1
|
Use of biomarker data and metabolite relative potencies to support derivation of noncancer reference values based on the reproductive and developmental toxicity effects of 1,3-butadiene. Regul Toxicol Pharmacol 2022; 134:105239. [DOI: 10.1016/j.yrtph.2022.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
2
|
Kirman CR, Hays SM. Use of Biomarker Data and Relative Potencies of Mutagenic Metabolites to Support Derivation of Cancer Unit Risk Values for 1,3-Butadiene from Rodent Tumor Data. TOXICS 2022; 10:394. [PMID: 35878299 PMCID: PMC9316621 DOI: 10.3390/toxics10070394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022]
Abstract
Unit Risk (UR) values were derived for 1,3-butadiene (BD) based upon its ability to cause tumors in laboratory mice and rats. Metabolism has been established as the significant molecular initiating event of BD's carcinogenicity. The large quantitative species differences in the metabolism of BD and potency of critical BD epoxide metabolites must be accounted for when rodent toxicity responses are extrapolated to humans. Previously published methods were extended and applied to cancer risk assessments to account for species differences in metabolism, as well as differences in mutagenic potency of BD metabolites within the context of data-derived adjustment factors (DDEFs). This approach made use of biomarker data (hemoglobin adducts) to quantify species differences in the internal doses of BD metabolites experienced in mice, rats, and humans. Using these methods, the dose-response relationships in mice and rats exhibit improved concordance, and result in upper bound UR values ranging from 2.1 × 10-5 to 1.2 × 10-3 ppm-1 for BD. Confidence in these UR values was considered high based on high confidence in the key studies, medium-to-high confidence in the toxicity database, high confidence in the estimates of internal dose, and high confidence in the dose-response modeling.
Collapse
|
3
|
Erber L, Goodman S, Wright FA, Chiu WA, Tretyakova NY, Rusyn I. Intra- and Inter-Species Variability in Urinary N7-(1-Hydroxy-3-buten-2-yl)guanine Adducts Following Inhalation Exposure to 1,3-Butadiene. Chem Res Toxicol 2021; 34:2375-2383. [PMID: 34726909 PMCID: PMC8715497 DOI: 10.1021/acs.chemrestox.1c00291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
1,3-Butadiene is a known carcinogen primarily targeting lymphoid tissues, lung, and liver. Cytochrome P450 activates butadiene to epoxides which form covalent DNA adducts that are thought to be a key mechanistic event in cancer. Previous studies suggested that inter-species, -tissue, and -individual susceptibility to adverse health effects of butadiene exposure may be due to differences in metabolism and other mechanisms. In this study, we aimed to examine the extent of inter-individual and inter-species variability in the urinary N7-(1-hydroxy-3-buten-2-yl)guanine (EB-GII) DNA adduct, a well-known biomarker of exposure to butadiene. For a population variability study in mice, we used the collaborative cross model. Female and male mice from five strains were exposed to filtered air or butadiene (590 ppm, 6 h/day, 5 days/week for 2 weeks) by inhalation. Urine samples were collected, and the metabolic activation of butadiene by DNA-reactive species was quantified as urinary EB-GII adducts. We quantified the degree of EB-GII variation across mouse strains and sexes; then, we compared this variation with the data from rats (exposed to 62.5 or 200 ppm butadiene) and humans (0.004-2.2 ppm butadiene). We show that sex and strain are significant contributors to the variability in urinary EB-GII levels in mice. In addition, we find that the degree of variability in urinary EB-GII in collaborative cross mice, when expressed as an uncertainty factor for the inter-individual variability (UFH), is relatively modest (≤threefold) possibly due to metabolic saturation. By contrast, the variability in urinary EB-GII (adjusted for exposure) observed in humans, while larger than the default value of 10-fold, is largely consistent with UFH estimates for other chemicals based on human data for non-cancer endpoints. Overall, these data demonstrate that urinary EB-GII levels, particularly from human studies, may be useful for quantitative characterization of human variability in cancer risks to butadiene.
Collapse
Affiliation(s)
- Luke Erber
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha Goodman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Fred A. Wright
- Bioinformatics Research Center and Departments of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Corresponding authors: Natalia Tretyakova, Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, MN 55455, USA; phone: (612) 626-3432; ; Ivan Rusyn, Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA; phone: (979) 458-9866;
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA,Corresponding authors: Natalia Tretyakova, Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, MN 55455, USA; phone: (612) 626-3432; ; Ivan Rusyn, Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA; phone: (979) 458-9866;
| |
Collapse
|
4
|
Marty MS, Erraguntla N, North C, Barranco WT, Kirman CR, Cagen S, Rushton EK, Shen H, Koehler MW, Budinsky R. A reproductive and developmental toxicity screening study of 1,3-butadiene in Sprague-Dawley rats. Regul Toxicol Pharmacol 2021; 127:105066. [PMID: 34699959 DOI: 10.1016/j.yrtph.2021.105066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
1,3 Butadiene (BD) is an industrial intermediate used primarily in product manufacturing with the greatest exposure potential via inhalation. BD was evaluated for reproductive and developmental effects in a Good Laboratory Practice (GLP)-compliant, extended OECD 421 guideline study (completed 2003). Twelve-week old rats (12/sex/dose) were exposed via whole-body inhalation to BD vapor (0, 300, 1500, 6000 ppm) for 6 h/day, 7 days/week, starting 14 days prior to mating through the day prior to euthanasia (total exposures: 83-84 days for F0 males 60-70 days for F0 females). Select F1 offspring (1/sex/litter) were dosed 7 days (postnatal days 21-27 or 28-34), then necropsied. At 1500 and 6000 ppm, treatment-related facial soiling was seen in F0 males and females with decreased body weights/gains in F0 males. F1 males and females exhibited similar effects at 1500 and 6000 ppm. Importantly, the F0 generation had no evidence of altered sperm production, testicular effects, or ovarian atrophy, which were sensitive responses in mice. The no-observed-adverse-effect-level (NOAEL) is 300 ppm due to decreased body weight/gain and facial soiling at 1500 ppm, whereas 6000 ppm serves as a NOAEL for reproductive and developmental endpoints. This study contributes to the weight-of-evidence of differential BD reproductive toxicity in rats and mice.
Collapse
Affiliation(s)
- M Sue Marty
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, MI, USA
| | | | | | | | | | | | | | - Hua Shen
- Shell Oil Company, Houston, TX, USA
| | - Matthew W Koehler
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, MI, USA.
| | - Robert Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, MI, USA
| |
Collapse
|
5
|
Kirman C, Grant R. Quantitative human health risk assessment for 1,3-butadiene based upon ovarian effects in rodents. Regul Toxicol Pharmacol 2012; 62:371-84. [DOI: 10.1016/j.yrtph.2011.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 10/18/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
6
|
1,2:3,4-Diepoxybutane in blood of male B6C3F1 mice and male Sprague-Dawley rats exposed to 1,3-butadiene. Toxicol Lett 2011; 207:286-90. [DOI: 10.1016/j.toxlet.2011.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/24/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
|
7
|
Kirman CR, Albertini RJ, Sweeney LM, Gargas ML. 1,3-Butadiene: I. Review of metabolism and the implications to human health risk assessment. Crit Rev Toxicol 2010; 40 Suppl 1:1-11. [PMID: 20868266 DOI: 10.3109/10408444.2010.507181] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1,3-Butadiene (BD) is a multisite carcinogen in laboratory rodents following lifetime exposure, with mice demonstrating greater sensitivity than rats. In epidemiology studies of men in the styrene-butadiene rubber industry, leukemia mortality is associated with butadiene exposure, and this association is most pronounced for high-intensity BD exposures. Metabolism is an important determinant of BD carcinogenicity. BD is metabolized to several electrophilic intermediates, including epoxybutene (EB), diepoxybutane (DEB), and epoxybutane diol (EBD), which differ considerably in their genotoxic potency (DEB >> EB > EBD). Important species differences exist with respect to the formation of reactive metabolites and their subsequent detoxification, which underlie observed species differences in sensitivity to the carcinogenic effects of BD. The modes of action for human leukemia and for the observed solid tumors in rodents are both likely related to the genotoxic potencies for one or more of these metabolites. A number of factors related to metabolism can also contribute to nonlinearity in the dose-response relationship, including enzyme induction and inhibition, depletion of tissue glutathione, and saturation of oxidative metabolism. A quantitative risk assessment of BD needs to reflect these species differences and sources of nonlinearity if it is to reflect the current understanding of the disposition of BD.
Collapse
|
8
|
Meng Q, Walker DM, McDonald JD, Henderson RF, Carter MM, Cook DL, McCash CL, Torres SM, Bauer MJ, Seilkop SK, Upton PB, Georgieva NI, Boysen G, Swenberg JA, Walker VE. Age-, gender-, and species-dependent mutagenicity in T cells of mice and rats exposed by inhalation to 1,3-butadiene. Chem Biol Interact 2007; 166:121-31. [PMID: 16945358 DOI: 10.1016/j.cbi.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 07/18/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
Experiments were performed: (i) to investigate potential age- and gender-dependent differences in mutagenic responses in T cells following exposures of B6C3F1 mice and F344 rats by inhalation for 2 weeks to 0 or 1250 ppm butadiene (BD), and (ii) to determine if exposures for 2 weeks to 62.5 ppm BD produce a mutagenic effect in female rats. To evaluate the effect of age on mutagenic response, mutant manifestation curves for splenic T cells of female mice exposed at 8-9 weeks of age were defined by measuring Hprt mutant frequencies (MFs) at multiple time points after BD exposure using a T cell cloning assay and comparing the resulting mutagenic potency estimate (calculated as the difference of areas under the mutant manifestation curves of treated versus control animals) to that reported for female mice exposed to BD in the same fashion beginning at 4-5 weeks of age. The shapes of the mutant T cell manifestation curves for spleens were different [e.g., the maximum BD-induced MFs in older mice (8.0+/-1.0 [S.D.]x10(-6)) and younger mice (17.8+/-6.1 x 10(-6)) were observed at 8 and 5 weeks post-exposure, respectively], but the mutagenic burden was the same for both age groups. To assess the effect of gender on mutagenic response, female and male rodents were exposed to BD at 4-5 weeks of age and Hprt MFs were measured when maximum MFs are expected to occur post-exposure. The resulting data demonstrated that the pattern for mutagenic susceptibility from high-level BD exposure is female mice>male mice>female rats>male rats. Exposures of female rats to 62.5 ppm BD caused a minor but significant mutagenic response compared with controls (n=16/group; P=0.03). These results help explain part of the differing outcomes/interpretations of data in earlier Hprt mutation studies in BD-exposed rodents.
Collapse
Affiliation(s)
- Quanxin Meng
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Walker DM, McDonald JD, Meng Q, Kracko DA, Bauer MJ, Seilkop SK, Walker EL, Henderson RF, Walker VE. Measurement of plasma or urinary metabolites and Hprt mutant frequencies following inhalation exposure of mice and rats to 3-butene-1,2-diol. Chem Biol Interact 2007; 166:191-206. [PMID: 17316587 DOI: 10.1016/j.cbi.2007.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/11/2007] [Accepted: 01/25/2007] [Indexed: 11/17/2022]
Abstract
Studies were performed to determine if the detoxification pathway of 1,3-butadiene (BD) through 3-butene-1,2-diol (BD-diol) is a major contributor to mutagenicity in BD-exposed mice and rats. First, female and male mice and rats (4-5 weeks old) were exposed by nose-only for 6h to 0, 62.5, 200, 625, or 1250 ppm BD or to 0, 6, 18, 24, or 36 ppm BD-diol primarily to establish BD and BD-diol exposure concentrations that yielded similar plasma levels of BD-diol, and then animals were exposed in inhalation chambers for 4 weeks to BD-diol to determine the mutagenic potency estimates for the same exposure levels and to compare these estimates to those reported for BD-exposed female mice and rats where comparable blood levels of BD-diol were achieved. Measurements of plasma levels of BD-diol (via GC/MS methodology) showed that (i) BD-diol accumulated in a sub-linear fashion during single 6-h exposures to >200 ppm BD; (ii) BD-diol accumulated in a linear fashion during single or repeated exposures to 6-18 ppm BD and then in a sub-linear fashion with increasing levels of BD-diol exposure; and (iii) exposures of mice and rats to 18 ppm BD-diol were equivalent to those produced by 200 ppm BD exposures (with exposures to 36 ppm BD-diol yielding plasma levels approximately 25% of those produced by 625 ppm BD exposures). Measurements of Hprt mutant frequencies (via the T cell cloning assay) showed that repeated exposures to 18 and 36 ppm BD-diol were significantly mutagenic in mice and rats. The resulting data indicated that BD-diol derived metabolites (especially, 1,2-dihydroxy-3,4-epoxybutane) have a narrow range of mutagenic effects confined to high-level BD (>or=200 ppm) exposures, and are responsible for nearly all of the mutagenic response in the rat and for a substantial portion of the mutagenic response in the mouse following high-level BD exposures.
Collapse
Affiliation(s)
- Dale M Walker
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Filser JG, Hutzler C, Meischner V, Veereshwarayya V, Csanády GA. Metabolism of 1,3-butadiene to toxicologically relevant metabolites in single-exposed mice and rats. Chem Biol Interact 2006; 166:93-103. [PMID: 16616907 DOI: 10.1016/j.cbi.2006.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 02/12/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
1,3-Butadiene (BD) was carcinogenic in rodents. This effect is related to reactive metabolites such as 1,2-epoxy-3-butene (EB) and especially 1,2:3,4-diepoxybutane (DEB). A third mutagenic epoxide, 3,4-epoxy-1,2-butanediol (EBD), can be formed from DEB and from 3-butene-1,2-diol (B-diol), the hydrolysis product of EB. In BD exposed rodents, only blood concentrations of EB and DEB have been published. Direct determinations of EBD and B-diol in blood are missing. In order to investigate the BD-dependent blood burden by all of these metabolites, we exposed male B6C3F1 mice and male Sprague-Dawley rats in closed chambers over 6-8h to constant atmospheric BD concentrations. BD and exhaled EB were measured in chamber atmospheres during the BD exposures. EB blood concentrations were obtained as the product of the atmospheric EB concentration at steady state with the EB blood-to-air partition coefficient. B-diol, EBD, and DEB were determined in blood collected immediately at the end of BD exposures up to 1200 ppm (B-diol, EBD) and 1280 ppm (DEB). Analysis of BD was done by GC/FID, of EB, DEB, and B-diol by GC/MS, and of EBD by LC/MS/MS. EB blood concentrations increased with BD concentrations amounting to 2.6 micromol/l (rat) and 23.5 micromol/l (mouse) at 2000 ppm BD and to 4.6 micromol/l in rats exposed to 10000 ppm BD. DEB (detection limit 0.01 micromol/l) was found only in blood of mice rising to 3.2 micromol/l at 1280 ppm BD. B-diol and EBD were quantitatively predominant in both species. B-diol increased in both species with the BD exposure concentration reaching 60 micromol/l at 1200 ppm BD. EBD reached maximum concentrations of 9.5 micromol/l at 150 ppm BD (rat) and of 42 micromol/l at 300 ppm BD (mouse). At higher BD concentrations EBD blood concentrations decreased again. This picture probably results from a competitive inhibition of the EBD producing CYP450 by BD, which occurs in both species.
Collapse
Affiliation(s)
- Johannes Georg Filser
- Institute of Toxicology, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
11
|
Meng Q, Walker DM, Scott BR, Seilkop SK, Aden JK, Walker VE. Characterization of Hprt mutations in cDNA and genomic DNA of T-cell mutants from control and 1,3-butadiene-exposed male B6C3F1 mice and F344 rats. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 43:75-92. [PMID: 14991748 DOI: 10.1002/em.20002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A multiplex PCR procedure for analysis of genomic DNA mutations in the mouse hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene was developed and then used with other established methods for the coincident identification of large- and small-scale genetic alterations in the Hprt gene of mutant T-cell isolates propagated from sham- and 1,3-butadiene (BD)-exposed mice and rats. The spectra data for RT-PCR/cDNA analysis and multiplex PCR of genomic DNA from Hprt mutants were combined, and statistical analyses of the mutant fractions for the classes of mutations identified in control versus exposed animals were conducted. Under the assumption that the mutant fractions are distributed as Poisson variates, BD exposure of mice significantly increased the frequencies of (1) nearly all types of base substitutions; (2) single-base deletions and insertions; and (3) all subcategories of deletions. Significantly elevated fractions of G:C-->C:G and A:T-->T:A transversions in the Hprt gene of BD-exposed mice were consistent with the occurrence of these substitutions as the predominant ras gene mutations in multiple tumor types increased in incidence in carcinogenicity studies of BD in mice. BD exposure of rats produced significant increases in (1) base substitutions only at A:T base pairs; (2) single-base insertions; (3) complex mutations; and (4) deletions (mainly 5' partial and complete gene deletions). Future coincident analyses of large- and small-scale mutations in rodents exposed to specific BD metabolites should help identify species differences in the sources of deletion mutations and other types of mutations induced by BD exposures in mice versus rats.
Collapse
Affiliation(s)
- Quanxin Meng
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hughes K, Meek ME, Walker M, Beauchamp R. 1,3-Butadiene: exposure estimation, hazard characterization, and exposure-response analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2003; 6:55-83. [PMID: 12587254 DOI: 10.1080/10937400306478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
1,3-Butadiene has been assessed as a Priority Substance under the Canadian Environmental Protection Act. The general population in Canada is exposed to 1,3-butadiene primarily through ambient air. Inhaled 1,3-butadiene is carcinogenic in both mice and rats, inducing tumors at multiple sites at all concentrations tested in all identified studies. In addition, 1,3-butadiene is genotoxic in both somatic and germ cells of rodents. It also induces adverse effects in the reproductive organs of female mice at relatively low concentrations. The greater sensitivity in mice than in rats to induction of these effects by 1,3-butadiene is likely related to species differences in metabolism to active epoxide metabolites. Exposure to 1,3-butadiene in the occupational environment has been associated with the induction of leukemia; there is also some limited evidence that 1,3-butadiene is genotoxic in exposed workers. Therefore, in view of the weight of evidence of available epidemiological and toxicological data, 1,3-butadiene is considered highly likely to be carcinogenic, and likely to be genotoxic, in humans. Estimates of the potency of butadiene to induce cancer have been derived on the basis of both epidemiological investigation and bioassays in mice and rats. Potencies to induce ovarian effects have been estimated on the basis of studies in mice. Uncertainties have been delineated, and, while there are clear species differences in metabolism, estimates of potency to induce effects are considered justifiably conservative in view of the likely variability in metabolism across the population related to genetic polymorphism for enzymes for the critical metabolic pathway.
Collapse
Affiliation(s)
- K Hughes
- Existing Substances Division, Environmental Health Directorate, Health Canada, Environmental Health Centre, Tunney's Pasture PL0802B1, Ottawa, Ontario, Canada K1A 0L2
| | | | | | | |
Collapse
|
13
|
Hughes K, Meek ME, Walker M. Health risk assessment of 1,3-butadiene as a Priority Substance in Canada. Chem Biol Interact 2001; 135-136:109-35. [PMID: 11397385 DOI: 10.1016/s0009-2797(01)00173-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1,3-Butadiene was included in the second list of Priority Substances to be assessed under the Canadian Environmental Protection Act. Potential hazards to human health were characterized on the basis of critical examination of available data on health effects in experimental animals and occupationally exposed human populations, as well as information on mode of action. Based on consideration of all relevant data identified as of April 1998, butadiene was considered highly likely to be carcinogenic to humans, and likely to be a somatic and germ cell genotoxicant in humans. In addition, butadiene may also be a reproductive toxicant in humans. Estimates of the potency of butadiene to induce these effects have been derived on the basis of quantitation of observed exposure-response relationships for the purposes of characterization of risk to the general population in Canada exposed to butadiene in the ambient environment.
Collapse
Affiliation(s)
- K Hughes
- Environmental Health Directorate, Health Canada, Tunney's Pasture PL0802B1, Ottawa, Ontario, Canada K1A 0L2.
| | | | | |
Collapse
|
14
|
Filser JG, Faller TH, Bhowmik S, Schuster A, Kessler W, Pütz C, Csanády GA. First-pass metabolism of 1,3-butadiene in once-through perfused livers of rats and mice. Chem Biol Interact 2001; 135-136:249-65. [PMID: 11397395 DOI: 10.1016/s0009-2797(01)00194-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
First-pass metabolism of 1,3-butadiene (BD) leading to 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), 3-butene-1,2-diol (B-diol), 3,4-epoxy-1,2-butanediol (EBD) and crotonaldehyde (CA) was studied quantitatively in the once-through BD perfused liver of mouse and rat by means of an all-glass gas-tight perfusion system. Metabolites were analyzed using gas chromatography equipped with mass selective detection. The perfusate consisted of Krebs-Henseleit buffer (pH 7.4) containing bovine erythrocytes (40%v/v) and BD. The perfusion flow rates through the livers were 3-4 ml/min (mouse) and 17-20 ml/min (rat). The BD concentrations in the liver perfusates were 330 nmol/ml (mouse) and 240 nmol/ml (rat) being high enough to reach almost saturation of BD metabolism. The mean rates of BD transformation were about 0.014 and 0.055 mmol/h per liver of a mouse and a rat, respectively, being similar to the values expected from in-vivo measurements. There were marked species differences in the formation of BD metabolites. In the effluent of mouse livers, all three epoxides (EB: 9.4 nmol/ml; DEB: 0.06 nmol/ml; EBD: 0.07 nmol/ml) and B-diol (8.2 nmol/ml) were detected. In the perfusate leaving naïve rat livers, only EB and B-diol were found. In that of rat liver, EB concentration was 8.5 times smaller than in that of mouse liver, whereas B-diol concentrations were similar in the effluent liver perfusate of both species. CA was below the limit of its detection (60 nmol/l) in the liver perfusate of mice and of naïve rats. Of BD metabolized, the sum of the metabolites investigated in the effluent amounted to only 30% (mouse) and 20% (rat). In first experiments with rat liver, glutathione (GSH) was depleted by pretreating the animals with diethylmaleate. With the exception of EBD (not quantifiable due to an interfering peak), all other metabolites including CA were found in the effluent perfusate summing up to about 70 and 100% of BD metabolized, which indicates the quantitative importance of the GSH dependent metabolism. In summary, the results demonstrate the relevance of an intrahepatic first-pass metabolism for metabolic intermediates of BD, which undergo further transformation immediately after their production in the liver before leaving this organ. Hitherto, the occurrence of this first-pass metabolism was only hypothesized. The findings will help to explain the drastic species difference between mice and rats in the carcinogenic potency of BD.
Collapse
Affiliation(s)
- J G Filser
- Institute of Toxicology, GSF National Research Center for Environment and Health, Ingolstädter Lstr. 1, D-85764 Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Jackson MA, Stack HF, Rice JM, Waters MD. A review of the genetic and related effects of 1,3-butadiene in rodents and humans. Mutat Res 2000; 463:181-213. [PMID: 11018742 DOI: 10.1016/s1383-5742(00)00056-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper, the metabolism and genetic toxicity of 1,3-butadiene (BD) and its oxidative metabolites in humans and rodents is reviewed with attention to newer data that have been published since the latest evaluation of BD by the International Agency for Research on Cancer (IARC). The oxidative metabolism of BD in mice, rats and humans is compared with emphasis on the major pathways leading to the reactive intermediates 1,2-epoxy-3-butene (EB), 1,2:3, 4-diepoxybutane (DEB), and 3,4-epoxy-1,2-butanediol (EBdiol). Results from recent studies of DNA and hemoglobin adducts indicate that EBdiol may play a more significant role in the toxicity of BD than previously thought. All three metabolites are capable of reacting with macromolecules, such as DNA and hemoglobin, and have been shown to induce a variety of genotoxic effects in mice and rats as well as in human cells in vitro. DEB is clearly the most potent of these genotoxins followed by EB, which in turn is more potent than EBdiol. Studies of mutations in lacI and lacZ mice and of the Hprt mutational spectrum in rodents and humans show that mutations at G:C base pairs are critical events in the mutagenicity of BD. In-depth analyses of the mutational spectra induced by BD and/or its oxidative metabolites should help to clarify which metabolite(s) are associated with specific mutations in each animal species and which mutational events contribute to BD-induced carcinogenicity. While the quantitative relationship between exposure to BD, its genotoxicity, and the induction of cancer in occupationally exposed humans remains to be fully established, there is sufficient data currently available to demonstrate that 1,3-butadiene is a probable human carcinogen.
Collapse
Affiliation(s)
- M A Jackson
- Alpha-Gamma Technologies Inc., Raleigh, NC 27609, USA
| | | | | | | |
Collapse
|
16
|
Abstract
This article reviews, with an emphasis on human experimental data, factors known or suspected to cause changes in the toxicokinetics of organic solvents. Such changes in the toxicokinetic pattern alters the relation between external exposure and target dose and thus may explain some of the observed individual variability in susceptibility to toxic effects. Factors shown to modify the uptake, distribution, biotransformation, or excretion of solvent include physical activity (work load), body composition, age, sex, genetic polymorphism of the biotransformation, ethnicity, diet, smoking, drug treatment, and coexposure to ethanol and other solvents. A better understanding of modifying factors is needed for several reasons. First, it may help in identifying important potential confounders and eliminating negligible ones. Second, the risk assessment process may be improved if different sources of variability between external exposures and target doses can be quantitatively assessed. Third, biological exposure monitoring may be also improved for the same reason.
Collapse
Affiliation(s)
- A Löf
- Department of Occupational Medicine, National Institute for Working Life, Solna, Sweden
| | | |
Collapse
|
17
|
Abstract
The synthetic monomer 1,3-butadiene and its metabolites have been reviewed in various in vitro and in vivo metabolic studies and in genetic toxicology assays. The species differences have been compared.
Collapse
Affiliation(s)
- D Anderson
- BIBRA International, Woodmansterne Road, Carshalton, Surrey SM5 4DS, UK.
| |
Collapse
|
18
|
Thornton-Manning JR, Dahl AR, Bechtold WE, Griffith WC, Henderson RF. Comparison of the disposition of butadiene epoxides in Sprague-Dawley rats and B6C3F1 mice following a single and repeated exposures to 1,3-butadiene via inhalation. Toxicology 1997; 123:125-34. [PMID: 9347927 DOI: 10.1016/s0300-483x(97)00112-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1,3-Butadiene (BD), a compound used extensively in the rubber industry, is a potent carcinogen in mice and a weak carcinogen in rats in chronic carcinogenicity bioassays. While many chemicals are known to alter their own metabolism after repeated exposures, the effect of exposure prior to BD on its in vivo metabolism has not been reported. The purpose of the present research was to examine the effect of repeated exposure to BD on tissue concentrations of two mutagenic BD metabolites, butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2). Concentrations of BD epoxides were compared in several tissues of rats and mice following a single exposure or ten repeated exposures to a target concentration of 62.5 ppm BD. Female Sprague-Dawley rats and female B6C3F1 mice were exposed to BD for 6 h or 6 h x 10 days. BDO and BDO2 were quantified in blood and several other tissues following preparation by cryogenic vacuum distillation and analysis by multidimensional gas chromatography-mass spectrometry. Blood and lung BDO concentrations did not differ significantly (P < or = 0.05) between the two exposure regimens in either species. Following multiple exposures to BD, BDO levels were 5- and 1.6-fold higher (P < or = 0.05) in mammary tissue and 2- and 1.4-fold higher in fat tissue of rats and mice, respectively, as compared with single exposures. BDO2 levels also increased in rat fat tissue following multiple exposures to BD. However, in mice, levels of this metabolite decreased by 15% in fat, by 28% in mammary tissue and by 34% in lung tissue following repeated exposures to BD. The finding that the mutagenic epoxide BDO, which is the precursor to the highly mutagenic BDO2, accumulates in rodent fat may be important in assessing the potential risk to humans from inhalation of BD.
Collapse
Affiliation(s)
- J R Thornton-Manning
- Lovelace Respiratory Research Institute, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87185, USA
| | | | | | | | | |
Collapse
|
19
|
Himmelstein MW, Acquavella JF, Recio L, Medinsky MA, Bond JA. Toxicology and epidemiology of 1,3-butadiene. Crit Rev Toxicol 1997; 27:1-108. [PMID: 9115622 DOI: 10.3109/10408449709037482] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M W Himmelstein
- Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709-2137, USA
| | | | | | | | | |
Collapse
|
20
|
Mabon N, Moorthy B, Randerath E, Randerath K. Monophosphate 32P-postlabeling assay of DNA adducts from 1,2:3,4-diepoxybutane, the most genotoxic metabolite of 1,3-butadiene: in vitro methodological studies and in vivo dosimetry. Mutat Res 1996; 371:87-104. [PMID: 8950354 DOI: 10.1016/s0165-1218(96)90098-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among the main DNA-reactive metabolites of 1,3-butadiene (BD), both 1,2:3,4-butadiene diepoxide (BDE) and 1,2-epoxy-3-butene (BME) have been reported in mice and rats exposed to BD, but blood and tissue levels of these metabolites are much higher in mice than in rats under similar exposure conditions. BDE, being more reactive and genotoxic than BME, is thought to be responsible for the greater susceptibility of mice to BD carcinogenicity. While BDE is a DNA-alkylating agent and some BDE adducts have been characterized, no sufficiently sensitive method has been reported for studying BDE-DNA binding in vivo. In the present investigation, a modified dinucleotide/monophosphate version of the 32P-postlabeling assay was applied to detect BDE-DNA adducts, which were prepared by reacting BDE with calf thymus DNA or deoxyribooligonucleotides [(AC)10, (AG)10, (CCT)7 and (GGT)7] in vitro or with skin DNA of mice in vivo upon topical treatment. Optimal resolution by 2-D PEI-cellulose TLC of the highly polar 5'-monophosphate adducts was achieved at +4 degrees C using 0.3 M LiCI (DI) and 0.4 M NaCl, 0.04 M H3BO3, pH 7.6 (D2). The profiles of the 32P-postlabeled adducts were similar for calf thymus and skin DNA, with 3 major spots being detected. Adducts obtained in in vitro and in vivo experiments were compared by re- and cochromatography in 4 or 5 different solvents, and these experiments provided evidence that corresponding BDE adducts, for the most part, were identical and represented adenine derivatives. Guanine adducts were not detected by this method although literature data indicate their formation. Quantitatively, the assay responded linearly to adduct concentration, as shown in an experiment where BDE-modified skin DNA was serially diluted up to 81-fold with control DNA. The limit of detection was approximately 1 adduct in 10(8) normal nucleotides. Further, in an in vivo dosimetry study, skin DNA from groups of 8 individual mice treated with different doses of BDE (1.9, 5.7, 17, 51 and 153 mumol/mouse) for 3 days exhibited a linear relationship (r > or = 0.992) between adduct levels and dose. The results suggest that the 32P-postlabeling assay described herein will have utility in mechanistic studies and biomonitoring of DNA adduct formation from BDE and possibly other polar epoxides.
Collapse
Affiliation(s)
- N Mabon
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
21
|
Henderson RF, Thornton-Manning JR, Bechtold WE, Dahl AR. Metabolism of 1,3-butadiene: species differences. Toxicology 1996; 113:17-22. [PMID: 8901878 DOI: 10.1016/0300-483x(96)03422-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Species differences in the metabolism of 1,3-butadiene (BD) have been studied in an effort to explain the major differences observed in the responses of mice, the sensitive species, and rats, the resistant species, to the toxicity of inhaled BD. BD is metabolized by the same metabolic pathways in all species studied, but there are major species differences in the quantitative aspects of those pathways. Of the species studied, mice are the most efficient at metabolizing BD to the initial metabolite, the monoepoxide (BDO). Mice either convert most of the BDO to the diepoxide (BDO2), the most mutagenic of the BD metabolites, or form conjugates of the BDO with glutathione (GSH). Rats, on the other hand, are less active at forming BDO, oxidize very little of the BDO to BDO2, and form GSH conjugates with either the BDO or its hydrolysis product, butenediol. Primates convert even less of inhaled BD to BDO and hydrolyze most of the BDO to the butenediol. The extent to which primates form BDO2 is unknown. Because of the association of high levels of the highly mutagenic BDO2 with the sensitive rodent strain, it is important to determine the production of this metabolite in primates, particularly humans.
Collapse
Affiliation(s)
- R F Henderson
- Inhalation Toxicology Research Institute, Albuquerque, NM 87185, USA
| | | | | | | |
Collapse
|
22
|
Thornton-Manning JR, Dahl AR, Bechtold WE, Henderson RF. Gender and species differences in the metabolism of 1,3-butadiene to butadiene monoepoxide and butadiene diepoxide in rodents following low-level inhalation exposures. Toxicology 1996; 113:322-5. [PMID: 8901918 DOI: 10.1016/0300-483x(96)03466-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Levels of butadiene monoepoxide (BDO) and butadiene diepoxide (BDO2) were compared in tissues of male Sprague-Dawley rats and male B6C3F1 mice and in tissues of male and female Sprague-Dawley rats following inhalation exposures to 62.5 ppm 1,3-butadiene (BD). In male rats, BDO2 levels were highest in blood and were present at a concentration of only 5 +/- 1 pmol/g. Following a 6-h exposure, the concentration of BDO2 in the blood, femurs, lung and fat of female rats was 3 to 7-fold that of male rats. Levels of BDO were similar in tissues of female and male rats. Generally, levels of BDO were approximately 3 to 8-fold greater in mouse tissues as compared with rat tissues following 4-h exposures to BD. In blood, 204 +/- 15 pmol/g BDO2 was detected in male mice, while in rats, blood BDO2 levels were 5 +/- 1 pmol/g. This study shows marked species differences in tissue levels of BD epoxides, particularly BDO2, in rats and mice, and is the first to show gender differences in BD metabolism.
Collapse
Affiliation(s)
- J R Thornton-Manning
- Inhalation Toxicology Research Institute, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87185, USA
| | | | | | | |
Collapse
|