1
|
Hou M, Yang X, Gong L, Shen X. Surveillance of antimicrobial resistance using isothermal amplification: a review. Chem Commun (Camb) 2025; 61:1748-1760. [PMID: 39745317 DOI: 10.1039/d4cc05488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The monitoring of antibiotic resistance genes (ARGs) is crucial for understanding the level of antimicrobial resistance and the associated health burden, which in turn is essential for the control and prevention of antimicrobial resistance (AMR). Isothermal amplification, an emerging molecular biology technology, has been widely used for drug resistance detection. Furthermore, its compatibility with a range of technologies enables high-specificity, high-throughput, and portable and integrated detection in drug resistance, particularly in resource-limited areas. However, to date, reviews involved in isothermal amplification all concentrate on its technological advancements and its application in nucleic acid point-of-care testing. Few reviews have been published that focus specifically on the application of isothermal amplification in the detection of drug resistance. This review summarizes the detection principles of different isothermal amplification techniques and discusses their strengths and weaknesses as well as the applicable scenarios for drug resistance detection. It also summarizes advances in the application, challenges and prospects of isothermal amplification technologies in conjunction with different methods such as base mismatch, CRISPR-Cas, lateral flow immunoassay, sensing and microfluidic technologies for improvement of specificity, throughput and integration for drug resistance detection. It is anticipated that this review will assist scientists in comprehending the evolution of isothermal amplification in the context of drug resistance detection and provide insights into the prospective applications of isothermal amplification for highly integrated and immediate on-site detection of drug resistance.
Collapse
Affiliation(s)
- Menghan Hou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| | - Xinying Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| | - Lin Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control & Prevention, Wuhan, Hubei, 430000, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Wang H, Cheng Z, Luo R, Yang Q, Zeng Y, Yang Y, Chen Y, Li W, Liu X. RPA-CRISPR-Cas13a-assisted detection method of transmissible gastroenteritis virus. Front Vet Sci 2024; 11:1428591. [PMID: 39015106 PMCID: PMC11249537 DOI: 10.3389/fvets.2024.1428591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Background and aim Transmissible gastroenteritis virus (TGEV) is a highly contagious gastrointestinal virus that causes diarrhea, vomiting, anorexia, dehydration, and weight loss in piglets. In clinical practice, it often occurs in mixed infections with other pathogens, and is therefore difficult to diagnose and prevent. It mainly harms piglets of about 2 weeks old, causing huge losses on farms. The clinical confirmation of TGEV usually requires a laboratory diagnosis, but traditional PCR and immunofluorescence assays have some limitations. Moreover, most farms in China are ill-equipped to accurately diagnose the disease. Therefore, a new detection method with high sensitivity and specificity and less dependence on instrumentation is required. Methods We used recombinase polymerase amplification (RPA), combined with the nuclease characteristics of the activated Cas13a protein to establish a visual CRISPR-Cas13a-assisted detection method for TGEV by adding a reporter RNA with fluorescent and quenching moieties to the system. Result We selected the optimal RPA primer and best CRISPR RNA (crRNA). The reaction system was optimized and its repeatability, specificity, and sensitivity verified. The TGEV detection system did not cross-react with other common diarrhea viruses, and its detection limit was 101 copies, which is similar with the sensitivity of qPCR. We successfully established an RPA-CRISPR-Cas13a-assisted detection method, and used this detection system to analyze 123 pig blood samples. qPCR was used as the gold standard method. The sensitivity, specificity, positive coincidence rate, and negative coincidence rate of the new method were 100, 98.93, 96.66, and 100%, respectively.
Collapse
Affiliation(s)
- Haoyu Wang
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Zhimeng Cheng
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ran Luo
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Qiyue Yang
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Yongping Zeng
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuankun Chen
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Liu
- Southwest University, College of Veterinary Medicine, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| |
Collapse
|
3
|
Boral J, Pınarlık F, Ekinci G, Can F, Ergönül Ö. Does Emerging Carbapenem Resistance in Acinetobacter baumannii Increase the Case Fatality Rate? Systematic Review and Meta-Analysis. Infect Dis Rep 2023; 15:564-575. [PMID: 37888136 PMCID: PMC10606343 DOI: 10.3390/idr15050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND In the era of rising carbapenem resistance, we aimed to investigate the change in mortality rate and positivity of carbapenemase genes in Acinetobacter baumannii. METHODS Preferred Reporting Items for Systematic Review (PRISMA) guidelines were adopted in this systematic review. Our literature search included the Cochrane Library, Pubmed, Scopus, Web of Science, Medline, Tubitak TR Dizin, and Harman databases for studies dating back from 2003 to 2023 reporting bloodstream A. baumannii infections in Türkiye. A simple linear regression model was used to determine the association between resistance, mortality, and time. RESULTS A total of 1717 studies were identified through a literature search, and 21 articles were selected based on the availability of the data regarding mortality and resistance rate (four articles) or the molecular epidemiology of carbapenem-resistant A. baumannii (17 articles) in Türkiye. From 2007 to 2018, the carbapenem resistance rate increased (p = 0.025). The OXA-23 and OXA-58 positivities were inversely correlated (p = 0.025). CONCLUSIONS Despite the emergence of carbapenem resistance, mortality did not increase in parallel, which may be due to improved medical advancements or the fitness cost of bacteria upon prolonged antimicrobial exposure. Therefore, we suggest further global research with the foresight to assess clonal relatedness that might affect the carbapenem resistance rate.
Collapse
Affiliation(s)
- Jale Boral
- Graduate School of Health Sciences, Koç University, Istanbul 34010, Türkiye; (J.B.)
- Koç University İşBank Center for Infectious Diseases, Koç University Hospital (KUISCID), Istanbul 34010, Türkiye;
| | - Fatihan Pınarlık
- Graduate School of Health Sciences, Koç University, Istanbul 34010, Türkiye; (J.B.)
- Koç University İşBank Center for Infectious Diseases, Koç University Hospital (KUISCID), Istanbul 34010, Türkiye;
| | - Güz Ekinci
- Graduate School of Health Sciences, Koç University, Istanbul 34010, Türkiye; (J.B.)
- Koç University İşBank Center for Infectious Diseases, Koç University Hospital (KUISCID), Istanbul 34010, Türkiye;
| | - Füsun Can
- Koç University İşBank Center for Infectious Diseases, Koç University Hospital (KUISCID), Istanbul 34010, Türkiye;
- Department of Medical Microbiology, School of Medicine, Koç University, Istanbul 34010, Türkiye
| | - Önder Ergönül
- Koç University İşBank Center for Infectious Diseases, Koç University Hospital (KUISCID), Istanbul 34010, Türkiye;
- Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Koç University, Istanbul 34010, Türkiye
| |
Collapse
|
4
|
Lin C, Zeng Y, Zhu Z, Liao J, Yang T, Liu Y, Wei H, Li J, Ma J, Wu X, Lin G, Lin L, Chen L, Huang H, Chen W, Wang J, Wen F, Lin M. A Rapid Antimicrobial Resistance Diagnostic Platform for Staphylococcus aureus Using Recombinase Polymerase Amplification. Microbiol Spectr 2023; 11:e0447622. [PMID: 36975799 PMCID: PMC10100846 DOI: 10.1128/spectrum.04476-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has posed a global threat to public health. The Staphylococcus aureus strains have especially developed AMR to practically all antimicrobial medications. There is an unmet need for rapid and accurate detection of the S. aureus AMR. In this study, we developed two versions of recombinase polymerase amplification (RPA), the fluorescent signal monitoring and lateral flow dipstick, for detecting the clinically relevant AMR genes retained by S. aureus isolates and simultaneously identifying such isolates at the species level. The sensitivity and specificity were validated with clinical samples. Our results showed that this RPA tool was able to detect antibiotic resistance for all the 54 collected S. aureus isolates with high sensitivity, specificity, and accuracy (all higher than 92%). Moreover, results of the RPA tool are 100% consistent with that of PCR. In sum, we successfully developed a rapid and accurate AMR diagnostic platform for S. aureus. The RPA might be used as an effective diagnostic test in clinical microbiology laboratories to improve the design and application of antibiotic therapy. IMPORTANCE Staphylococcus aureus is a species of Staphylococcus and belongs to Gram-positive. Meanwhile, S. aureus remains one of the most common nosocomial and community-acquired infections, causing blood flow, skin, soft tissue, and lower respiratory tract infections. The identification of the particular nuc gene and the other eight genes of drug-resistant S. aureus can reliably and quickly diagnose the illness, allowing doctors to prescribe treatment regimens sooner. The detection target in this work is a particular gene of S. aureus, and a POCT is built to simultaneously recognize S. aureus and analyze genes representing four common antibiotic families. We developed and assessed a rapid and on-site diagnostic platform for the specific and sensitive detection of S. aureus. This method allows the determination of S. aureus infection and 10 different AMR genes representing four different families of antibiotics within 40 min. It was easily adaptable in low-resource circumstances and professional-lacking circumstances. It should be supported in overcoming the continuous difficulty of drug-resistant S. aureus infections, which is a shortage of diagnostic tools that can swiftly detect infectious bacteria and numerous antibiotic resistance indicators.
Collapse
Affiliation(s)
- Chuangxing Lin
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Pediatric Hematology and Oncology, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Yongmei Zeng
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhihong Zhu
- Department of Endocrinology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiayu Liao
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tiandan Yang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yaqun Liu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Huagui Wei
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jiamin Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jibin Ma
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoqing Wu
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Guangyu Lin
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Liyun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Liying Chen
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Huiying Huang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Weizhong Chen
- Department of Medical Laboratory, Chaozhou People’s Hospital Affiliated to Shantou University Medical College, Chaozhou, Guangdong, China
| | - Junli Wang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Feiqiu Wen
- Department of Pediatric Hematology and Oncology, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
5
|
Tan M, Liao C, Liang L, Yi X, Zhou Z, Wei G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front Cell Infect Microbiol 2022; 12:1019071. [PMID: 36519130 PMCID: PMC9742450 DOI: 10.3389/fcimb.2022.1019071] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
After the outbreak of SARS-CoV-2, nucleic acid testing quickly entered people's lives. In addition to the polymerase chain reaction (PCR) which was commonly used in nucleic acid testing, isothermal amplification methods were also important nucleic acid testing methods. Among several common isothermal amplification methods like displaced amplification, rolling circle amplification, and so on, recombinase polymerase amplification (RPA) was recently paid more attention to. It had the advantages like a simple operation, fast amplification speed, and reaction at 37-42°C, et al. So it was very suitable for field detection. However, there were still some disadvantages to RPA. Herein, our review mainly summarized the principle, advantages, and disadvantages of RPA. The specific applications of RPA in bacterial detection, fungi detection, virus detection, parasite detection, drug resistance gene detection, genetically modified food detection, and SARS-CoV-2 detection were also described. It was hoped that the latest research progress on RPA could be better delivered to the readers who were interested in RPA.
Collapse
|
6
|
Wang L, Sun D, Chen L, Zhou P, Wang K, Wang F, Lei X, Wang Y, Lu Y, Huang G, Gao X. Development and Clinical Application of a Recombinase Polymerase Amplification-Lateral Flow Strip Assay for Detection of Carbapenem-Resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2022; 12:876552. [PMID: 35646723 PMCID: PMC9131934 DOI: 10.3389/fcimb.2022.876552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Acinetobacter baumannii is a worldwide, primary cause of respiratory tract infections, septicemia, urinary apparatus infections, and secondary meningitis. It can be fatal. Rapid and accurate detection methods are needed to control the spread of carbapenem-resistant A. baumannii (CRAB). Current molecular diagnostic methods are limited and not suitable for on-site detection. In this study, an isothermal detection method using recombinase polymerase amplification (RPA) combined with a lateral flow strip (LFS) was developed to target the blaOXA-51 and blaOXA-23 genes of A. baumannii. The reaction was completed in about 40 min at 37°C. This method can also effectively distinguish A. baumannii and CRAB. The limit of detection of 100-101 CFU/reaction was equal to that of other detection methods. The detection accuracy was equal to that of the qPCR method with the use of clinical samples. The RPA-LFS assay is portable, rapid, and accurate and could replace existing detection methods for on-site detection of A. baumannii and CRAB.
Collapse
Affiliation(s)
- Lei Wang
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dunpo Sun
- Department of Acupuncture and Moxibustion, Lianyungang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Lianyungang, China
| | - Li Chen
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ping Zhou
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Kun Wang
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Fang Wang
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Xingqi Lei
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Wang
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yingzhi Lu
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Yingzhi Lu, ; Guanhong Huang, ; Xuzhu Gao,
| | - Guanhong Huang
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Yingzhi Lu, ; Guanhong Huang, ; Xuzhu Gao,
| | - Xuzhu Gao
- Department of Central Laboratory, Department of Laboratory Medicine, the Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Yingzhi Lu, ; Guanhong Huang, ; Xuzhu Gao,
| |
Collapse
|