1
|
Kovács AL, Lőw P, Juhász G. The legacy of János Kovács: a lifelong devotion to advancing autophagy research. Autophagy 2022; 18:2017-2019. [PMID: 35737695 DOI: 10.1080/15548627.2022.2091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőw
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.,Institute of Genetics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
2
|
Li J, Chen X, Kang R, Zeh H, Klionsky DJ, Tang D. Regulation and function of autophagy in pancreatic cancer. Autophagy 2021; 17:3275-3296. [PMID: 33161807 PMCID: PMC8632104 DOI: 10.1080/15548627.2020.1847462] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Oncogenic KRAS mutation-driven pancreatic ductal adenocarcinoma is currently the fourth-leading cause of cancer-related deaths in the United States. Macroautophagy (hereafter "autophagy") is one of the lysosome-dependent degradation systems that can remove abnormal proteins, damaged organelles, or invading pathogens by activating dynamic membrane structures (e.g., phagophores, autophagosomes, and autolysosomes). Impaired autophagy (including excessive activation and defects) is a pathological feature of human diseases, including pancreatic cancer. However, dysfunctional autophagy has many types and plays a complex role in pancreatic tumor biology, depending on various factors, such as tumor stage, microenvironment, immunometabolic state, and death signals. As a modulator connecting various cellular events, pharmacological targeting of nonselective autophagy may lead to both good and bad therapeutic effects. In contrast, targeting selective autophagy could reduce potential side effects of the drugs used. In this review, we describe the advances and challenges of autophagy in the development and therapy of pancreatic cancer.Abbreviations: AMPK: AMP-activated protein kinase; CQ: chloroquine; csc: cancer stem cells; DAMP: danger/damage-associated molecular pattern; EMT: epithelial-mesenchymal transition; lncRNA: long noncoding RNA; MIR: microRNA; PanIN: pancreatic intraepithelial neoplasia; PDAC: pancreatic ductal adenocarcinoma; PtdIns3K: phosphatidylinositol 3-kinase; SNARE: soluble NSF attachment protein receptor; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Herbert Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Görgülü K, Diakopoulos KN, Kaya-Aksoy E, Ciecielski KJ, Ai J, Lesina M, Algül H. The Role of Autophagy in Pancreatic Cancer: From Bench to the Dark Bedside. Cells 2020; 9:E1063. [PMID: 32344698 PMCID: PMC7226443 DOI: 10.3390/cells9041063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the deadliest cancer types urgently requiring effective therapeutic strategies. Autophagy occurs in several compartments of pancreatic cancer tissue including cancer cells, cancer associated fibroblasts, and immune cells where it can be subjected to a multitude of stimulatory and inhibitory signals fine-tuning its activity. Therefore, the effects of autophagy on pancreatic carcinogenesis and progression differ in a stage and context dependent manner. In the initiation stage autophagy hinders development of preneoplastic lesions; in the progression stage however, autophagy promotes tumor growth. This double-edged action of autophagy makes it a hard therapeutic target. Indeed, autophagy inhibitors have not yet shown survival improvements in clinical trials, indicating a need for better evaluation of existing results and smarter targeting techniques. Clearly, the role of autophagy in pancreatic cancer is complex and many aspects have to be considered when moving from the bench to the bedside.
Collapse
Affiliation(s)
- Kıvanç Görgülü
- Comprehensive Cancer Center Munich, Technische Universität München, 81675 Munich, Germany; (K.N.D.); (E.K.-A.); (K.J.C.); (J.A.); (M.L.)
| | - Kalliope N. Diakopoulos
- Comprehensive Cancer Center Munich, Technische Universität München, 81675 Munich, Germany; (K.N.D.); (E.K.-A.); (K.J.C.); (J.A.); (M.L.)
| | - Ezgi Kaya-Aksoy
- Comprehensive Cancer Center Munich, Technische Universität München, 81675 Munich, Germany; (K.N.D.); (E.K.-A.); (K.J.C.); (J.A.); (M.L.)
| | - Katrin J. Ciecielski
- Comprehensive Cancer Center Munich, Technische Universität München, 81675 Munich, Germany; (K.N.D.); (E.K.-A.); (K.J.C.); (J.A.); (M.L.)
| | - Jiaoyu Ai
- Comprehensive Cancer Center Munich, Technische Universität München, 81675 Munich, Germany; (K.N.D.); (E.K.-A.); (K.J.C.); (J.A.); (M.L.)
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Marina Lesina
- Comprehensive Cancer Center Munich, Technische Universität München, 81675 Munich, Germany; (K.N.D.); (E.K.-A.); (K.J.C.); (J.A.); (M.L.)
| | - Hana Algül
- Comprehensive Cancer Center Munich, Technische Universität München, 81675 Munich, Germany; (K.N.D.); (E.K.-A.); (K.J.C.); (J.A.); (M.L.)
| |
Collapse
|
4
|
Shan M, Qin J, Jin F, Han X, Guan H, Li X, Zhang J, Zhang H, Wang Y. Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway. Free Radic Biol Med 2017. [PMID: 28647611 DOI: 10.1016/j.freeradbiomed.2017.05.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this study was to examine the effect of autophagy on stress-induced M2 macrophage polarization in the tumor microenvironment of breast cancer and to determine whether the underlying mechanism was related to the reactive oxygen species (ROS)/ERK and mTOR pathway. In vitro, we found that the basal autophagy level in mouse RAW 264.7 macrophages decreased with the incubation of tumor cell culture supernatant. Similarly, the polarization of RAW 264.7 to M2 macrophages was inhibited by the autophagy inducer rapamycin and increased by the autophagy inhibitor 3-MA or by siBeclin1. In addition, we found that not only was M2 molecule expression down-regulated but intracellular ROS generation was also blocked by autophagy induction. In vivo, we observed that mice that received an isoprenaline injection as a stress agent exhibited augmented implanted breast tumor growth, lung metastasis, intratumoral mRNA expression of M2 molecules and serum ROS generation. In contrast, the intratumoral expression of LC3-II and Beclin1 was decreased. In addition, we observed that isoprenaline induced the up-regulation of the intratumoral expression of phosphorylated mTOR, phosphorylated ERK1/2, phosphorylated Tyr705-STAT3 and HIF-1α, whereas rapamycin induced an opposite effect on the same molecules and could abolish the effects of isoprenaline. These results suggest that autophagy might suppress M2 macrophage polarization induced by isoprenaline via the ROS/ERK and mTOR signaling pathway. Our findings provide a theoretical basis for why high levels of stress hormones accelerate the progression of breast cancer, and autophagy may play a role in determining the outcomes of cancer therapy.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Autophagy/drug effects
- Autophagy/genetics
- Cell Line, Tumor
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Isoproterenol/antagonists & inhibitors
- Isoproterenol/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- MAP Kinase Signaling System
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- RAW 264.7 Cells
- Reactive Oxygen Species/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
- Meihua Shan
- Medical School of Nankai University, Nankai University, Tianjin, China; Hebei Normal University for Nationalities, Chengde, China
| | - Junfang Qin
- Medical School of Nankai University, Nankai University, Tianjin, China
| | - Fengjiao Jin
- Medical School of Nankai University, Nankai University, Tianjin, China
| | - Xiao Han
- Medical School of Nankai University, Nankai University, Tianjin, China
| | - Haitao Guan
- Medical School of Nankai University, Nankai University, Tianjin, China
| | - Xiaoge Li
- Medical School of Nankai University, Nankai University, Tianjin, China
| | - Jiahui Zhang
- Medical School of Nankai University, Nankai University, Tianjin, China
| | - Hongyao Zhang
- Medical School of Nankai University, Nankai University, Tianjin, China
| | - Yue Wang
- Medical School of Nankai University, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
Abstract
DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.
Collapse
Affiliation(s)
- Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Adam D Thomas
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
6
|
Blum R, Kloog Y. Metabolism addiction in pancreatic cancer. Cell Death Dis 2014; 5:e1065. [PMID: 24556680 PMCID: PMC3944253 DOI: 10.1038/cddis.2014.38] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma, an aggressively invasive, treatment-resistant malignancy and the fourth leading cause of cancer deaths in the United States, is usually detectable only when already inevitably fatal. Despite advances in genetic screening, mapping and molecular characterization, its pathology remains largely elusive. Renewed research interest in longstanding doctrines of tumor metabolism has led to the emergence of aberrant signaling pathways as critical factors modulating central metabolic networks that fuel pancreatic tumors. Such pathways, including those of Ras signaling, glutamine-regulatory enzymes, lipid metabolism and autophagy, are directly affected by genetic mutations and extreme tumor microenvironments that typify pancreatic tumor cells. Elucidation of these metabolic networks can be expected to yield more potent therapies against this deadly disease.
Collapse
Affiliation(s)
- R Blum
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
| | - Y Kloog
- Department of Neurobiology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Donohue E, Thomas A, Maurer N, Manisali I, Zeisser-Labouebe M, Zisman N, Anderson HJ, Ng SSW, Webb M, Bally M, Roberge M. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model. J Cancer 2013; 4:585-96. [PMID: 24069069 PMCID: PMC3781989 DOI: 10.7150/jca.7030] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/17/2013] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to chemotherapy. It has been described as requiring elevated autophagy for growth and inhibiting autophagy has been proposed as a treatment strategy. To date, all preclinical reports and clinical trials investigating pharmacological inhibition of autophagy have used chloroquine or hydroxychloroquine, which interfere with lysosomal function and block autophagy at a late stage. Verteporfin is a newly discovered autophagy inhibitor that blocks autophagy at an early stage by inhibiting autophagosome formation. Here we report that PDAC cell lines show variable sensitivity to verteporfin in vitro, suggesting cell-line specific autophagy dependence. Using image-based and molecular analyses, we show that verteporfin inhibits autophagy stimulated by gemcitabine, the current standard treatment for PDAC. Pharmacokinetic and efficacy studies in a BxPC-3 xenograft mouse model demonstrated that verteporfin accumulated in tumors at autophagy-inhibiting levels and inhibited autophagy in vivo, but did not reduce tumor volume or increase survival as a single agent. In combination with gemcitabine verteporfin moderately reduced tumor growth and enhanced survival compared to gemcitabine alone. While our results do not uphold the premise that autophagy inhibition might be widely effective against PDAC as a single-modality treatment, they do support autophagy inhibition as an approach to sensitize PDAC to gemcitabine.
Collapse
Affiliation(s)
- Elizabeth Donohue
- 1. Department of Biochemistry and Molecular Biology, University of British Columbia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Pancreatic adenocarcinoma (PDAC) is a devastating disease with an extremely poor life expectancy and no effective treatment. Autophagy is a process of degradation of cytoplasmic component capable of recycling cellular components or eliminate specific targets. The presence of autophagy in PDAC has been demonstrated. However, the implicated cellular pathways are not fully understood and, more importantly, the role of autophagy in PDAC is matter of intensive debate. This review summarizes recently published data in an attempt to clarify the importance of autophagy in this disease and try to reconcile apparently contradictory results.
Collapse
|
9
|
Abstract
Autophagy is a cytoplasmic catabolic process that protects the cell against stressful conditions. Damaged cellular components are funneled by autophagy into the lysosomes, where they are degraded and can be re-used as alternative building blocks for protein synthesis and cellular repair. In contrast, aging is the gradual failure over time of cellular repair mechanisms that leads to the accumulation of molecular and cellular damage and loss of function. The cell's capacity for autophagic degradation also declines with age, and this in itself may contribute to the aging process. Studies in model organisms ranging from yeast to mice have shown that single-gene mutations can extend lifespan in an evolutionarily conserved fashion, and provide evidence that the aging process can be modulated. Interestingly, autophagy is induced in a seemingly beneficial manner by many of the same perturbations that extend lifespan, including mutations in key signaling pathways such as the insulin/IGF-1 and TOR pathways. Here, we review recent progress, primarily derived from genetic studies with model organisms, in understanding the role of autophagy in aging and age-related diseases.
Collapse
Affiliation(s)
- Sara Gelino
- Sanford-Burnham Medical Research Institute, USA ; Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | | |
Collapse
|
10
|
para-Phenylenediamine-induced autophagy in human uroepithelial cell line mediated mutant p53 and activation of ERK signaling pathway. Toxicol In Vitro 2011; 25:1630-7. [DOI: 10.1016/j.tiv.2011.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 06/08/2011] [Accepted: 06/16/2011] [Indexed: 12/22/2022]
|
11
|
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90:1383-435. [PMID: 20959619 DOI: 10.1152/physrev.00030.2009] [Citation(s) in RCA: 1345] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cheng Y, Li H, Ren X, Niu T, Hait WN, Yang J. Cytoprotective effect of the elongation factor-2 kinase-mediated autophagy in breast cancer cells subjected to growth factor inhibition. PLoS One 2010; 5:e9715. [PMID: 20300520 PMCID: PMC2838786 DOI: 10.1371/journal.pone.0009715] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/23/2010] [Indexed: 01/16/2023] Open
Abstract
Background Autophagy is a highly conserved and regulated cellular process employed by living cells to degrade proteins and organelles as a response to metabolic stress. We have previously reported that eukaryotic elongation factor-2 kinase (eEF-2 kinase, also known as Ca2+/calmodulin-dependent protein kinase III) can positively modulate autophagy and negatively regulate protein synthesis. The purpose of the current study was to determine the role of the eEF-2 kinase-regulated autophagy in the response of breast cancer cells to inhibitors of growth factor signaling. Methodology/Principal Findings We found that nutrient depletion or growth factor inhibitors activated autophagy in human breast cancer cells, and the increased activity of autophagy was associated with a decrease in cellular ATP and an increase in activities of AMP kinase and eEF-2 kinase. Silencing of eEF-2 kinase relieved the inhibition of protein synthesis, led to a greater reduction of cellular ATP, and blunted autophagic response. We further showed that suppression of eEF-2 kinase-regulated autophagy impeded cell growth in serum/nutrient-deprived cultures and handicapped cell survival, and enhanced the efficacy of the growth factor inhibitors such as trastuzumab, gefitinib, and lapatinib. Conclusion/Significance The results of this study provide new evidence that activation of eEF-2 kinase-mediated autophagy plays a protective role for cancer cells under metabolic stress conditions, and that targeting autophagic survival may represent a novel approach to enhancing the effectiveness of growth factor inhibitors.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology and The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Huaijun Li
- Department of Pharmacology and The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Xingcong Ren
- Department of Pharmacology and The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Tingkuang Niu
- Department of Pharmacology and The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - William N. Hait
- OrthoBiotech Research and Development, Raritan, New Jersey, United States of America
| | - Jinming Yang
- Department of Pharmacology and The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- Department of Pharmacology, School of Medicine, Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
13
|
Lanucara F, Brownridge P, Young IS, Whitfield PD, Doherty MK. Degradative proteomics and disease mechanisms. Proteomics Clin Appl 2010; 4:133-42. [PMID: 21137039 DOI: 10.1002/prca.200900159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/22/2009] [Accepted: 10/08/2009] [Indexed: 02/01/2023]
Abstract
Protein degradation is a fundamental biological process, which is essential for the maintenance and regulation of normal cellular function. In humans and animals, proteins can be degraded by a number of mechanisms: the ubiquitin-proteasome system, autophagy and intracellular proteases. The advances in contemporary protein analysis means that proteomics is increasingly being used to explore these key pathways and as a means of monitoring protein degradation. The dysfunction of protein degradative pathways has been associated with the development of a number of important diseases including cancer, muscle wasting disorders and neurodegenerative diseases. This review will focus on the role of proteomics to study cellular degradative processes and how these strategies are being applied to understand the molecular basis of diseases arising from disturbances in protein degradation.
Collapse
Affiliation(s)
- Francesco Lanucara
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, UK
| | | | | | | | | |
Collapse
|
14
|
Tsuchihara K, Fujii S, Esumi H. Autophagy and cancer: dynamism of the metabolism of tumor cells and tissues. Cancer Lett 2008; 278:130-138. [PMID: 19004545 DOI: 10.1016/j.canlet.2008.09.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/17/2008] [Accepted: 09/30/2008] [Indexed: 01/05/2023]
Abstract
Autophagy is a dynamic process involving the bulk degradation of cytoplasmic organelles and proteins. Based on the function of "cellular recycling", autophagy plays key roles in the quality control of cellular components as well as supplying nutrients and materials for newly constructed structures in cells under metabolic stresses. The physiological relevance of autophagy in tumor formation and progression is still controversial. The cytoprotective function of autophagy in cells subjected to starvation might enhance the prolonged survival of tumor cells that are often exposed to metabolic stresses in vivo. Meanwhile, a tumor-suppressive function of autophagy has also been suggested. Autophagy-related cell death has been regarded as a primary mechanism for tumor suppression. In addition, the loss of autophagy induced genome instability and significant necrosis with inflammation in transplanted mouse tumor models, suggesting an additional function of autophagy in the suppression of tumor formation and growth. Until now, investigations supporting and proving the above possibilities have not been fully completed using clinical samples and equivalent animal models. Though monitoring and the interpretation of autophagy dynamism in tumor tissues are still technically difficult, identifying the autophagic activity in clinical samples might be necessary to clarify the pathophysiological relevance of autophagy in tumor formation and progression as well as to develop new therapeutic strategies based on the regulation of autophagy.
Collapse
Affiliation(s)
- Katsuya Tsuchihara
- Cancer Physiology Project, Research Center for Innovative oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Satoshi Fujii
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Hiroyasu Esumi
- Cancer Physiology Project, Research Center for Innovative oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| |
Collapse
|
15
|
Abstract
A host of dietary factors can influence various cellular processes and thereby potentially influence overall cancer risk and tumor behavior. In many cases, these factors suppress cancer by stimulating programmed cell death. However, death not only can follow the well-characterized type I apoptotic pathway but also can proceed by nonapoptotic modes such as type II (macroautophagy-related) and type III (necrosis) or combinations thereof. In contrast to apoptosis, the induction of macroautophagy may contribute to either the survival or death of cells in response to a stressor. This review highlights current knowledge and gaps in our understanding of the interactions among bioactive food constituents, autophagy, and cancer. Whereas a variety of food components including vitamin D, selenium, curcumin, resveratrol, and genistein have been shown to stimulate autophagy vacuolization, it is often difficult to determine if this is a protumorigenic or antitumorigenic response. Additional studies are needed to examine dose and duration of exposures and tissue specificity in response to bioactive food components in transgenic and knockout models to resolve the physiologic implications of early changes in the autophagy process.
Collapse
Affiliation(s)
- Keith Singletary
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
16
|
Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, Atomi Y, Ueno T, Ochiai A, Esumi H. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 2007; 67:9677-84. [PMID: 17942897 DOI: 10.1158/0008-5472.can-07-1462] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several types of cancer cells, including colorectal cancer-derived cell lines, show austerity, the resistance to nutrient starvation, but exactly how cancer cells obtain energy sources under conditions in which their external nutrient supply is extremely limited remains to be clarified. Because autophagy is a catabolic process by which cells supply amino acids from self-digested organelles, cancer cells are likely to use autophagy to obtain amino acids as alternative energy sources. Amino acid deprivation-induced autophagy was assessed in DLD-1 and other colorectal cancer-derived cell lines. The autophagosome-incorporated LC3-II protein level increased after treatment with a combination of autolysosome inhibitors, which interferes with the consumption of autophagosomes. Autophagosome formation was also morphologically confirmed using ectopically expressed green fluorescent protein-LC3 fusion proteins in DLD-1 and SW480 cells. These data suggest that autophagosomes were actively produced and promptly consumed in colorectal cancer cells under nutrient starvation. Autolysosome inhibitors and 3-methyl adenine, which suppresses autophagosome formation, remarkably enhanced apoptosis under amino acid-deprived and glucose-deprived condition. Similar results were obtained in the cells with decreased ATG7 level by the RNA interference. These data suggest that autophagy is pivotal for the survival of colorectal cancer cells that have acquired austerity. Furthermore, autophagosome formation was seen only in the tumor cells but not in the adjacent noncancerous epithelial cells of colorectal cancer specimens. Taken together, autophagy is activated in colorectal cancers in vitro and in vivo, and autophagy may contribute to the survival of the cancer cells in their microenvironment.
Collapse
Affiliation(s)
- Kazunori Sato
- Cancer Physiology Project and Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, and Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang YC, Hung WC, Kang WY, Chen WT, Chai CY. Expression of STAT3 and Bcl-6 oncoprotein in sodium arsenite-treated SV-40 immortalized human uroepithelial cells. Toxicol Lett 2007; 173:57-65. [PMID: 17689208 DOI: 10.1016/j.toxlet.2007.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/28/2022]
Abstract
Arsenic is widely distributed in the environment, and it is a proven toxic and carcinogenic agent. On the southwest coast of Taiwan, an endemic occurrence of chronic arsenical poisoning due to a high concentration of arsenic in artesian-well water has been reported. However, the mechanisms of its carcinogenic action are still unclear. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is an essential cascade for mediating normal functions of different cytokines in the development of the hematopoietic and immune systems. In this study, the substantial morphological changes observed in SV-40 immortalized human uroepithelial cells (SV-HUC-1) after treatment of various concentrations of arsenite were examined, and the expression of Bcl-6, Jak-2 and p-STAT3 (Tyr 705) were evaluated by immunocytochemistry and Western blotting. Our results showed that the expression of Bcl-6 increased dose-dependently in arsenite-treated urothelial cells. Sodium arsenite treatment reduced Jak-2 protein expression in a dose-dependent manner. However, treatment of SV-HUC-1 cells with arsenite at concentration ranges from 2 and 4microM for 48h dramatically increased p-STAT3 (Tyr 705), but the levels decreased at 8-40microM of arsenite. Our data suggest that arsenic-mediated inactivation of the JAK-STAT signaling pathway might be caused by Bcl-6 interaction with JAK tyrosine kinase or STAT. In conclusion, our findings indicate that arsenic inhibits JAK tyrosine kinase protein expression and suggest the interference in the JAK-STAT pathway might be through Bcl-6 playing an important role in arsenic-associated carcinogenesis.
Collapse
Affiliation(s)
- Ya-Chun Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Chai CY, Huang YC, Hung WC, Kang WY, Chen WT. Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells. Toxicol Lett 2007; 173:48-56. [PMID: 17683884 DOI: 10.1016/j.toxlet.2007.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/31/2022]
Abstract
Arsenic is a well-known toxic and carcinogenic agent, and associated with various human malignancies, including skin, lung and bladder cancers. Paradoxically, arsenic trioxide has been used successfully in the treatment of patients with acute promyelocytic leukemia. In addition, arsenic could induce cell apoptosis or autophagy in malignant cells. However, the underlying mechanism of arsenic-induced carcinogenesis is still unclear. In this study, we demonstrated an increase of autophagosomes was produced in arsenic-treated SV-HUC-1 cells by using electron microscopy. In addition, increase of Beclin-1, an important regulator for the formation of autophagosome, protein expression in a dose-dependent manner was also found. By using methylation specific PCR, we revealed hypermethylation of CpG sites in the promoter region with decreased DAPK protein expression in arsenic-treated SV-HUC-1 cells. As epigenetic silencing of tumor suppressor genes by promoter hypermethylation has been found in a variety of malignancies including bladder cancer, our results provide new insights for the understanding of the mechanism of arsenic-induced carcinogenesis in urothelial cells.
Collapse
MESH Headings
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Arsenites/toxicity
- Autophagy/drug effects
- Beclin-1
- Blotting, Western
- Calcium-Calmodulin-Dependent Protein Kinases/genetics
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Carcinogens/toxicity
- Cell Line, Transformed
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Viral
- CpG Islands/drug effects
- DNA Methylation/drug effects
- Death-Associated Protein Kinases
- Dose-Response Relationship, Drug
- Humans
- Immunohistochemistry
- Membrane Proteins/metabolism
- Microscopy, Electron, Transmission
- Polymerase Chain Reaction
- Promoter Regions, Genetic/drug effects
- Simian virus 40
- Sodium Compounds/toxicity
- Up-Regulation
- Urothelium/drug effects
- Urothelium/enzymology
- Urothelium/metabolism
- Urothelium/ultrastructure
Collapse
Affiliation(s)
- Chee-Yin Chai
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Autophagy is characterized by sequestration of bulk cytoplasm and organelles in double or multimembrane autophagic vesicles, and their delivery to and subsequent degradation by the cell's own lysosomal system. Autophagy has multiple physiological functions in multicellular organisms, including protein degradation and organelle turnover. Genes and proteins that constitute the basic machinery of the autophagic process were first identified in the yeast system and some of their mammalian orthologues have been characterized as well. Increasing lines of evidence indicate that these molecular mechanisms may be recruited by an alternative, caspase-independent form of programmed cell death, named autophagic type II cell death. In some settings, autophagy and apoptosis seem to be interconnected positively or negatively, introducing the concept of 'molecular switches' between them. Additionally, mitochondria may be central organelles integrating the two types of cell death. Malignant transformation is frequently associated with suppression of autophagy. The recent implication of tumor suppressors like Beclin 1, DAP-kinase and PTEN in autophagic pathways indicates a causative role for autophagy deficiencies in cancer formation. Autophagic cell death induction by some anticancer agents underlines the potential utility of its induction as a new cancer treatment modality.
Collapse
Affiliation(s)
- Devrim Gozuacik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
20
|
Nagy K, Pálfia Z, Réz G. Characterisation of the progression of azaserine-induced rat pancreatic adenocarcinoma by proliferative cell nuclear antigen, basement membrane laminin and trypsinogen immunohistochemistry. Histochem Cell Biol 2003; 119:405-13. [PMID: 12743826 DOI: 10.1007/s00418-003-0520-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2003] [Indexed: 01/19/2023]
Abstract
The progression of azaserine-induced rat pancreatic adenocarcinoma (AC) was characterised using quantitative and semiquantitative immunohistochemistry for proliferating cell nuclear antigen (PCNA), basement membrane laminin (BML) and trypsinogen (TG). Samples were taken 5-20 months after initiation. High PCNA-labelling indices (PCNA LIs) were measured 5 months after the induction of atypical acinar cell nodules (AACNs), which decreased later and stagnated until a further decline in the month 10 adenomas. Then a second premalignant proliferative wave was observed (month 13) within the adenoma stage. Later, in month 20 differentiated ACs PCNA LIs fell to the host tissue level but were found highest in the month 20 anaplastic ACs indicating a switch to malignant proliferation. Month 20 invasive ACs showed a number of separate proliferative foci. In early AACNs, BML decreased and remained low till the local maximum in the month 13 adenoma. Invasive ACs did not express BML. Month 5 AACN and differentiated AC were TG deficient but anaplastic AC regained its TG expression. However invasive AC was again TG negative. These results are discussed in combination with our previous data on progressional changes of autophagic capacity and microvessel densities.
Collapse
Affiliation(s)
- Krisztina Nagy
- Department of General Zoology, Eötvös University, Pf 120, 1518 Budapest, Hungary
| | | | | |
Collapse
|
21
|
Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1603:113-28. [PMID: 12618311 DOI: 10.1016/s0304-419x(03)00004-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Macroautophagy or autophagy is a degradative pathway terminating in the lysosomal compartment after the formation of a cytoplasmic vacuole that engulfs macromolecules and organelles. The recent discovery of the molecular controls of autophagy that are common to eukaryotic cells from yeast to human suggests that the role of autophagy in cell functioning is far beyond its nonselective degradative capacity. The involvement of proteins with properties of tumor suppressor and oncogenic properties at different steps of the pathway implies that autophagy must be considered in tumor progression. Autophagy as a stress response mechanism protects cancer cells from low nutrient supply or therapeutic insults. Autophagy is also involved in the elimination of cancer cells by triggering a non-apoptotic cell death program, suggesting a negative role in tumor development. These two aspects of autophagy will be discussed in this review.
Collapse
Affiliation(s)
- Eric Ogier-Denis
- INSERM U504 Glycobiologie et Signalisation cellulaire, Institut André Lwoff, 16 avenue Paul-Vaillant-Couturier, 94807 Villejuif Cedex, France
| | | |
Collapse
|