1
|
Thornton C, Panagiotopoulou M, Chowdhury FA, Diehl B, Duncan JS, Gascoigne SJ, Besne G, McEvoy AW, Miserocchi A, Smith BC, de Tisi J, Taylor PN, Wang Y. Diminished circadian and ultradian rhythms of human brain activity in pathological tissue in vivo. Nat Commun 2024; 15:8527. [PMID: 39358327 PMCID: PMC11447262 DOI: 10.1038/s41467-024-52769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Chronobiological rhythms, such as the circadian rhythm, have long been linked to neurological disorders, but it is currently unknown how pathological processes affect the expression of biological rhythms in the brain. Here, we use the unique opportunity of long-term, continuous intracranially recorded EEG from 38 patients (totalling 6338 hours) to delineate circadian (daily) and ultradian (minute to hourly) rhythms in different brain regions. We show that functional circadian and ultradian rhythms are diminished in pathological tissue, independent of regional variations. We further demonstrate that these diminished rhythms are persistent in time, regardless of load or occurrence of pathological events. These findings provide evidence that brain pathology is functionally associated with persistently diminished chronobiological rhythms in vivo in humans, independent of regional variations or pathological events. Future work interacting with, and restoring, these modulatory chronobiological rhythms may allow for novel therapies.
Collapse
Affiliation(s)
| | | | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
| | | | - Sarah J Gascoigne
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Guillermo Besne
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Billy C Smith
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, London, UK
| | - Peter N Taylor
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Queen Square Institute of Neurology, London, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yujiang Wang
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
- UCL Queen Square Institute of Neurology, London, UK.
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Mellor S, Timms RC, O'Neill GC, Tierney TM, Spedden ME, Brookes MJ, Wagstyl K, Barnes GR. Combining OPM and lesion mapping data for epilepsy surgery planning: a simulation study. Sci Rep 2024; 14:2882. [PMID: 38311614 PMCID: PMC10838931 DOI: 10.1038/s41598-024-51857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
When planning for epilepsy surgery, multiple potential sites for resection may be identified through anatomical imaging. Magnetoencephalography (MEG) using optically pumped sensors (OP-MEG) is a non-invasive functional neuroimaging technique which could be used to help identify the epileptogenic zone from these candidate regions. Here we test the utility of a-priori information from anatomical imaging for differentiating potential lesion sites with OP-MEG. We investigate a number of scenarios: whether to use rigid or flexible sensor arrays, with or without a-priori source information and with or without source modelling errors. We simulated OP-MEG recordings for 1309 potential lesion sites identified from anatomical images in the Multi-centre Epilepsy Lesion Detection (MELD) project. To localise the simulated data, we used three source inversion schemes: unconstrained, prior source locations at centre of the candidate sites, and prior source locations within a volume around the lesion location. We found that prior knowledge of the candidate lesion zones made the inversion robust to errors in sensor gain, orientation and even location. When the reconstruction was too highly restricted and the source assumptions were inaccurate, the utility of this a-priori information was undermined. Overall, we found that constraining the reconstruction to the region including and around the participant's potential lesion sites provided the best compromise of robustness against modelling or measurement error.
Collapse
Affiliation(s)
- Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - George C O'Neill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Meaghan E Spedden
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
- UCL Great Ormond Street Institute for Child Health, University College London, 30 Guilford St, London, WC1N 1EH, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| |
Collapse
|