1
|
Xue H, Chen Y, Zhou Y. Radioimmunotherapy: a game-changer for advanced non-small cell lung cancer. Front Immunol 2024; 15:1522508. [PMID: 39712010 PMCID: PMC11659256 DOI: 10.3389/fimmu.2024.1522508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related deaths, with conventional treatments offering limited effectiveness in advanced stages, due to distant metastases and treatment resistance. Recent advancements in immunotherapy, specifically immune checkpoint inhibitors (ICIs), have shown promise, but their efficacy as standalone therapies are often insufficient. This has led to increased interest in combining ICIs with radiotherapy, known as radioimmunotherapy (iRT), to enhance treatment outcomes. This review explores the mechanisms that underlie the synergy between radiotherapy and immunotherapy. Radiotherapy can induce the "abscopal effect", eliciting systemic immune responses that reduce tumor burdens outside the treated area. It also increases the expression of major histocompatibility complex class I (MHC-I) on tumor cells, improving immune recognition. Furthermore, radiotherapy can modify the tumor microenvironment by inducing metabolic reprogramming to bolster anti-tumor immunity. We discuss strategies for optimizing iRT, including considerations of radiation doses, fractionation schedules, and treatment site selection, which significantly influence immune responses by enhancing MHC-I expression or promoting T-cell infiltration. Clinical evidence supports the efficacy of iRT in NSCLC and other cancers, though challenges in standardizing treatment protocols and managing side effects persist. Overall, radioimmunotherapy presents a promising approach to improving NSCLC treatment outcomes. Ongoing research into its mechanisms and the refinement of treatment may reshape clinical practice, offering more effective and personalized options for patients with advanced lung cancer. Further studies are essential to validate these findings and optimize therapeutic protocols.
Collapse
Affiliation(s)
- Huichan Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yunshang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Yun Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Esmaeili A, Noorkhajavi G, Soleimani M, Farsinezhad H, Bagheri-Mohammadi S, Keshel SH. Application of exosomes for the regeneration of skin wounds: Principles, recent applications and limitations. Tissue Cell 2024; 91:102611. [PMID: 39550901 DOI: 10.1016/j.tice.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
In the medical field, wound healing poses significant challenges due to its complexity and time-consuming nature. Cell-free wound repair, notably the utilization of exosomes (EXOs), has made significant progress in recent years. Urine, saliva, umbilical cord, blood, mesenchymal stem cells and breast milk cells can be used to extract and purify EXOs, which are Nano-sized lipid bilayer vesicles. Besides their relatively little toxicity, non-specific immunogenicity and excellent biocompatibility, EXOs also contain bioactive molecules such as proteins, lipids, microRNAs (miRNAs), and messenger RNAs (mRNAs). Their bioactive compounds have anti-inflammatory properties and can speed up wound healing. Various medicinal agents can also be contained within the EXOs. This review briefly provides new information on the different aspects of EXOs and evaluate the application of EXOs as a promising therapy in the regeneration of skin wounds in recent pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Noorkhajavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hana Farsinezhad
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Brito KDNLD, Trentin AG. Role of mesenchymal stromal cell secretome on recovery from cellular senescence: an overview. Cytotherapy 2024:S1465-3249(24)00940-X. [PMID: 39674933 DOI: 10.1016/j.jcyt.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Cellular senescence is intricately linked with numerous changes observed in the aging process, including the depletion of the stem cell pool and the decline in tissue and organ functions. Over the past three decades, efforts to halt and reverse aging have intensified, bringing rejuvenation closer to reality. Current strategies involve treatments using stem cells or their derivatives, such as the secretome. This article aims to highlight key points and evaluate the utilization of secretome derived from mesenchymal stromal cells (MSCs) as an antisenescent approach. Employing a quasi-systematic research approach, the authors conducted a comprehensive analysis based on a search algorithm targeting the in vitro effects of MSC-derived secretome on rescuing cells from a senescent state. Reviewing 39 articles out of 687 hits retrieved from PubMed and Scopus without a time limit, the authors synthesized information and identified common types of MSC-tissue sources utilized (including bone marrow-MSCs, umbilical cord-MSCs, iPSC-derived MSCs, adipose tissue-MSCs, dental pulp-MSCs, amniotic membrane-MSCs, placenta-MSCs, gingival-MSCs, urine-MSCs, and commercially available MSC lineages) from both human and other species (such as mice and rats). The authors also examined the forms of secretome tested (including conditioned media and extracellular vesicles), the cell types treated (MSCs or other cell types), methods/biomarkers of monitoring senescence/rejuvenation, and the mechanisms involved. Ultimately, this review underscores the proof-of-principle of the beneficial effects of MSC-derived secretome in reversing cellular senescence across various cell types. Such insights might aid the scientific community in designing improved in vitro and in vivo assays for future research and clinical validation of this promising cell-free therapy.
Collapse
Affiliation(s)
- Karynne de Nazaré Lins de Brito
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; Faculty of Medicine, Altamira Campus, Federal University of Pará, Altamira, Brazil.
| | - Andréa Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Yang H, Zhang X, Xue B. New insights into the role of cellular senescence and chronic wounds. Front Endocrinol (Lausanne) 2024; 15:1400462. [PMID: 39558972 PMCID: PMC11570929 DOI: 10.3389/fendo.2024.1400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Chronic or non-healing wounds, such as diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), pressure ulcers (PUs) and wounds in the elderly etc., impose significant biological, social, and financial burdens on patients and their families. Despite ongoing efforts, effective treatments for these wounds remain elusive, costing the United States over US$25 billion annually. The wound healing process is notably slower in the elderly, partly due to cellular senescence, which plays a complex role in wound repair. High glucose levels, reactive oxygen species, and persistent inflammation are key factors that induce cellular senescence, contributing to chronic wound failure. This suggests that cellular senescence may not only drive age-related phenotypes and pathology but also be a key mediator of the decreased capacity for trauma repair. This review analyzes four aspects: characteristics of cellular senescence; cytotoxic stressors and related signaling pathways; the relationship between cellular senescence and typical chronic non-healing wounds; and current and future treatment strategies. In theory, anti-aging therapy may influence the process of chronic wound healing. However, the underlying molecular mechanism is not well understood. This review summarizes the relationship between cellular senescence and chronic wound healing to contribute to a better understanding of the mechanisms of chronic wound healing.
Collapse
Affiliation(s)
- Huiqing Yang
- Institute of Evolution and Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Zhang D, Li Y, Pan J, Zheng Y, Xu X. Copper homeostasis and cuproptosis in radiation-induced injury. Biomed Pharmacother 2024; 178:117150. [PMID: 39047417 DOI: 10.1016/j.biopha.2024.117150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Radiation therapy for cancer treatment brings about a series of radiation injuries to normal tissues. In recent years, the discovery of copper-regulated cell death, cuproptosis, a novel form of programmed cell death, has attracted widespread attention and exploration in various biological functions and pathological mechanisms of copper metabolism and cuproptosis. Understanding its role in the process of radiation injury may open up new avenues and directions for exploration in radiation biology and radiation oncology, thereby improving tumor response and mitigating adverse reactions to radiotherapy. This review provides an overview of copper metabolism, the characteristics of cuproptosis, and their potential regulatory mechanisms in radiation injury.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinghui Pan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yongfa Zheng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Hu Y, Yu L, Du W, Hu X, Shen Y. Global hotspots and research trends of radiation-induced skin injury: a bibliometric analysis from 2004 to 2023. Front Oncol 2024; 14:1430802. [PMID: 39252945 PMCID: PMC11381223 DOI: 10.3389/fonc.2024.1430802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background Radiation therapy has become an important treatment for many malignant tumours after surgery and for palliative tumour care. Although modern radiotherapy technology is constantly improving, radiation damage to normal tissues is often difficult to avoid, and radiation-induced skin injury (RSI) is a common complication, manifested as skin erythema, peeling, ulceration, and even bone and deep organ damage, seriously affect the quality of life for patients. Basic research and clinical trials related to RSI have achieved certain results, while no researchers have conducted comprehensive bibliometric studies. Objective A comprehensive bibliometric analysis of publications on RSI published between 2004 and 2023 was conducted to identify current hotspots and future directions in this area of study. Methods RSI-related publications published between January 1, 2004, and December 31, 2023, were retrieved from the Web of Science Core Collection (WoSCC) database for analysis using VOSviewer and CiteSpace analytics. Results A total of 1009 publications on RSI from 2004 to 2023 were included in the WoSCC database. The United States had the highest productivity with 299 papers, accounting for 29.63% of the total production, followed by China with 193 papers (19.13%) and Japan with 111 papers (11.00%). In terms of research institutions and journals, the University of Toronto and Journal of Supportive Care in Cancer published the highest number of papers. Professor Edward Chow published the most articles, while Professor Shuyu Zhang was the most cited. The top ten most-cited papers focused on the pathogenesis, prevention, and management of RSI. Keyword co-occurrence analysis and the top 25 keywords with the strongest citation bursts suggest that current research focuses on the pathogenesis, prevention, and treatment management of RSI. Conclusion This study conducted a systematic bibliometric analysis of RSI publications from 2004 to 2023; identified the trends in RSI publications, major research countries, major research institutions, major research journals, major research authors, and major research keywords; and revealed the future development direction and research hotspots of this field. This study provides a valuable reference for future RSI research.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Lu Yu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Weili Du
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuming Shen
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Feng D, Xiao Y, Wang J, Wu R, Tuo Z, Yoo KH, Wei W, Wusiman D, Wang Z, Li D, Yang Y, Cho WC, Ke M. Unraveling links between aging, circadian rhythm and cancer: Insights from evidence-based analysis. Chin J Cancer Res 2024; 36:341-350. [PMID: 38988484 PMCID: PMC11230883 DOI: 10.21147/j.issn.1000-9604.2024.03.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Aging and circadian rhythms have been connected for decades, but their molecular interaction has remained unknown, especially for cancers. In this situation, we summarized the current research actuality and problems in this field using the bibliometric analysis. Publications in the PubMed and Web of Science databases were retrieved. Overall, there is a rising trend in the publication volume regarding aging and circadian rhythms in the field of cancer. Researchers from USA, Germany, Italy, China and England have greater studies than others. Top three publication institutions are University of California System, UDICE-French Research Universities and University of Texas System. Current research hotspots include oxidative stress, breast cancer, melatonin, cell cycle, calorie restriction, prostate cancer and NF-KB. In conclusion, results generated by bibliometric analysis indicate that many approaches involve in the complex interactions between aging and circadian rhythm in cancer. These established and emerging research directions guide our exploration of the regulatory mechanisms of aging and circadian rhythms in cancer and provide a reference for developing new research avenues.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Yuhan Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul 130-701, South Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing 404000, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou 317000, China
| |
Collapse
|
8
|
Chen Y, Ma L, Cheng Z, Hu Z, Xu Y, Wu J, Dai Y, Shi C. Senescent fibroblast facilitates re-epithelization and collagen deposition in radiation-induced skin injury through IL-33-mediated macrophage polarization. J Transl Med 2024; 22:176. [PMID: 38369466 PMCID: PMC10874572 DOI: 10.1186/s12967-024-04972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The need for radiotherapy among the elderly rises with increasing life expectancy and a corresponding increase of elderly cancer patients. Radiation-induced skin injury is one of the most frequent adverse effects in radiotherapy patients, severely limiting their life quality. Re-epithelialization and collagen deposition have essential roles in the recovery of skin injuries induced by high doses of ionizing radiation. At the same time, radiation-induced senescent cells accumulate in irradiated tissues. However, the effects and mechanisms of senescent cells on re-epithelialization and collagen deposition in radiation-induced skin injury have not been fully elucidated. RESULTS Here, we identified a role for a population of senescent cells expressing p16 in promoting re-epithelialization and collagen deposition in radiation-induced skin injury. Targeted ablation of p16+ senescent cells or treatment with Senolytics resulted in the disruption of collagen structure and the retardation of epidermal coverage. By analyzing a publicly available single-cell sequencing dataset, we identified fibroblasts as a major contributor to the promotion of re-epithelialization and collagen deposition in senescent cells. Notably, our analysis of publicly available transcriptome sequencing data highlighted IL-33 as a key senescence-associated secretory phenotype produced by senescent fibroblasts. Neutralizing IL-33 significantly impedes the healing process. Finally, we found that the effect of IL-33 was partly due to the modulation of macrophage polarization. CONCLUSIONS In conclusion, our data suggested that senescent fibroblasts accumulated in radiation-induced skin injury sites participated in wound healing mainly by secreting IL-33. This secretion regulated the local immune microenvironment and macrophage polarization, thus emphasizing the importance of precise regulation of senescent cells in a phased manner.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhuo Cheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhihe Hu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Xu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yali Dai
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
9
|
Pushkar OS, Myroshnychenko MS, Koliada OM. Features of apoptotic and proliferative processes in experimental infected radiation-induced skin ulcer under conditions of photodynamic therapy and the use of platelet-rich plasma. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:54-59. [PMID: 38518234 DOI: 10.36740/merkur202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
OBJECTIVE . Aim: The purpose of the study was to identify the features of apoptotic and proliferative processes in experimental Staphylococcus aureus-infected radiation skin ulcer under conditions of photodynamic therapy and the use of platelet-rich plasma. PATIENTS AND METHODS Materials and Methods: An experimental study was conducted on 95 six-month-old male rats of the WAG population, which were divided into three groups. Group 1 included 25 animals that were simulated a radiation ulcer of the skin in the thigh area with subsequent application to its surface on the 7th day after irradiation with 0.2 ml of a suspension of the Staphylococcus aureus (ATCC 25923) reference strain (0.5 million microbial cells/cm2). Group 2 included 25 animals with Staphylococcus aureus-infected radiation skin ulcer, which were subjected to photodynamic therapy a day after infection. Group 3 included 45 animals with Staphylococcus aureus-infected radiation skin ulcers, which, 1 day after infection, received photodynamic therapy in the first half of the day, and in the second half of the day the periphery of the wound defect was injected with platelet-rich plasma. The material for the study was skin with underlying soft tissues from the area of radiation exposure. Histological, immunohistochemical, morphometric and statistical methods were used. RESULTS Results: In cases of simultaneous use of photodynamic therapy and platelet-rich plasma, compared with photodynamic therapy alone, the processes ofapoptosis and proliferation were more balanced, active, with a shift in the proliferative-apoptotic ratio towards proliferation processes and met the needs of the regenerative process. From the 10th to the 22nd day of the experiment these processes increased, which indicated active healing processes, that, during survey microscopy on the 22nd day, were manifested by the complete filling of the wound cavity with granulation and connective tissues with the presence of an epithelial layer on the surface of the regenerate. From the 22nd to the 45th day of the experiment, a decrease in the rate of regeneration was recorded, as evidenced by a decrease in the intensity of apoptotic and proliferative processes. The intensity of the latter was sufficient, which led to the healing of Staphylococcus aureus-infected radiation skin ulcer on the 45th day with complete restoration of the original structure of the skin. CONCLUSION Conclusions: Photodynamic therapy in combination with the use of platelet-rich plasma balancedly activates apoptotic and proliferative processes with a predominance of the latter in granulation and connective tissues filling the lumen of Staphylococcus aureus-infected radiation skin ulcer, which on the 45th day of the experiment leads to wound healing with complete restoration of the original structure of the skin.
Collapse
Affiliation(s)
- Olena S Pushkar
- V.N. Karazin Kharkiv National University , Kharkiv, Ukraine, State Organization ≪Grygoriev Institute for Medical Radiology and Oncology of the National Academy of Medical Sciences of Ukraine ≫, Kharkiv, Ukraine
| | | | | |
Collapse
|
10
|
Ye H, Wang F, Xu G, Shu F, Fan K, Wang D. Advancements in engineered exosomes for wound repair: current research and future perspectives. Front Bioeng Biotechnol 2023; 11:1301362. [PMID: 38033824 PMCID: PMC10682480 DOI: 10.3389/fbioe.2023.1301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Wound healing is a complex and prolonged process that remains a significant challenge in clinical practice. Exosomes, a type of nanoscale extracellular vesicles naturally secreted by cells, are endowed with numerous advantageous attributes, including superior biocompatibility, minimal toxicity, and non-specific immunogenicity. These properties render them an exceptionally promising candidate for bioengineering applications. Recent advances have illustrated the potential of exosome therapy in promoting tissue repair. To further augment their therapeutic efficacy, the concept of engineered exosomes has been proposed. These are designed and functionally modifiable exosomes that have been tailored on the attributes of natural exosomes. This comprehensive review delineates various strategies for exosome engineering, placing specific emphasis on studies exploring the application of engineered exosomes for precision therapy in wound healing. Furthermore, this review sheds light on strategies for integrating exosomes with biomaterials to enhance delivery effectiveness. The insights presented herein provide novel perspectives and lay a robust foundation for forthcoming research in the realm of cutaneous wound repair therapies.
Collapse
Affiliation(s)
- Hailian Ye
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Wang
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Guangchao Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feihong Shu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunwu Fan
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|