1
|
Stevens AR, Hadis M, Alldrit H, Milward MR, Di Pietro V, Gendoo DMA, Belli A, Palin W, Davies DJ, Ahmed Z. Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury. Sci Rep 2025; 15:3193. [PMID: 39863663 PMCID: PMC11762322 DOI: 10.1038/s41598-025-87300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined. Here, we used an in-vivo model of SCI in adult rats that received daily PBM (660 nm, 24 mW/cm2, 1 min) and at three days post-injury, the injured spinal cord segment was harvested and subjected to whole transcriptome sequencing and subsequent pathway analysis (generally applicable gene-set enrichment (GAGE)). Pathway analysis demonstrated 1275 differentially expressed genes (DEGs) after PBM treatment, of which 397 were upregulated and 878 were downregulated. Key pathways were significantly enriched, including 8.6-fold enrichment of "neuron projection morphogenesis" (adjusted p = 8.10 × 10- 14), with upregulation of Notch3, Slit1/Robo2 and Sema3g pathways. Ribosomal and oxidative phosphorylation pathways and NADH dehydrogenase were downregulated, and there was upregulation of ATP-dependent activity, cAMP and calcium signalling pathways. Key genes in apoptotic pathways were downregulated, as were S100 and cyclo-oxygenase components. Together, our study supports the favourable effects of PBM in promoting neuroregeneration and suppressing apoptosis after neurological injury. Further findings from pathway analysis suggest that downregulation of metabolism-associated pathways is a mechanism by which acute post-injury mitochondrial dysfunction may be averted by PBM therapy.
Collapse
Affiliation(s)
- Andrew R Stevens
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Phototherapy Research Group, School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
| | - Mohammed Hadis
- Phototherapy Research Group, School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
- School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
| | - Hannah Alldrit
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Michael R Milward
- School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Valentina Di Pietro
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Neurogenetics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Deena M A Gendoo
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
- Institute for Interdisciplinary Data Science and AI, University of Birmingham, Birmingham, B15 2TT, UK
| | - Antonio Belli
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William Palin
- Phototherapy Research Group, School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
- School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
| | - David J Davies
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK
- Phototherapy Research Group, School of Dentistry, College of Medicine and Health, University of Birmingham, Birmingham, B5 7EG, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, B15 2TH, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Centre for Neurogenetics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Akhter N, Contreras J, Ansari MA, Ducruet AF, Hoda MN, Ahmad AS, Gangwani LD, Bhatia K, Ahmad S. Remote Ischemic Post-Conditioning (RIC) Mediates Anti-Inflammatory Signaling via Myeloid AMPKα1 in Murine Traumatic Optic Neuropathy (TON). Int J Mol Sci 2024; 25:13626. [PMID: 39769388 PMCID: PMC11728166 DOI: 10.3390/ijms252413626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial. AMPKα1 is the catalytic subunit of the heterotrimeric enzyme AMPK, the master regulator of cellular energetics and metabolism. The α1 isoform predominates in immune cells including macrophages (Mφs). Myeloid-specific AMPKα1 KO mice were generated by crossing AMPKα1Flox/Flox and LysMcre to carry out the study. We induced TON in mice by using a controlled impact system. Mice (mixed sex) were randomized in six experimental groups for Sham (mock); Sham (RIC); AMPKα1F/F (TON); AMPKα1F/F (TON+RIC); AMPKα1F/F LysMCre (TON); AMPKα1F/F LysMCre (TON+RIC). RIC therapy was given every day (5-7 days following TON). Data were generated by using Western blotting (pAMPKα1, ICAM1, Brn3 and GAP43), immunofluorescence (pAMPKα1, cd11b, TMEM119 and ICAM1), flow cytometry (CD11b, F4/80, CD68, CD206, IL-10 and LY6G), ELISA (TNF-α and IL-10) and transmission electron microscopy (TEM, for demyelination and axonal degeneration), and retinal oxygenation was measured by a Unisense sensor system. First, we observed retinal morphology with funduscopic images and found TON has vascular inflammation. H&E staining data suggested that TON increased retinal inflammation and RIC attenuates retinal ganglion cell death. Immunofluorescence and Western blot data showed increased microglial activation and decreased retinal ganglion cell (RGCs) marker Brn3 and axonal regeneration marker GAP43 expression in the TON [AMPKα1F/F] vs. Sham group, but TON+RIC [AMPKα1F/F] attenuated the expression level of these markers. Interestingly, higher microglia activation was observed in the myeloid AMPKα1F/F KO group following TON, and RIC therapy did not attenuate microglial expression. Flow cytometry, ELISA and retinal tissue oxygen data revealed that RIC therapy significantly reduced the pro-inflammatory signaling markers, increased anti-inflammatory macrophage polarization and improved oxygen level in the TON+RIC [AMPKα1F/F] group; however, RIC therapy did not reduce inflammatory signaling activation in the myeloid AMPKα1 KO mice. The transmission electron microscopy (TEM) data of the optic nerve showed increased demyelination and axonal degeneration in the TON [AMPKα1F/F] group, and RIC improved the myelination process in TON [AMPKα1F/F], but RIC had no significant effect in the AMPKα1 KO mice. The myeloid AMPKα1c deletion attenuated RIC induced anti-inflammatory macrophage polarization, and that suggests a molecular link between RIC and immune activation. Overall, these data suggest that RIC therapy provided protection against inflammation and neurodegeneration via myeloid AMPKα1 activation, but the deletion of myeloid AMPKα1 is not protective in TON. Further investigation of RIC and AMPKα1 signaling is warranted in TON.
Collapse
Affiliation(s)
- Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
| | - Mairaj A. Ansari
- Department of Biotechnology, Centre for Virology, Hamdard University, New Delhi 110062, India
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Medical Center, Detroit, MI 48202, USA
| | - Abdullah S. Ahmad
- Department of Neurology, Henry Ford Medical Center, Detroit, MI 48202, USA
| | - Laxman D. Gangwani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kanchan Bhatia
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA (K.B.)
- Phoenix Veteran Affairs (VA), Phoenix, AZ 85012, USA
| |
Collapse
|
3
|
Stevens AR, Hadis M, Phillips A, Thareja A, Milward M, Belli A, Palin W, Davies DJ, Ahmed Z. Implantable and transcutaneous photobiomodulation promote neuroregeneration and recovery of lost function after spinal cord injury. Bioeng Transl Med 2024; 9:e10674. [PMID: 39545078 PMCID: PMC11558183 DOI: 10.1002/btm2.10674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 11/17/2024] Open
Abstract
Spinal cord injury (SCI) is a cause of profound and irreversible damage, with no effective therapy to promote functional recovery. Photobiomodulation (PBM) may provide a viable therapeutic approach using red or near-infrared light to promote recovery after SCI by mitigating neuroinflammation and preventing neuronal apoptosis. Our current study aimed to optimize PBM dose regimens and develop and validate the efficacy of an invasive PBM delivery paradigm for SCI. Dose optimization studies were performed using a serum withdrawal model of injury in cultures of primary adult rat dorsal root ganglion neurons (DRGN). Implantable and transcutaneous PBM delivery protocols were developed and validated using cadaveric modeling. The efficacy of PBM in promoting recovery after SCI in vivo was studied in a dorsal column crush injury model of SCI in adult rats. Optimal neuroprotection in vitro was achieved between 4 and 22 mW/cm2. 11 mW/cm2 for 1 min per day (0.66 J/cm2) increased cell viability by 45% over 5 days (p <0.0001), increasing neurite outgrowth by 25% (p <0.01). A method for invasive application of PBM was developed using a diffusion-tipped optogenetics fiber optic. Delivery methods for PBM were developed and validated for both invasive (iPBM) and noninvasive (transcutaneous) (tcPBM) application. iPBM and tcPBM (24 mW/cm2 at spinal cord, 1 min per day (1.44 J/cm2) up to 7 days) increased activation of regeneration-associated protein at 3 days after SCI, increasing GAP43+ axons in DRGN from 18.0% (control) to 41.4% ± 10.5 (iPBM) and 45.8% ± 3.4 (tcPBM) (p <0.05). This corresponded to significant improvements at 6 weeks post-injury in functional locomotor and sensory function recovery (p <0.01), axonal regeneration (p <0.01), and reduced lesion size (p <0.01). Our results demonstrated that PBM achieved a significant therapeutic benefit after SCI, either using iPBM or tcPBM application and can potentially be developed for clinical use in SCI patients.
Collapse
Affiliation(s)
- Andrew R. Stevens
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospitals BirminghamBirminghamUK
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
| | - Mohammed Hadis
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
- School of DentistryUniversity of BirminghamBirminghamUK
| | - Alice Phillips
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
| | - Abhinav Thareja
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
| | - Michael Milward
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
- School of DentistryUniversity of BirminghamBirminghamUK
| | - Antonio Belli
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospitals BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| | - William Palin
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
- School of DentistryUniversity of BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| | - David J. Davies
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospitals BirminghamBirminghamUK
- Phototherapy Research Group, School of DentistryUniversity of BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| | - Zubair Ahmed
- Neuroscience and OphthalmologyInstitute of Inflammation and Ageing, University of BirminghamBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospitals BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
4
|
Lei SY, Qu Y, Yang YQ, Liu JC, Zhang YF, Zhou SY, He QY, Jin H, Yang Y, Guo ZN. Cellular senescence: A novel therapeutic target for central nervous system diseases. Biomed Pharmacother 2024; 179:117311. [PMID: 39182322 DOI: 10.1016/j.biopha.2024.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The underlying mechanisms of diseases affecting the central nervous system (CNS) remain unclear, limiting the development of effective therapeutic strategies. Remarkably, cellular senescence, a biological phenomenon observed in cultured fibroblasts in vitro, is a crucial intrinsic mechanism that influences homeostasis of the brain microenvironment and contributes to the onset and progression of CNS diseases. Cellular senescence has been observed in disease models established in vitro and in vivo and in bodily fluids or tissue components from patients with CNS diseases. These findings highlight cellular senescence as a promising target for preventing and treating CNS diseases. Consequently, emerging novel therapies targeting senescent cells have exhibited promising therapeutic effects in preclinical and clinical studies on aging-related diseases. These innovative therapies can potentially delay brain cell loss and functional changes, improve the prognosis of CNS diseases, and provide alternative treatments for patients. In this study, we examined the relevant advancements in this field, particularly focusing on the targeting of senescent cells in the brain for the treatment of chronic neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis) and acute neurotraumatic insults (e.g., ischemic stroke, spinal cord injury, and traumatic brain injury).
Collapse
Affiliation(s)
- Shuang-Yin Lei
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Qian Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia-Cheng Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi-Fei Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Hang Jin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China; Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Kisielewska M, Filipski M, Sebastianka K, Karaś D, Molik K, Choromańska A. Investigation into the Neuroprotective and Therapeutic Potential of Plant-Derived Chk2 Inhibitors. Int J Mol Sci 2024; 25:7725. [PMID: 39062967 PMCID: PMC11277127 DOI: 10.3390/ijms25147725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Nature provides us with a rich source of compounds with a wide range of applications, including the creation of innovative drugs. Despite advancements in chemically synthesized therapeutics, natural compounds are increasingly significant, especially in cancer treatment, a leading cause of death globally. One promising approach involves the use of natural inhibitors of checkpoint kinase 2 (Chk2), a critical regulator of DNA repair, cell cycle arrest, and apoptosis. Chk2's activation in response to DNA damage can lead to apoptosis or DNA repair, influencing glycolysis and mitochondrial function. In cancer therapy, inhibiting Chk2 can disrupt DNA repair and cell cycle progression, promoting cancer cell death and enhancing the efficacy of radiotherapy and chemotherapy. Additionally, Chk2 inhibitors can safeguard non-cancerous cells during these treatments by inhibiting p53-dependent apoptosis. Beyond oncology, Chk2 inhibition shows potential in treating hepatitis C virus (HCV) infections, as the virus relies on Chk2 for RNA replication in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), in which DNA damage plays a crucial role. Plant-derived Chk2 inhibitors, such as artemetin, rhamnetin, and curcumin, offer a promising future for treating various diseases with potentially milder side effects and broader metabolic impacts compared to conventional therapies. The review aims to underscore the immense potential of natural Chk2 inhibitors in various therapeutic contexts, particularly in oncology and the treatment of other diseases involving DNA damage and repair mechanisms. These natural Chk2 inhibitors hold significant promise for revolutionizing the landscape of cancer treatment and other diseases. Further research into these compounds could lead to the development of innovative therapies that offer hope for the future with fewer side effects and enhanced efficacy.
Collapse
Affiliation(s)
- Monika Kisielewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Kamil Sebastianka
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Dobrawa Karaś
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (M.K.); (M.F.); (K.S.); (D.K.); (K.M.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Chauvin SD, Ando S, Holley JA, Sugie A, Zhao FR, Poddar S, Kato R, Miner CA, Nitta Y, Krishnamurthy SR, Saito R, Ning Y, Hatano Y, Kitahara S, Koide S, Stinson WA, Fu J, Surve N, Kumble L, Qian W, Polishchuk O, Andhey PS, Chiang C, Liu G, Colombeau L, Rodriguez R, Manel N, Kakita A, Artyomov MN, Schultz DC, Coates PT, Roberson EDO, Belkaid Y, Greenberg RA, Cherry S, Gack MU, Hardy T, Onodera O, Kato T, Miner JJ. Inherited C-terminal TREX1 variants disrupt homology-directed repair to cause senescence and DNA damage phenotypes in Drosophila, mice, and humans. Nat Commun 2024; 15:4696. [PMID: 38824133 PMCID: PMC11144269 DOI: 10.1038/s41467-024-49066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Age-related microangiopathy, also known as small vessel disease (SVD), causes damage to the brain, retina, liver, and kidney. Based on the DNA damage theory of aging, we reasoned that genomic instability may underlie an SVD caused by dominant C-terminal variants in TREX1, the most abundant 3'-5' DNA exonuclease in mammals. C-terminal TREX1 variants cause an adult-onset SVD known as retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S). In RVCL, an aberrant, C-terminally truncated TREX1 mislocalizes to the nucleus due to deletion of its ER-anchoring domain. Since RVCL pathology mimics that of radiation injury, we reasoned that nuclear TREX1 would cause DNA damage. Here, we show that RVCL-associated TREX1 variants trigger DNA damage in humans, mice, and Drosophila, and that cells expressing RVCL mutant TREX1 are more vulnerable to DNA damage induced by chemotherapy and cytokines that up-regulate TREX1, leading to depletion of TREX1-high cells in RVCL mice. RVCL-associated TREX1 mutants inhibit homology-directed repair (HDR), causing DNA deletions and vulnerablility to PARP inhibitors. In women with RVCL, we observe early-onset breast cancer, similar to patients with BRCA1/2 variants. Our results provide a mechanistic basis linking aberrant TREX1 activity to the DNA damage theory of aging, premature senescence, and microvascular disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shoichiro Ando
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Joe A Holley
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Atsushi Sugie
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Fang R Zhao
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Subhajit Poddar
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rei Kato
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Cathrine A Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yohei Nitta
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rie Saito
- Department of Pathology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yue Ning
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuya Hatano
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Sho Kitahara
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shin Koide
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - W Alexander Stinson
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Jiayuan Fu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nehalee Surve
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lindsay Kumble
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wei Qian
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Oleksiy Polishchuk
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Prabhakar S Andhey
- Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Guanqun Liu
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ludovic Colombeau
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Raphaël Rodriguez
- Equipe Labellisée Ligue Contre le Cancer, Institut Curie, CNRS, INSERM, PSL Research University, Paris, France
| | - Nicolas Manel
- INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - Akiyoshi Kakita
- Department of Pathology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - David C Schultz
- High-throughput Screening Core, University of Pennsylvania, Philadelphia, PA, USA
| | - P Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, Australia
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Elisha D O Roberson
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institut Pasteur, Paris, France
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Tristan Hardy
- Genetics, Repromed, Monash IVF, Dulwich, South Australia, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Molecular Neuroscience, Brain Science Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Taisuke Kato
- Department of Molecular Neuroscience, Brain Science Branch, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Jonathan J Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- RVCL Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Penn Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Passaro ML, Matarazzo F, Abbadessa G, Pezone A, Porcellini A, Tranfa F, Rinaldi M, Costagliola C. Glaucoma as a Tauopathy-Is It the Missing Piece in the Glaucoma Puzzle? J Clin Med 2023; 12:6900. [PMID: 37959365 PMCID: PMC10650423 DOI: 10.3390/jcm12216900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disorder affecting the visual system which can result in vision loss and blindness. The pathogenetic mechanisms underlying glaucomatous optic neuropathy are ultimately enigmatic, prompting ongoing investigations into its potential shared pathogenesis with other neurodegenerative neurological disorders. Tauopathies represent a subclass of neurodegenerative diseases characterized by the abnormal deposition of tau protein within the brain and consequent microtubule destabilization. The extended spectrum of tauopathies includes conditions such as frontotemporal dementias, progressive supranuclear palsy, chronic traumatic encephalopathy, and Alzheimer's disease. Notably, recent decades have witnessed emerging documentation of tau inclusion among glaucoma patients, providing substantiation that this ocular disease may similarly manifest features of tauopathies. These studies found that: (i) aggregated tau inclusions are present in the somatodendritic compartment of RGCs in glaucoma patients; (ii) the etiology of the disease may affect tau splicing, phosphorylation, oligomerization, and subcellular localization; and (iii) short interfering RNA against tau, administered intraocularly, significantly decreased retinal tau accumulation and enhanced RGC somas and axon survival, demonstrating a crucial role for tau modifications in ocular hypertension-induced neuronal injury. Here, we examine the most recent evidence surrounding the interplay between tau protein dysregulation and glaucomatous neurodegeneration. We explore the novel perspective of glaucoma as a tau-associated disorder and open avenues for cross-disciplinary collaboration and new treatment strategies.
Collapse
Affiliation(s)
- Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | | | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Antonio Pezone
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Antonio Porcellini
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| |
Collapse
|
8
|
Zhang Y, Gong H, Wang JS, Li MN, Cao DL, Gu J, Zhao LX, Zhang XD, Deng YT, Dong FL, Gao YJ, Sun WX, Jiang BC. Nerve Injury-Induced γH2AX Reduction in Primary Sensory Neurons Is Involved in Neuropathic Pain Processing. Int J Mol Sci 2023; 24:10148. [PMID: 37373296 DOI: 10.3390/ijms241210148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Phosphorylation of the serine 139 of the histone variant H2AX (γH2AX) is a DNA damage marker that regulates DNA damage response and various diseases. However, whether γH2AX is involved in neuropathic pain is still unclear. We found the expression of γH2AX and H2AX decreased in mice dorsal root ganglion (DRG) after spared nerve injury (SNI). Ataxia telangiectasia mutated (ATM), which promotes γH2AX, was also down-regulated in DRG after peripheral nerve injury. ATM inhibitor KU55933 decreased the level of γH2AX in ND7/23 cells. The intrathecal injection of KU55933 down-regulated DRG γH2AX expression and significantly induced mechanical allodynia and thermal hyperalgesia in a dose-dependent manner. The inhibition of ATM by siRNA could also decrease the pain threshold. The inhibition of dephosphorylation of γH2AX by protein phosphatase 2A (PP2A) siRNA partially suppressed the down-regulation of γH2AX after SNI and relieved pain behavior. Further exploration of the mechanism revealed that inhibiting ATM by KU55933 up-regulated extracellular-signal regulated kinase (ERK) phosphorylation and down-regulated potassium ion channel genes, such as potassium voltage-gated channel subfamily Q member 2 (Kcnq2) and potassium voltage-gated channel subfamily D member 2 (Kcnd2) in vivo, and KU559333 enhanced sensory neuron excitability in vitro. These preliminary findings imply that the down-regulation of γH2AX may contribute to neuropathic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Hao Gong
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Ji-Shuai Wang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Meng-Na Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - De-Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Coral Gables, FL 33136, USA
| | - Lin-Xia Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xin-Dan Zhang
- The 1st Clinical Department, China Medical University, Shenyang 110122, China
| | - Yu-Tao Deng
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fu-Lu Dong
- Department of Pathology, Medical School, Nantong University, Nantong 226001, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Wen-Xing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
9
|
Wang ZX, Li YL, Pu JL, Zhang BR. DNA Damage-Mediated Neurotoxicity in Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24076313. [PMID: 37047285 PMCID: PMC10093980 DOI: 10.3390/ijms24076313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Collapse
Affiliation(s)
| | | | - Jia-Li Pu
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| | - Bao-Rong Zhang
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| |
Collapse
|
10
|
Sohn J, Lee SE, Shim EY. DNA Damage and Repair in Eye Diseases. Int J Mol Sci 2023; 24:3916. [PMID: 36835325 PMCID: PMC9964121 DOI: 10.3390/ijms24043916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Vision is vital for daily activities, and yet the most common eye diseases-cataracts, DR, ARMD, and glaucoma-lead to blindness in aging eyes. Cataract surgery is one of the most frequently performed surgeries, and the outcome is typically excellent if there is no concomitant pathology present in the visual pathway. In contrast, patients with DR, ARMD and glaucoma often develop significant visual impairment. These often-multifactorial eye problems can have genetic and hereditary components, with recent data supporting the role of DNA damage and repair as significant pathogenic factors. In this article, we discuss the role of DNA damage and the repair deficit in the development of DR, ARMD and glaucoma.
Collapse
Affiliation(s)
- Joanna Sohn
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Keystone School, 119 E. Craig Pl., San Antonio, TX 78212, USA
| | - Sang-Eun Lee
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Eun-Yong Shim
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Gospodinova KO, Olsen D, Kaas M, Anderson SM, Phillips J, Walker RM, Bermingham ML, Payne AL, Giannopoulos P, Pandya D, Spires-Jones TL, Abbott CM, Porteous DJ, Glerup S, Evans KL. Loss of SORCS2 is Associated with Neuronal DNA Double-Strand Breaks. Cell Mol Neurobiol 2023; 43:237-249. [PMID: 34741697 PMCID: PMC9813074 DOI: 10.1007/s10571-021-01163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023]
Abstract
SORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIβ-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA breaks in vitro, suggesting that the observed differences may not be the result of aberrant neuronal activity in these cells. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.
Collapse
Affiliation(s)
- Katerina O. Gospodinova
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Ditte Olsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Mathias Kaas
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Susan M. Anderson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Jonathan Phillips
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Rosie M. Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK ,Present Address: University of Edinburgh, Chancellor’s Building, 49, Edinburgh, EH16 4SB UK
| | - Mairead L. Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Abigail L. Payne
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Panagiotis Giannopoulos
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Divya Pandya
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Catherine M. Abbott
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| |
Collapse
|
12
|
Wong GCN, Chow KHM. DNA Damage Response-Associated Cell Cycle Re-Entry and Neuronal Senescence in Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2023; 94:S429-S451. [PMID: 35848025 PMCID: PMC10473156 DOI: 10.3233/jad-220203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Chronological aging is by far the strongest risk factor for age-related dementia and Alzheimer's disease. Senescent cells accumulated in the aging and Alzheimer's disease brains are now recognized as the keys to describing such an association. Cellular senescence is a classic phenomenon characterized by stable cell arrest, which is thought to be applicable only to dividing cells. Emerging evidence indicates that fully differentiated post-mitotic neurons are also capable of becoming senescent, with roles in contributing to both brain aging and disease pathogenesis. The key question that arises is the identity of the upstream triggers and the molecular mechanisms that underly such changes. Here, we highlight the potential role of persistent DNA damage response as the major driver of senescent phenotypes and discuss the current evidence and molecular mechanisms that connect DNA repair infidelity, cell cycle re-entry and terminal fate decision in committing neuronal cell senescence.
Collapse
Affiliation(s)
- Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
13
|
Taylor MJ, Thompson AM, Alhajlah S, Tuxworth RI, Ahmed Z. Inhibition of Chk2 promotes neuroprotection, axon regeneration, and functional recovery after CNS injury. SCIENCE ADVANCES 2022; 8:eabq2611. [PMID: 36103534 PMCID: PMC9473583 DOI: 10.1126/sciadv.abq2611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
DNA double-strand breaks occur in many acute and long-term neurological conditions, including neurodegeneration, neurotrauma, and stroke. Nonrepaired breaks chronically activate the DNA damage response in neurons, leading to neural dysfunction and apoptosis. Here, we show that targeting of the central ATM-Chk2 pathway regulating the response to double-strand breaks slows neural decline in Drosophila models of chronic neurodegeneration. Inhibitors of ATM-Chk2, but not the parallel ATR-Chk1 pathway, also promote marked, functional recovery after acute central nervous system injury in rats, suggesting that inhibiting nonhomologous end-joining rather than homologous recombination is crucial for neuroprotection. We demonstrate that the Chk2 inhibitor, prexasertib, which has been evaluated in phase 2 clinical trials for cancer, has potent neuroprotective effects and represents a new treatment option to promote functional recovery after spinal cord or optic nerve injury.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adam M. Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sharif Alhajlah
- Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia
| | - Richard I. Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Scheijen EEM, Hendrix S, Wilson DM. Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence? Antioxidants (Basel) 2022; 11:antiox11091728. [PMID: 36139802 PMCID: PMC9495924 DOI: 10.3390/antiox11091728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress occurs at various phases of spinal cord injury (SCI), promoting detrimental processes such as free radical injury of proteins, nucleic acids, lipids, cytoskeleton, and organelles. Oxidative DNA damage is likely a major contributor to the pathogenesis of SCI, as a damaged genome cannot be simply turned over to avert detrimental molecular and cellular outcomes, most notably cell death. Surprisingly, the evidence to support this hypothesis is limited. There is some evidence that oxidative DNA damage is increased following SCI, mainly using comet assays and immunohistochemistry. However, there is great variability in the timing and magnitude of its appearance, likely due to differences in experimental models, measurement techniques, and the rigor of the approach. Evidence indicates that 8-oxodG is most abundant at 1 and 7 days post-injury (dpi), while DNA strand breaks peak at 7 and 28 dpi. The DNA damage response seems to be characterized by upregulation of PCNA and PARP1 but downregulation of APEX1. Significant improvements in the analysis of oxidative DNA damage and repair after SCI, including single-cell analysis at time points representative for each phase post-injury using new methodologies and better reporting, will uncover the role of DNA damage and repair in SCI.
Collapse
Affiliation(s)
- Elle E. M. Scheijen
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Germany, Am Kaiserkai 1, 20457 Hamburg, Germany
- Correspondence: (S.H.); (D.M.W.III)
| | - David M. Wilson
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
- Correspondence: (S.H.); (D.M.W.III)
| |
Collapse
|
15
|
Rigal J, Martin Anduaga A, Bitman E, Rivellese E, Kadener S, Marr MT. Artificially stimulating retrotransposon activity increases mortality and accelerates a subset of aging phenotypes in Drosophila. eLife 2022; 11:80169. [PMID: 35980024 PMCID: PMC9427105 DOI: 10.7554/elife.80169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are mobile sequences of DNA that can become transcriptionally active as an animal ages. Whether TE activity is simply a by-product of heterochromatin breakdown or can contribute toward the aging process is not known. Here, we place the TE gypsy under the control of the UAS GAL4 system to model TE activation during aging. We find that increased TE activity shortens the life span of male Drosophila melanogaster. The effect is only apparent in middle-aged animals. The increase in mortality is not seen in young animals. An intact reverse transcriptase is necessary for the decrease in life span, implicating a DNA-mediated process in the effect. The decline in life span in the active gypsy flies is accompanied by the acceleration of a subset of aging phenotypes. TE activity increases sensitivity to oxidative stress and promotes a decline in circadian rhythmicity. The overexpression of the Forkhead-box O family (FOXO) stress response transcription factor can partially rescue the detrimental effects of increased TE activity on life span. Our results provide evidence that active TEs can behave as effectors in the aging process and suggest a potential novel role for dFOXO in its promotion of longevity in D. melanogaster.
Collapse
Affiliation(s)
- Joyce Rigal
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Elena Bitman
- Department of Biology, Brandeis University, Waltham, United States
| | - Emma Rivellese
- Department of Biology, Brandeis University, Waltham, United States
| | | | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
16
|
Ahmed Z, Tuxworth RI. The brain-penetrant ATM inhibitor, AZD1390, promotes axon regeneration and functional recovery in preclinical models of spinal cord injury. Clin Transl Med 2022; 12:e962. [PMID: 35818848 PMCID: PMC9274214 DOI: 10.1002/ctm2.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| | - Richard I. Tuxworth
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
17
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
18
|
Matthews J, Surey S, Grover LM, Logan A, Ahmed Z. Thermosensitive collagen/fibrinogen gels loaded with decorin suppress lesion site cavitation and promote functional recovery after spinal cord injury. Sci Rep 2021; 11:18124. [PMID: 34518601 PMCID: PMC8438067 DOI: 10.1038/s41598-021-97604-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
The treatment of spinal cord injury (SCI) is a complex challenge in regenerative medicine, complicated by the low intrinsic capacity of CNS neurons to regenerate their axons and the heterogeneity in size, shape and extent of human injuries. For example, some contusion injuries do not compromise the dura mater and in such cases implantation of preformed scaffolds or drug delivery systems may cause further damage. Injectable in situ thermosensitive scaffolds are therefore a less invasive alternative. In this study, we report the development of a novel, flowable, thermosensitive, injectable drug delivery system comprising bovine collagen (BC) and fibrinogen (FB) that forms a solid BC/FB gel (Gel) immediately upon exposure to physiological conditions and can be used to deliver reparative drugs, such as the naturally occurring anti-inflammatory, anti-scarring agent Decorin, into adult rat spinal cord lesion sites. In dorsal column lesions of adult rats treated with the Gel + Decorin, cavitation was completely suppressed and instead lesion sites became filled with injury-responsive cells and extracellular matrix materials, including collagen and laminin. Decorin increased the intrinsic potential of dorsal root ganglion neurons (DRGN) by increasing their expression of regeneration associated genes (RAGs), enhanced local axon regeneration/sprouting, as evidenced both histologically and by improved electrophysiological, locomotor and sensory function recovery. These results suggest that this drug formulated, injectable hydrogel has the potential to be further studied and translated into the clinic.
Collapse
Affiliation(s)
- Jacob Matthews
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarina Surey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
19
|
Alhajlah S, Thompson AM, Ahmed Z. Overexpression of Reticulon 3 Enhances CNS Axon Regeneration and Functional Recovery after Traumatic Injury. Cells 2021; 10:2015. [PMID: 34440784 PMCID: PMC8395006 DOI: 10.3390/cells10082015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
CNS neurons are generally incapable of regenerating their axons after injury due to several intrinsic and extrinsic factors, including the presence of axon growth inhibitory molecules. One such potent inhibitor of CNS axon regeneration is Reticulon (RTN) 4 or Nogo-A. Here, we focused on RTN3 as its contribution to CNS axon regeneration is currently unknown. We found that RTN3 expression correlated with an axon regenerative phenotype in dorsal root ganglion neurons (DRGN) after injury to the dorsal columns, a well-characterised model of spinal cord injury. Overexpression of RTN3 promoted disinhibited DRGN neurite outgrowth in vitro and dorsal column axon regeneration/sprouting and electrophysiological, sensory and locomotor functional recovery after injury in vivo. Knockdown of protrudin, however, ablated RTN3-enhanced neurite outgrowth/axon regeneration in vitro and in vivo. Moreover, overexpression of RTN3 in a second model of CNS injury, the optic nerve crush injury model, enhanced retinal ganglion cell (RGC) survival, disinhibited neurite outgrowth in vitro and survival and axon regeneration in vivo, an effect that was also dependent on protrudin. These results demonstrate that RTN3 enhances neurite outgrowth/axon regeneration in a protrudin-dependent manner after both spinal cord and optic nerve injury.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
- Applied Medical Science College, Shaqra University, P.O. Box 1678, Ad-Dawadmi 11911, Saudi Arabia
| | - Adam M Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Leung E, Hazrati LN. Breast cancer type 1 and neurodegeneration: consequences of deficient DNA repair. Brain Commun 2021; 3:fcab117. [PMID: 34222870 PMCID: PMC8242133 DOI: 10.1093/braincomms/fcab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous cellular processes, including toxic protein aggregation and oxidative stress, have been studied extensively as potential mechanisms underlying neurodegeneration. However, limited therapeutic efficacy targeting these processes has prompted other mechanisms to be explored. Previous research has emphasized a link between cellular senescence and neurodegeneration, where senescence induced by excess DNA damage and deficient DNA repair results in structural and functional changes that ultimately contribute to brain dysfunction and increased vulnerability for neurodegeneration. Specific DNA repair proteins, such as breast cancer type 1, have been associated with both stress-induced senescence and neurodegenerative diseases, however, specific mechanisms remain unclear. Therefore, this review explores DNA damage-induced senescence in the brain as a driver of neurodegeneration, with particular focus on breast cancer type 1, and its potential contribution to sex-specific differences associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
21
|
Spatiotemporal 7q11.23 protein network analysis implicates the role of DNA repair pathway during human brain development. Sci Rep 2021; 11:8246. [PMID: 33859276 PMCID: PMC8050238 DOI: 10.1038/s41598-021-87632-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
Recurrent deletions and duplications of chromosome 7q11.23 copy number variants (CNVs) are associated with several psychiatric disorders. Although phenotypic abnormalities have been observed in patients, causal genes responsible for CNV-associated diagnoses and traits are still poorly understood. Furthermore, the targeted human brain regions, developmental stages, protein networks, and signaling pathways, influenced by this CNV remain unclear. Previous works showed GTF2I involved in Williams-Beuren syndrome, but pathways affected by GTF2I are indistinct. We first constructed dynamic spatiotemporal networks of 7q11.23 genes by combining data from the brain developmental transcriptome with physical interactions of 7q11.23 proteins. Topological changes were observed in protein-protein interaction (PPI) networks throughout different stages of brain development. Early and late fetal periods of development in the cortex, striatum, hippocampus, and amygdale were observed as the vital periods and regions for 7q11.23 CNV proteins. CNV proteins and their partners are significantly enriched in DNA repair pathway. As a driver gene, GTF2I interacted with PRKDC and BRCA1 to involve in DNA repair pathway. The physical interaction between GTF2I with PRKDC was confirmed experimentally by the liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified that early and late fetal periods are crucial for 7q11.23 genes to affect brain development. Our results implicate that 7q11.23 CNV genes converge on the DNA repair pathway to contribute to the pathogenesis of psychiatric diseases.
Collapse
|
22
|
Thadathil N, Hori R, Xiao J, Khan MM. DNA double-strand breaks: a potential therapeutic target for neurodegenerative diseases. Chromosome Res 2019; 27:345-364. [PMID: 31707536 PMCID: PMC7934912 DOI: 10.1007/s10577-019-09617-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The complexity of neurodegeneration restricts the ability to understand and treat the neurological disorders affecting millions of people worldwide. Therefore, there is an unmet need to develop new and more effective therapeutic strategies to combat these devastating conditions and that will only be achieved with a better understanding of the biological mechanism associated with disease conditions. Recent studies highlight the role of DNA damage, particularly, DNA double-strand breaks (DSBs), in the progression of neuronal loss in a broad spectrum of human neurodegenerative diseases. This is not unexpected because neurons are prone to DNA damage due to their non-proliferative nature and high metabolic activity. However, it is not clear if DSBs is a primary driver of neuronal loss in disease conditions or simply occurs concomitant with disease progression. Here, we provide evidence that supports a critical role of DSBs in the pathogenesis of the neurodegenerative diseases. Among different kinds of DNA damages, DSBs are the most harmful and perilous type of DNA damage and can lead to cell death if left unrepaired or repaired with error. In this review, we explore the current state of knowledge regarding the role of DSBs repair mechanisms in preserving neuronal function and survival and describe how DSBs could drive the molecular mechanisms resulting in neuronal death in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also discuss the potential implications of DSBs as a novel therapeutic target and prognostic marker in patients with neurodegenerative conditions.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Roderick Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Division of Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|