1
|
Klungland A, Robertson AB. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Free Radic Biol Med 2017; 107:62-68. [PMID: 27890639 DOI: 10.1016/j.freeradbiomed.2016.11.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
Recent reports suggest that the Tet enzyme family catalytically oxidize 5-methylcytosine in mammalian cells. The oxidation of 5-methylcytosine can result in three chemically distinct species - 5-hydroxymethylcytsine, 5-formylcytosine, and 5-carboxycytosine. While the base excision repair machinery processes 5-formylcytosine and 5-carboxycytosine rapidly, 5-hydroxymethylcytosine is stable under physiological conditions. As a stable modification 5-hydroxymethylcytosine has a broad range of functions, from stem cell pluriopotency to tumorigenesis. The subsequent oxidation products, 5-formylcytosine and 5-carboxycytosine, are suggested to be involved in an active DNA demethylation pathway. This review provides an overview of the biochemistry and biology of 5-methylcytosine oxidation products.
Collapse
Affiliation(s)
- Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway; Institute of Basic Medical Sciences, University of Oslo, PO Box 1018 Blindern, N-0315 Oslo, Norway
| | - Adam B Robertson
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway.
| |
Collapse
|
2
|
Huehls AM, Huntoon CJ, Joshi PM, Baehr CA, Wagner JM, Wang X, Lee MY, Karnitz LM. Genomically Incorporated 5-Fluorouracil that Escapes UNG-Initiated Base Excision Repair Blocks DNA Replication and Activates Homologous Recombination. Mol Pharmacol 2015; 89:53-62. [PMID: 26494862 DOI: 10.1124/mol.115.100164] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022] Open
Abstract
5-Fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (FdUrd, floxuridine) are chemotherapy agents that are converted to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP). FdUMP inhibits thymidylate synthase and causes the accumulation of uracil in the genome, whereas FdUTP is incorporated by DNA polymerases as 5-FU in the genome; however, it remains unclear how either genomically incorporated U or 5-FU contributes to killing. We show that depletion of the uracil DNA glycosylase (UNG) sensitizes tumor cells to FdUrd. Furthermore, we show that UNG depletion does not sensitize cells to the thymidylate synthase inhibitor (raltitrexed), which induces uracil but not 5-FU accumulation, thus indicating that genomically incorporated 5-FU plays a major role in the antineoplastic effects of FdUrd. We also show that 5-FU metabolites do not block the first round of DNA synthesis but instead arrest cells at the G1/S border when cells again attempt replication and activate homologous recombination (HR). This arrest is not due to 5-FU lesions blocking DNA polymerase δ but instead depends, in part, on the thymine DNA glycosylase. Consistent with the activation of HR repair, disruption of HR sensitized cells to FdUrd, especially when UNG was disabled. These results show that 5-FU lesions that escape UNG repair activate HR, which promotes cell survival.
Collapse
Affiliation(s)
- Amelia M Huehls
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Catherine J Huntoon
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Poorval M Joshi
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Carly A Baehr
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Jill M Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Xiaoxiao Wang
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Marietta Y Lee
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| |
Collapse
|
3
|
Pettersen HS, Visnes T, Vågbø CB, Svaasand EK, Doseth B, Slupphaug G, Kavli B, Krokan HE. UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Res 2011; 39:8430-44. [PMID: 21745813 PMCID: PMC3201877 DOI: 10.1093/nar/gkr563] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytotoxicity of 5-fluorouracil (FU) and 5-fluoro-2′-deoxyuridine (FdUrd) due to DNA fragmentation during DNA repair has been proposed as an alternative to effects from thymidylate synthase (TS) inhibition or RNA incorporation. The goal of the present study was to investigate the relative contribution of the proposed mechanisms for cytotoxicity of 5-fluoropyrimidines. We demonstrate that in human cancer cells, base excision repair (BER) initiated by the uracil–DNA glycosylase UNG is the major route for FU–DNA repair in vitro and in vivo. SMUG1, TDG and MBD4 contributed modestly in vitro and not detectably in vivo. Contribution from mismatch repair was limited to FU:G contexts at best. Surprisingly, knockdown of individual uracil–DNA glycosylases or MSH2 did not affect sensitivity to FU or FdUrd. Inhibitors of common steps of BER or DNA damage signalling affected sensitivity to FdUrd and HmdUrd, but not to FU. In support of predominantly RNA-mediated cytotoxicity, FU-treated cells accumulated ~3000- to 15 000-fold more FU in RNA than in DNA. Moreover, FU-cytotoxicity was partially reversed by ribonucleosides, but not deoxyribonucleosides and FU displayed modest TS-inhibition compared to FdUrd. In conclusion, UNG-initiated BER is the major route for FU–DNA repair, but cytotoxicity of FU is predominantly RNA-mediated, while DNA-mediated effects are limited to FdUrd.
Collapse
Affiliation(s)
- Henrik Sahlin Pettersen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Rogstad DK, Darwanto A, Herring JL, Rogstad KN, Burdzy A, Hadley S, Neidigh JW, Sowers LC. Measurement of the incorporation and repair of exogenous 5-hydroxymethyl-2'-deoxyuridine in human cells in culture using gas chromatography-negative chemical ionization-mass spectrometry. Chem Res Toxicol 2007; 20:1787-96. [PMID: 17914883 PMCID: PMC2532841 DOI: 10.1021/tx700221x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA of all organisms is constantly damaged by oxidation. Among the array of damage products is 5-hydroxymethyluracil, derived from oxidation of the thymine methyl group. Previous studies have established that HmU can be a sensitive and valuable marker of DNA damage. More recently, the corresponding deoxynucleoside, 5-hydroxymethyl-2'-deoxyuridine (HmdU), has proven to be valuable for the introduction of controlled amounts of a single type of damage lesion into the DNA of replicating cells, which is subsequently repaired by the base excision repair pathway. Complicating the study of HmU formation and repair, however, is the known chemical reactivity of the hydroxymethyl group of HmU under conditions used to hydrolyze DNA. In the work reported here, this chemical property has been exploited by creating conditions that convert HmU to the corresponding methoxymethyluracil (MmU) derivative that can be further derivatized to the 3,5-bis-(trifluoromethyl)benzyl analogue. This derivatized compound can be detected by gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) with good sensitivity. Using isotopically enriched exogenous HmdU and human osteosarcoma cells (U2OS) in culture, we demonstrate that this method allows for the measurement of HmU in DNA formed from the incorporation of exogenous HmdU. We further demonstrate that the addition of isotopically enriched uridine to the culture medium allows for the simultaneous measurement of DNA replication and repair kinetics. This sensitive and facile method should prove valuable for studies on DNA oxidation damage and repair in living cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lawrence C. Sowers
- *To whom correspondence should be addressed. Tel: 909-558-4480. Fax: 909-558-4035 E-mail:
| |
Collapse
|
5
|
Ottaggio L, Campomenosi P, Fronza G, Menichini P, Miele M, Moro F, Viaggi S, Zunino A, Abbondandolo A. Stable formation of mutated p53 multimers in a Chinese hamster cell line causes defective p53 nuclear localization and abrogates its residual function. J Cell Biochem 2006; 98:1689-700. [PMID: 16598767 DOI: 10.1002/jcb.20921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have previously described a methotrexate-resistant cell line (MTX M) characterized by amplified dihydrofolate reductase (DHFR) genes, cytoplasmic p53 localization, and p53 stable tetramers. To investigate the p53 functionality in MTX M, the effect of chemical/physical agents was studied. In MTX M cells, DNA damage did not induce p53 or mdm-2 protein, while in the parental V79 cells, a residual p53 activity was found. cDNA sequencing showed that V79 and MTX M cells share the same mutations, indicating that the complete loss of p53 function in MTX M cells was due to cytoplasmic sequestration of a mutated p53 with residual activity. In Chinese hamster, both p53 and DHFR genes map on short arm of chromosome 2 suggesting that p53 itself might be amplified. However, fluorescence in situ hybridization with a hamster p53 probe showed only a single signal. Thus, the presence of p53 stable tetramers in MTX M cells, although correlated with DNA amplification, could not be the consequence of either p53 or DHFR gene amplification. Expression of a C-terminal human p53 peptide does not induce p53 nuclear accumulation, indicating that the cytoplasmic localization is due to a mechanism different from that already described in cancer cell lines. Treatments with Sodium Butyrate induced beta-tubulin polymerization, but did not apparently organize a normal microtubule network, which is shown to be important for the p53 localization. Our data indicated that in MTX M cells, p53 is sequestered in the cytoplasm by a novel mechanism that abrogates p53 residual function.
Collapse
Affiliation(s)
- Laura Ottaggio
- Department of Translational Oncology, Laboratory of Experimental Oncology B, National Institute for Cancer Research (IST), Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Horton JK, Joyce-Gray DF, Pachkowski BF, Swenberg JA, Wilson SH. Hypersensitivity of DNA polymerase beta null mouse fibroblasts reflects accumulation of cytotoxic repair intermediates from site-specific alkyl DNA lesions. DNA Repair (Amst) 2003; 2:27-48. [PMID: 12509266 DOI: 10.1016/s1568-7864(02)00184-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monofunctional alkylating agents react with DNA by S(N)1 or S(N)2 mechanisms resulting in formation of a wide spectrum of cytotoxic base adducts. DNA polymerase beta (beta-pol) is required for efficient base excision repair of N-alkyl adducts, and we make use of the hypersensitivity of beta-pol null mouse fibroblasts to investigate such alkylating agents with a view towards understanding the DNA lesions responsible for the cellular phenotype. The inability of O(6)-benzylguanine to sensitize wild-type or beta-pol null cells to S(N)1-type methylating agents indicates that the observed hypersensitivity is not due to differential repair of cytotoxic O-alkyl adducts. Using a 3-methyladenine-specific agent and an inhibitor of such methylation, we find that inefficient repair of 3-methyladenine is not the reason for the hypersensitivity of beta-pol null cells to methylating agents, and further that 3-methyladenine is not the adduct primarily responsible for methyl methanesulfonate (MMS)- and methyl nitrosourea-induced cytotoxicity in wild-type cells. Relating the expected spectrum of DNA adducts and the relative sensitivity of cells to monofunctional alkylating agents, we propose that the hypersensitivity of beta-pol null cells reflects accumulation of cytotoxic repair intermediates, such as the 5'-deoxyribose phosphate group, following removal of 7-alkylguanine from DNA. In support of this conclusion, beta-pol null cells are also hypersensitive to the thymidine analog 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). This agent is incorporated into cellular DNA and elicits cytotoxicity only when removed by glycosylase-initiated base excision repair. Consistent with the hypothesis that there is a common repair intermediate resulting in cytotoxicity following treatment with both types of agents, both MMS and hmdUrd-initiated cell death are preceded by a similar rapid concentration-dependent suppression of DNA synthesis and a later cell cycle arrest in G(0)/G(1) and G(2)M phases.
Collapse
Affiliation(s)
- Julie K Horton
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
7
|
Ulbert S, Cross M, Boorstein RJ, Teebor GW, Borst P. Expression of the human DNA glycosylase hSMUG1 in Trypanosoma brucei causes DNA damage and interferes with J biosynthesis. Nucleic Acids Res 2002; 30:3919-26. [PMID: 12235375 PMCID: PMC137116 DOI: 10.1093/nar/gkf533] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In kinetoplastid flagellates such as Trypanosoma brucei, a small percentage of the thymine residues in the nuclear DNA is replaced by the modified base beta-D-glucosyl-hydroxymethyluracil (J), mostly in repetitive sequences like the telomeric GGGTTA repeats. In addition, traces of 5-hydroxymethyluracil (HOMeUra) are present. Previous work has suggested that J is synthesised in two steps via HOMedU as an intermediate, but as J synthesising enzymes have not yet been identified, the biosynthetic pathway remains unclear. To test a model in which HOMeUra functions as a precursor of J, we introduced an inducible gene for the human DNA glycosylase hSMUG1 into bloodstream form T.brucei. In higher eukaryotes SMUG1 excises HOMeUra as part of the base excision repair system. We show that expression of the gene in T.brucei leads to massive DNA damage in J-modified sequences and results in cell cycle arrest and, eventually, death. hSMUG1 also reduces the J content of the trypanosome DNA. This work supports the idea that HOMeUra is a precursor of J, freely accessible to a DNA glycosylase.
Collapse
Affiliation(s)
- Sebastian Ulbert
- Department of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|