1
|
Xu H, Deng Y, Zhu Q, Li F, Liu N, Cheng J, Qiu M. Efficacy of intestinal microorganisms on immunotherapy of non-small cell lung cancer. Heliyon 2024; 10:e29899. [PMID: 38699020 PMCID: PMC11064131 DOI: 10.1016/j.heliyon.2024.e29899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
While the 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) has seen some improvement, the majority of NSCLC patients fail to respond to immunotherapy with immune checkpoint inhibitors (ICIs). It is critical to identify effective biomarkers that can enhance the efficacy of immunotherapy. The clinical data in the current study were collected from NSCLC patients treated with ICIs, and two groups were classified according to treatment effect: good group with consistent efficacy, poor group with only progressiveness. Differences in intestinal microbiota between the two groups were analyzed using 16s rRNA sequencing. Beta diversity analysis indicated differences between the two groups that were available for differentiation. Comparison of the number of common or unique operational taxonomic units (OTUs) among different groups suggested that there were 53 unique OTUs in the good group and 51 unique OTUs in the poor group. At the phylum level, there was a difference between the two groups for several bacterial groups with the highest abundance values, among which Firmicutes, Actinobacteria and Fusobacteria were more abundant in the good group. Members of the genera Bifidobacterium and Lactobacillus were abundant in the good group, while the abundance of Bacteroides was low. Biomarkers in the poor group included Bacteroides, Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae and Veillonellaceae. The intestinal microbiota composition affected the immunotherapy process for NSCLC, which might offer more rational instructions for the clinical application of ICIs in NSCLC patients.
Collapse
Affiliation(s)
- Hua Xu
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Yongchun Deng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Hospital, 400030, Chongqing, China
| | - Qing Zhu
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Feng Li
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Na Liu
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Jun Cheng
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| | - Min Qiu
- Oncology Department of Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, China
| |
Collapse
|
2
|
Du W, Xia G, Chen L, Geng L, Xu R, Han Q, Ying X, Yu H. Clinical value of SLC12A9 for diagnosis and prognosis in colorectal cancer. Aging (Albany NY) 2023; 15:15419-15433. [PMID: 38157260 PMCID: PMC10781446 DOI: 10.18632/aging.205360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE The goal of the study is to assess the clinical value and the potential mechanism of SLC12A9 combing transcriptome and single cell sequencing data. METHODS In this study, the expression level and the receiver operating characteristic curve analysis of SLC12A9 in CRC and normal tissue were analyzed in multiple data cohort. The standardized mean difference (SMD) calculation and the summary receiver operating characteristic (SROC) analysis were performed further to detect its diagnostic ability and expression level. KM survival analysis was performed to assess the prognosis value of SLC12A9. The expression level of SLC12A9 in different clinical characteristics was analyzed to explore the clinical value. Single cell data was studied to reveal the potential mechanism of SLC12A9. The correlation analysis of immunoinfiltration was performed to detect the potential immune cell related to SLC12A9. The nomogram was drawn to assess the probable mortality rate of CRC patient. RESULTS We found that SLC12A9 was significantly up-regulated with the moderate diagnostic value in CRC. Patients with overexpressed SLC12A9 had a worse prognosis. SLC12A9 was related to Age, Pathologic N stage, Pathologic M stage, Lymphatic invasion and Pathologic stage (p < 0.05). The 1, 3 and 5-year survival rates of patient named TCGA-G4-6309 are 0.959, 0.897 and 0.827. PCR also showed that SLC12A9 was overexpressed in CRC comparing with normal tissue. CONCLUSION In conclusion, our study comprehensively analyzed the clinical value of SLC12A9 and its potential mechanism, as well as immune cell infiltration, which may accelerate the diagnosis and improve the prognosis of CRC.
Collapse
Affiliation(s)
- Wang Du
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, China
| | - Guozhi Xia
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion therapy center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314041, China
| | - Lingjun Geng
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, China
| | - Rubin Xu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, China
| | - Qingqing Han
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, China
| | - Xiaomei Ying
- Suzhou Hospital of Anhui Medical University, Suzhou, Anhui 234000, China
| | - Hongzhu Yu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, China
| |
Collapse
|
3
|
Cao YH, Ding J, Tang QH, Zhang J, Huang ZY, Tang XM, Liu JB, Ma YS, Fu D. Deciphering cell-cell interactions and communication in the tumor microenvironment and unraveling intratumoral genetic heterogeneity via single-cell genomic sequencing. Bioengineered 2022; 13:14974-14986. [PMID: 37105769 DOI: 10.1080/21655979.2023.2185434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
A tumor's heterogeneity has important implications in terms of its clonal origin, progression, stemness, and drug resistance. Therefore, because of its significance in treatment, it is important to understand the gene expression pattern of a single cell, track gene expression or mutation in heterogeneous cells, evaluate the clonal origin of cancer cells, and determine the selective evolution of different subpopulations of cancer cells. Researchers are able to trace a cell's mutation and identify different types of tumor cells by measuring the whole transcriptome with single-cell sequencing (scRNA-seq). This technology provides a better understanding of the molecular mechanisms driving tumor growth than that offered by traditional RNA sequencing methods. In addition, it has revealed changes in the mutations and functions of somatic cells as a tumor evolves; it has also clarified immune cell infiltration and activation. Research on scRNA-seq technology has recently advanced significantly, suggesting new strategies for the treatment of cancer. In short, cancer researchers have become increasingly dependent on scRNA-seq. This paper reviews the development, detection principles, and processes of scRNA-seq technology and their application in tumor research. It also considers potential clinical applications.
Collapse
Affiliation(s)
- Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Affiliated Nantong Traditional Chinese Medicine Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Ding
- Department of Clinical Laboratory, Jingjiang Traditional Chinese Medicine Hospital, Jingjiang, Jiangsu, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhong-Yan Huang
- Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, Huangpu, China
| | - Xiao-Mei Tang
- Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, Huangpu, China
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Da Fu
- Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, Huangpu, China
| |
Collapse
|
4
|
Mukhtar M, Ashfield N, Vodickova L, Vymetalkova V, Levy M, Liska V, Bruha J, Bendova P, O’Sullivan J, Doherty G, Sheahan K, Nolan B, Vodicka P, Hughes DJ. The Associations of Selenoprotein Genetic Variants with the Risks of Colorectal Adenoma and Colorectal Cancer: Case–Control Studies in Irish and Czech Populations. Nutrients 2022; 14:nu14132718. [PMID: 35807897 PMCID: PMC9268344 DOI: 10.3390/nu14132718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Selenium manifests its biological effects through its incorporation into selenoproteins, which play several roles in countering oxidative and inflammatory responses implicated in colorectal carcinogenesis. Selenoprotein genetic variants may contribute to colorectal cancer (CRC) development, as we previously observed for SNP variants in a large European prospective study and a Czech case–control cohort. Methods: We tested if significantly associated selenoprotein gene SNPs from these studies were also associated with CRC risk in case–control studies from Ireland (colorectal neoplasia, i.e., cancer and adenoma cases: 450, controls: 461) and the Czech Republic (CRC cases: 718, controls: 646). Genotyping of 23 SNPs (20 in the Irish and 13 in the Czechs) was performed by competitive specific allele-specific PCR (KASPar). Multivariable adjusted logistic regression was used to assess the associations with CRC development. Results: We found significant associations with an increased CRC risk for rs5859 (SELENOF) and rs2972994 (SELENOP) in the Irish cohort but only with rs4802034 (SELENOV) in the Czechs. Significant associations were observed for rs5859 (SELENOF), rs4659382 (SELENON), rs2972994 (SELENOP), rs34713741 (SELENOS), and the related Se metabolism gene variant rs2275129 (SEPHS1) with advanced colorectal neoplasia development. However, none of these findings retained significance after multiple testing corrections. Conclusions: Several SNPs previously associated with CRC risk were also associated with CRC or colorectal neoplasia development in either the Irish or Czech cohorts. Selenoprotein gene variation may modify CRC risk across diverse European populations, although the specific variants may differ.
Collapse
Affiliation(s)
- Maryam Mukhtar
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (M.M.); (N.A.)
| | - Niall Ashfield
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (M.M.); (N.A.)
| | - Ludmila Vodickova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (L.V.); (V.V.); (P.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - Veronika Vymetalkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (L.V.); (V.V.); (P.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, 121 08 Prague, Czech Republic;
| | - Václav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
| | - Jan Bruha
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - Petra Bendova
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - Jacintha O’Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Glen Doherty
- Centre for Colorectal Disease, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland; (G.D.); (K.S.); (B.N.)
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland; (G.D.); (K.S.); (B.N.)
| | - Blathnaid Nolan
- Centre for Colorectal Disease, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland; (G.D.); (K.S.); (B.N.)
| | - Pavel Vodicka
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (L.V.); (V.V.); (P.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.L.); (J.B.)
- Institute of Experimental Medicine ASCR, 142 20 Prague, Czech Republic;
| | - David J. Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (M.M.); (N.A.)
- Correspondence: ; Tel.: +353-1-716-6988
| |
Collapse
|
5
|
Tait BD. The importance of establishing genetic phase in clinical medicine. Int J Immunogenet 2021; 49:1-7. [PMID: 34958529 DOI: 10.1111/iji.12567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022]
Abstract
Haplotyping or determination of genetic phase has always played a pivotal role in MHC (HLA studies) both in helping to understand inheritance patterns in diseases such as type 1 diabetes (T1D) and in ensuring better matching in transplantation scenarios such as haematopoietic stem cell transplantation (HSCT), using donors genetically related to the patient. In recent years the need to establish genetic phase in a number of clinical scenarios has become apparent. These include: Genetic phasing for hematopoietic stem cell transplants using unrelated donors, where the HLA haplotypes are not known but where haplotype-matched recipients fare better clinically than allele matched, but haplotype mismatched patients. The use of checkpoint inhibitors is one of the most innovative and exciting developments in cancer treatment in years. An example is the use of the monoclonal ipilimumab to block the CTLA-4 receptor which is known to contain polymorphic sites. Until the phase of these polymorphisms is known it will not be possible to determine how effectively this monoclonal will perform in individual patients. The role of miRNA single strand molecules and their effect on gene expression. Thousands of non-coding genes have been identified and have been shown to be polymorphic, as have their target genes. Genetic phasing of polymorphism both in the miRNA source genes and their targets is clearly a fertile area of research In areas such a drug metabolism where the polymorphic family of CYP genes is responsible for the metabolism of the majority of prescription drugs, determining phase of SNPs is critical to understanding drug metabolism and efficacy. In multigenic disease studies combinations of single nucleotide polymorphisms (SNPs) in participating genes require accurate phasing in order to fully appreciate their role in the disease process. In addition, the level of expression of genes (point 3) is also important in understanding disease processes at the functional level. This review outlines the techniques that are currently available for approximating phase and discusses the clinical relevance of establishing genetic phase in areas of clinical medicine outlined in points 1-3.
Collapse
Affiliation(s)
- Brian D Tait
- Haplomic Technologies, Melbourne, Australia.,Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Australia
| |
Collapse
|
6
|
Ma YS, Cao YF, Liu JB, Li W, Deng J, Yang XL, Xin R, Shi Y, Zhang DD, Lv ZW, Fu D. The power and the promise of circRNAs for cancer precision medicine with functional diagnostics and prognostic prediction. Carcinogenesis 2021; 42:1305-1313. [PMID: 34313732 DOI: 10.1093/carcin/bgab071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA) is a large class of covalently closed circular RNA. As a member of competitive endogenous RNA (ceRNA), it participates in the regulation of circRNA-miRNA-mRNA network and plays an important role in the regulation of physiology and pathology. CircRNA is produced by the reverse splicing of exon, intron or both, forming exon or intron circRNA. Studies have shown that circRNA is a ubiquitous molecule, which exceeds the linear mRNA distributed in human cells. Because of its covalent closed-loop structure, circRNA is resistant to RNase R, which is more stable than linear mRNA; circRNA is highly conserved in different species. It was found that circRNA competitively adsorbs miRNA, as a miRNA sponge, to involve in the expression regulation of a variety of genes and plays an important role in tumor development, invasion, metastasis and other processes. These molecules offer new potential opportunities for therapeutic intervention and serve as biomarkers for diagnosis. In this paper, the origin, characteristics and functions of circRNA and its role in tumor development, invasion and metastasis, diagnosis and prognosis are reviewed.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Department of Tumor, Affiliated Tumor Hospital of Nantong University, Nantong 226300, China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai 200433, China.,Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yong-Feng Cao
- Department of Tumor, Affiliated Tumor Hospital of Nantong University, Nantong 226300, China
| | - Ji-Bin Liu
- Department of Tumor, Affiliated Tumor Hospital of Nantong University, Nantong 226300, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiao-Li Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|