1
|
Wang D, Li Z, Zhao K, Chen P, Yang F, Yao H, Zhou B, Wei Y, Lu J, Chen Y, Zhang X, Han Y, Wang P, Liu Y. Macroscale Gradient Dysfunction in Alzheimer's Disease: Patterns With Cognition Terms and Gene Expression Profiles. Hum Brain Mapp 2024; 45:e70046. [PMID: 39449114 PMCID: PMC11502409 DOI: 10.1002/hbm.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Macroscale functional gradient techniques provide a continuous coordinate system that extends from unimodal regions to transmodal higher-order networks. However, the alterations of these functional gradients in AD and their correlations with cognitive terms and gene expression profiles remain to be established. In the present study, we directly studied the functional gradients with functional MRI data from seven scanners. We adopted data-driven meta-analytic techniques to unveil AD-associated changes in the functional gradients. The principal primary-to-transmodal gradient was suppressed in AD. Compared to NCs, AD patients exhibited global connectome gradient alterations, including reduced gradient range and gradient variation, increased gradient scores in the somatomotor, ventral attention, and frontoparietal regions, and decreased in the default mode network. More importantly, the Gene Ontology terms of biological processes were significantly enriched in the potassium ion transport and protein-containing complex remodeling. Our compelling evidence provides a new perspective in understanding the connectome alterations in AD.
Collapse
Affiliation(s)
- Dawei Wang
- Department of RadiologyQilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong UniversityJinanChina
- Research Institute of Shandong UniversityMagnetic Field‐Free Medicine & Functional ImagingJinanChina
- Shandong Key Laboratory: Magnetic Field‐Free Medicine & Functional Imaging (MF)JinanChina
| | - Zhuangzhuang Li
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
| | - Kun Zhao
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Pindong Chen
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences, & Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Fan Yang
- CAS Key Laboratory of Molecular ImagingInstitute of AutomationBeijingChina
| | - Hongxiang Yao
- Department of Radiology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Bo Zhou
- Department of Neurology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Yongbin Wei
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yuqi Chen
- Affiliated HospitalBeijing University of Posts and TelecommunicationsBeijingChina
| | - Xi Zhang
- Department of Neurology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- School of Biomedical EngineeringHainan UniversityHaikouChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
| | - Pan Wang
- Department of NeurologyTianjin Huanhu HospitalTianjinChina
| | - Yong Liu
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
| |
Collapse
|
2
|
Corriveau-Lecavalier N, Barnard LR, Botha H, Graff-Radford J, Ramanan VK, Lee J, Dicks E, Rademakers R, Boeve BF, Machulda MM, Fields JA, Dickson DW, Graff-Radford N, Knopman DS, Lowe VJ, Petersen RC, Jack CR, Jones DT. Uncovering the distinct macro-scale anatomy of dysexecutive and behavioural degenerative diseases. Brain 2024; 147:1483-1496. [PMID: 37831661 PMCID: PMC10994526 DOI: 10.1093/brain/awad356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
There is a longstanding ambiguity regarding the clinical diagnosis of dementia syndromes predominantly targeting executive functions versus behaviour and personality. This is due to an incomplete understanding of the macro-scale anatomy underlying these symptomatologies, a partial overlap in clinical features and the fact that both phenotypes can emerge from the same pathology and vice versa. We collected data from a patient cohort of which 52 had dysexecutive Alzheimer's disease, 30 had behavioural variant frontotemporal dementia (bvFTD), seven met clinical criteria for bvFTD but had Alzheimer's disease pathology (behavioural Alzheimer's disease) and 28 had amnestic Alzheimer's disease. We first assessed group-wise differences in clinical and cognitive features and patterns of fluorodeoxyglucose (FDG) PET hypometabolism. We then performed a spectral decomposition of covariance between FDG-PET images to yield latent patterns of relative hypometabolism unbiased by diagnostic classification, which are referred to as 'eigenbrains'. These eigenbrains were subsequently linked to clinical and cognitive data and meta-analytic topics from a large external database of neuroimaging studies reflecting a wide range of mental functions. Finally, we performed a data-driven exploratory linear discriminant analysis to perform eigenbrain-based multiclass diagnostic predictions. Dysexecutive Alzheimer's disease and bvFTD patients were the youngest at symptom onset, followed by behavioural Alzheimer's disease, then amnestic Alzheimer's disease. Dysexecutive Alzheimer's disease patients had worse cognitive performance on nearly all cognitive domains compared with other groups, except verbal fluency which was equally impaired in dysexecutive Alzheimer's disease and bvFTD. Hypometabolism was observed in heteromodal cortices in dysexecutive Alzheimer's disease, temporo-parietal areas in amnestic Alzheimer's disease and frontotemporal areas in bvFTD and behavioural Alzheimer's disease. The unbiased spectral decomposition analysis revealed that relative hypometabolism in heteromodal cortices was associated with worse dysexecutive symptomatology and a lower likelihood of presenting with behaviour/personality problems, whereas relative hypometabolism in frontotemporal areas was associated with a higher likelihood of presenting with behaviour/personality problems but did not correlate with most cognitive measures. The linear discriminant analysis yielded an accuracy of 82.1% in predicting diagnostic category and did not misclassify any dysexecutive Alzheimer's disease patient for behavioural Alzheimer's disease and vice versa. Our results strongly suggest a double dissociation in that distinct macro-scale underpinnings underlie predominant dysexecutive versus personality/behavioural symptomatology in dementia syndromes. This has important implications for the implementation of criteria to diagnose and distinguish these diseases and supports the use of data-driven techniques to inform the classification of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Center for Molecular Neurology, Antwerp University, Antwerp, Belgium
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Giorgio J, Adams JN, Maass A, Jagust WJ, Breakspear M. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation. Neuron 2024; 112:676-686.e4. [PMID: 38096815 PMCID: PMC10922797 DOI: 10.1016/j.neuron.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 02/24/2024]
Abstract
In early Alzheimer's disease (AD) β-amyloid (Aβ) deposits throughout association cortex and tau appears in the entorhinal cortex (EC). Why these initially appear in disparate locations is not understood. Using task-based fMRI and multimodal PET imaging, we assess the impact of local AD pathology on network-to-network interactions. We show that AD pathologies flip interactions between the default mode network (DMN) and the medial temporal lobe (MTL) from inhibitory to excitatory. The DMN is hyperexcited with increasing levels of Aβ, which drives hyperexcitability within the MTL and this directed hyperexcitation of the MTL by the DMN predicts the rate of tau accumulation within the EC. Our results support a model whereby Aβ induces disruptions to local excitatory-inhibitory balance in the DMN, driving hyperexcitability in the MTL, leading to tau accumulation. We propose that Aβ-induced disruptions to excitatory-inhibitory balance is a candidate causal route between Aβ and remote EC-tau accumulation.
Collapse
Affiliation(s)
- Joseph Giorgio
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, NSW 2305, Australia.
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, NSW 2305, Australia; Discipline of Psychiatry, College of Health, Medicine, and Wellbeing, The University of Newcastle, Newcastle, NSW 2305, Australia
| |
Collapse
|
4
|
Sintini I, Corriveau-Lecavalier N, Jones DT, Machulda MM, Gunter JL, Schwarz CG, Botha H, Carlos AF, Kamykowski MG, Singh NA, Petersen RC, Jack CR, Lowe VJ, Graff-Radford J, Josephs KA, Whitwell JL. Longitudinal default mode sub-networks in the language and visual variants of Alzheimer's disease. Brain Commun 2024; 6:fcae005. [PMID: 38444909 PMCID: PMC10914456 DOI: 10.1093/braincomms/fcae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/13/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024] Open
Abstract
Disruption of the default mode network is a hallmark of Alzheimer's disease, which has not been extensively examined in atypical phenotypes. We investigated cross-sectional and 1-year longitudinal changes in default mode network sub-systems in the visual and language variants of Alzheimer's disease, in relation to age and tau. Sixty-one amyloid-positive Alzheimer's disease participants diagnosed with posterior cortical atrophy (n = 33) or logopenic progressive aphasia (n = 28) underwent structural MRI, resting-state functional MRI and [18F]flortaucipir PET. One-hundred and twenty-two amyloid-negative cognitively unimpaired individuals and 60 amyloid-positive individuals diagnosed with amnestic Alzheimer's disease were included as controls and as a comparison group, respectively, and had structural and resting-state functional MRI. Forty-one atypical Alzheimer's disease participants, 26 amnestic Alzheimer's disease participants and 40 cognitively unimpaired individuals had one follow-up functional MRI ∼1-2 years after the baseline scan. Default mode network connectivity was calculated using the dual regression method for posterior, ventral, anterior ventral and anterior dorsal sub-systems derived from independent component analysis. A global measure of default mode network connectivity, the network failure quotient, was also calculated. Linear mixed-effects models and voxel-based analyses were computed for each connectivity measure. Both atypical and amnestic Alzheimer's disease participants had lower cross-sectional posterior and ventral and higher anterior dorsal connectivity and network failure quotient relative to cognitively unimpaired individuals. Age had opposite effects on connectivity in Alzheimer's disease participants and cognitively unimpaired individuals. While connectivity declined with age in cognitively unimpaired individuals, younger Alzheimer's disease participants had lower connectivity than the older ones, particularly in the ventral default mode network. Greater baseline tau-PET uptake was associated with lower ventral and anterior ventral default mode network connectivity in atypical Alzheimer's disease. Connectivity in the ventral default mode network declined over time in atypical Alzheimer's disease, particularly in older participants, with lower tau burden. Voxel-based analyses validated the findings of higher anterior dorsal default mode network connectivity, lower posterior and ventral default mode network connectivity and decline in ventral default mode network connectivity over time in atypical Alzheimer's disease. Visuospatial symptoms were associated with default mode network connectivity disruption. In summary, default mode connectivity disruption was similar between atypical and amnestic Alzheimer's disease variants, and discriminated Alzheimer's disease from cognitively unimpaired individuals, with decreased posterior and increased anterior connectivity and with disruption more pronounced in younger participants. The ventral default mode network declined over time in atypical Alzheimer's disease, suggesting a shift in default mode network connectivity likely related to tau pathology.
Collapse
Affiliation(s)
- Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
5
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
6
|
Vogel JW, Corriveau-Lecavalier N, Franzmeier N, Pereira JB, Brown JA, Maass A, Botha H, Seeley WW, Bassett DS, Jones DT, Ewers M. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nat Rev Neurosci 2023; 24:620-639. [PMID: 37620599 DOI: 10.1038/s41583-023-00731-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine.
Collapse
Affiliation(s)
- Jacob W Vogel
- Department of Clinical Sciences, SciLifeLab, Lund University, Lund, Sweden.
| | - Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Acadamy, University of Gothenburg, Mölndal and Gothenburg, Sweden
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Neuro Division, Department of Clinical Neurosciences, Karolinska Institute, Stockholm, Sweden
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Dani S Bassett
- Departments of Bioengineering, Electrical and Systems Engineering, Physics and Astronomy, Neurology and Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Montembeault M, Migliaccio R. Atypical forms of Alzheimer's disease: patients not to forget. Curr Opin Neurol 2023; Publish Ahead of Print:00019052-990000000-00085. [PMID: 37365819 DOI: 10.1097/wco.0000000000001182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
PURPOSE OF REVIEW The aim of this paper is to summarize the latest work on neuroimaging in atypical Alzheimer's disease (AD) patients and to emphasize innovative aspects in the clinic and research. The paper will mostly cover language (logopenic variant of primary progressive aphasia; lvPPA), visual (posterior cortical atrophy; PCA), behavioral (bvAD) and dysexecutive (dAD) variants of AD. RECENT FINDINGS MRI and PET can detect and differentiate typical and atypical AD variants, and novel imaging markers like brain iron deposition, white matter hyperintensities (WMH), cortical mean diffusivity, and brain total creatine can also contribute. Together, these approaches have helped to characterize variant-specific distinct imaging profiles. Even within each variant, various subtypes that capture the heterogeneity of cases have been revealed. Finally, in-vivo pathology markers have led to significant advances in the atypical AD neuroimaging field. SUMMARY Overall, the recent neuroimaging literature on atypical AD variants contribute to increase knowledge of these lesser-known AD variants and are key to generate atypical variant-specific clinical trial endpoints, which are required for inclusion of these patients in clinical trials assessing treatments. In return, studying these patients can inform the neurobiology of various cognitive functions, such as language, executive, memory, and visuospatial abilities.
Collapse
Affiliation(s)
- Maxime Montembeault
- Douglas Research Centre, Montréal, Quebec H4H 1R3
- Department of Psychiatry, McGill University, Montréal, Quebec H3A 1A1, Canada
| | - Raffaella Migliaccio
- FrontLab, INSERM U1127, Institut du cerveau, Hôpital Pitié-Salpêtrière
- Centre de Référence des Démences Rares ou Précoces
- Institute of Memory and Alzheimer's Disease, Centre of Excellence of Neurodegenerative Disease, Department of Neurology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|