-500 Hz) are thought to be specific biomarkers in epileptic tissue localization. However, the transience in duration and variability of occurrence time and amplitudes of these events pose a challenge for conducting effective connectivity analysis. To deal with this problem, we proposed skewness-based functional connectivity (SFC) in the high-frequency band and explored its utility in epileptic tissue localization and surgical outcome evaluation. SFC comprises three main steps. The first step is the quantitative measurement of amplitude distribution asymmetry between HFOs/HFA and baseline activity. The second step is functional network construction on the basis of rank correlation of asymmetry across time. The third step is connectivity strength extraction from the functional network. Experiments were conducted in two separate datasets which consist of iEEG recordings from 59 patients with drug-resistant epilepsy. Significant difference (p<0.001) in connectivity strength was found between epileptic and non-epileptic tissue. Results were quantified via the receiver operating characteristic curve and the area under the curve (AUC). Compared with low-frequency bands, SFC demonstrated superior performance. With respect to pooled and individual epileptic tissue localization for seizure-free patients, AUCs were 0.66 (95% confidence interval (CI): 0.63-0.69) and (0.63 95% CI 0.56-0.71), respectively. For surgical outcome classification, the AUC was 0.75 (95% CI 0.59-0.85). Therefore, SFC can act as a promising assessment tool in characterizing the epileptic network and potentially provide better treatment options for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Mu Shen
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Lin Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yi Gong
- School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100096, China
| | - Lei Li
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xianzeng Liu
- Department of Neurology, Peking University International Hospital, and Peking University Clinical Research Institute, Beijing 102206, China
| |
Collapse
|
13
|
Weiss SA, Eliashiv D, Stern J, Rubinstein D, Fried I, Wu C, Sharan A, Engel J, Staba R, Sperling MR. Stimulation better targets fast-ripple generating networks in super responders to the responsive neurostimulator system. Epilepsia 2023; 64:e48-e55. [PMID: 36906958 DOI: 10.1111/epi.17582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
How responsive neurostimulation (RNS) decreases seizure frequency is unclear. Stimulation may alter epileptic networks during inter-ictal epochs. Definitions of the epileptic network vary but fast ripples (FRs) may be an important substrate. We, therefore, examined whether stimulation of FR-generating networks differed in RNS super responders and intermediate responders. In 10 patients, with subsequent RNS placement, we detected FRs from stereo-electroencephalography (SEEG) contacts during pre-surgical evaluation. The normalized coordinates of the SEEG contacts were compared with those of the eight RNS contacts, and RNS-stimulated SEEG contacts were defined as those within 1.5 cm3 of the RNS contacts. We compared the post-RNS placement seizure outcome to (1) the ratio of stimulated SEEG contacts in the seizure-onset zone (SOZ stimulation ratio [SR]); (2) the ratio of FR events on stimulated contacts (FR SR); and (3) the global efficiency of the FR temporal correlational network on stimulated contacts (FR SGe). We found that the SOZ SR (p = .18) and FR SR (p = .06) did not differ in the RNS super responders and intermediate responders, but the FR SGe did (p = .02). In super responders, highly active desynchronous sites of the FR network were stimulated. RNS that better targets FR networks, as compared to the SOZ, may reduce epileptogenicity more.
Collapse
Affiliation(s)
- Shennan Aibel Weiss
- Department Of Neurology, State University of New York Downstate, Brooklyn, New York, 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, New York, 11203, USA.,Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, New York, USA
| | - Dawn Eliashiv
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - John Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Daniel Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Chengyuan Wu
- Department of Neuroradiology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA.,Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
14
|
Lévesque M, Wang S, Macey-Dare ADB, Salami P, Avoli M. Evolution of interictal activity in models of mesial temporal lobe epilepsy. Neurobiol Dis 2023; 180:106065. [PMID: 36907521 DOI: 10.1016/j.nbd.2023.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada.
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada
| | - Anežka D B Macey-Dare
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Pariya Salami
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, QC, Canada
| |
Collapse
|
15
|
Weiss SA, Fried I, Wu C, Sharan A, Rubinstein D, Engel J, Sperling MR, Staba RJ. Graph theoretical measures of fast ripple networks improve the accuracy of post-operative seizure outcome prediction. Sci Rep 2023; 13:367. [PMID: 36611059 PMCID: PMC9825369 DOI: 10.1038/s41598-022-27248-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Fast ripples (FR) are a biomarker of epileptogenic brain, but when larger portions of FR generating regions are resected seizure freedom is not always achieved. To evaluate and improve the diagnostic accuracy of FR resection for predicting seizure freedom we compared the FR resection ratio (RR) with FR network graph theoretical measures. In 23 patients FR were semi-automatically detected and quantified in stereo EEG recordings during sleep. MRI normalization and co-registration localized contacts and relation to resection margins. The number of FR, and graph theoretical measures, which were spatial (i.e., FR rate-distance radius) or temporal correlational (i.e., FR mutual information), were compared with the resection margins and with seizure outcome We found that the FR RR did not correlate with seizure-outcome (p > 0.05). In contrast, the FR rate-distance radius resected difference and the FR MI mean characteristic path length RR did correlate with seizure-outcome (p < 0.05). Retesting of positive FR RR patients using either FR rate-distance radius resected difference or the FR MI mean characteristic path length RR reduced seizure-free misclassifications from 44 to 22% and 17%, respectively. These results indicate that graph theoretical measures of FR networks can improve the diagnostic accuracy of the resection of FR events for predicting seizure freedom.
Collapse
Affiliation(s)
- Shennan A. Weiss
- grid.262863.b0000 0001 0693 2202Department of Neurology, State University of New York Downstate, Brooklyn, USA ,grid.262863.b0000 0001 0693 2202Department of Physiology and Pharmacology, State University of New York Downstate, 450 Clarkson Avenue, MSC 1213, Brooklyn, NY 11203 USA ,grid.422616.50000 0004 0443 7226Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY USA
| | - Itzhak Fried
- grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Chengyuan Wu
- grid.265008.90000 0001 2166 5843Department of Neuroradiology, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Ashwini Sharan
- grid.265008.90000 0001 2166 5843Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Daniel Rubinstein
- grid.265008.90000 0001 2166 5843Department of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, USA
| | - Jerome Engel
- grid.19006.3e0000 0000 9632 6718Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA ,grid.19006.3e0000 0000 9632 6718Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, USA ,grid.19006.3e0000 0000 9632 6718Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Brain Research Institute, Los Angeles, CA 90095 USA
| | - Michael R. Sperling
- grid.265008.90000 0001 2166 5843Department of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, USA
| | - Richard J. Staba
- grid.19006.3e0000 0000 9632 6718Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
16
|
Weiss SA, Sheybani L, Seenarine N, Fried I, Wu C, Sharan A, Engel J, Sperling MR, Nir Y, Staba RJ. Delta oscillation coupled propagating fast ripples precede epileptiform discharges in patients with focal epilepsy. Neurobiol Dis 2022; 175:105928. [DOI: 10.1016/j.nbd.2022.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
|