1
|
Sun Y, Yu H, Han S, Ran R, Yang Y, Tang Y, Wang Y, Zhang W, Tang H, Fu B, Fu B, Weng X, Liu SM, Deng H, Peng S, Zhou X. Method for the extraction of circulating nucleic acids based on MOF reveals cell-free RNA signatures in liver cancer. Natl Sci Rev 2024; 11:nwae022. [PMID: 38348130 PMCID: PMC10860518 DOI: 10.1093/nsr/nwae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 02/15/2024] Open
Abstract
Cell-free RNA (cfRNA) allows assessment of health, status, and phenotype of a variety of human organs and is a potential biomarker to non-invasively diagnose numerous diseases. Nevertheless, there is a lack of highly efficient and bias-free cfRNA isolation technologies due to the low abundance and instability of cfRNA. Here, we developed a reproducible and high-efficiency isolation technology for different types of cell-free nucleic acids (containing cfRNA and viral RNA) in serum/plasma based on the inclusion of nucleic acids by metal-organic framework (MOF) materials, which greatly improved the isolation efficiency and was able to preserve RNA integrity compared with the most widely used research kit method. Importantly, the quality of cfRNA extracted by the MOF method is about 10-fold that of the kit method, and the MOF method isolates more than three times as many different RNA types as the kit method. The whole transcriptome mapping characteristics of cfRNA in serum from patients with liver cancer was described and a cfRNA signature with six cfRNAs was identified to diagnose liver cancer with high diagnostic efficiency (area under curve = 0.905 in the independent validation cohort) using this MOF method. Thus, this new MOF isolation technique will advance the field of liquid biopsy, with the potential to diagnose liver cancer.
Collapse
Affiliation(s)
- Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wenhao Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Boqiao Fu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Wang F, Liang J, Zhu D, Xiang P, Zhou L, Yang C. Characteristic gene prognostic model of type 1 diabetes mellitus via machine learning strategy. Endocr J 2023; 70:281-294. [PMID: 36477008 DOI: 10.1507/endocrj.ej22-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The present study was designed to detect possible biomarkers associated with Type 1 diabetes mellitus (T1DM) incidence in an effort to develop novel treatments for this condition. Three mRNA expression datasets of peripheral blood mononuclear cells (PBMCs) were obtained from the GEO database. Differentially expressed genes (DEGs) between T1DM patients and healthy controls were identified by Limma package in R, and using the DEGs to conduct GO and DO pathway enrichment. The LASSO-SVM were used to screen the hub genes. We performed immune correlation analysis of hub genes and established a T1DM prognosis model. CIBERSORT algorithm was used to identify the different immune cells in distribution between T1DM and normal samples. The correlation of the hub genes and immune cells was analyzed by Spearman. ROC curves were used to assess the diagnostic value of genes in T1DM. A total of 60 immune related DEGs were obtained from the T1DM and normal samples. Then, DEGs were further screened to obtain 3 hub genes, ANP32A-IT1, ESCO2 and NBPF1. CIBERSORT analysis revealed the percentage of immune cells in each sample, indicating that there was significant difference in monocytes, T cells CD8+, gamma delta T cells, naive CD4+ T cells and activated memory CD4+ T cells between T1DM and normal samples. The area under curve (AUC) of ESCO2, ANP32A-IT1 and NBPF1 were all greater than 0.8, indicating that these three genes have high diagnostic value for T1DM. Together, the findings of these bioinformatics analyses thus identified key hub genes associated with T1DM development.
Collapse
Affiliation(s)
- Fenglin Wang
- Department of Endocrinology of the Air Force Medical Center, People's Liberation Army, Beijing 100142, China
- Hebei North University, Zhangjiakou 075000, China
| | - Jiemei Liang
- Department of Endocrinology of the Air Force Medical Center, People's Liberation Army, Beijing 100142, China
- Hebei North University, Zhangjiakou 075000, China
| | - Di Zhu
- Department of Endocrinology of the Air Force Medical Center, People's Liberation Army, Beijing 100142, China
| | - Pengan Xiang
- Hospital of 94498 Troops, People's Liberation Army, Nanyang 474300, China
| | - Luyao Zhou
- Hebei North University, Zhangjiakou 075000, China
| | - Caizhe Yang
- Department of Endocrinology of the Air Force Medical Center, People's Liberation Army, Beijing 100142, China
| |
Collapse
|
3
|
Yang Y, Ye X, Zhang H, Lin Z, Fang M, Wang J, Yu Y, Hua X, Huang H, Xu W, Liu L, Lin Z. A novel transcription factor-based signature to predict prognosis and therapeutic response of hepatocellular carcinoma. Front Genet 2023; 13:1068837. [PMID: 36685838 PMCID: PMC9845592 DOI: 10.3389/fgene.2022.1068837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common aggressive malignancies with increasing incidence worldwide. The oncogenic roles of transcription factors (TFs) were increasingly recognized in various cancers. This study aimed to develop a predicting signature based on TFs for the prognosis and treatment of HCC. Methods: Differentially expressed TFs were screened from data in the TCGA-LIHC and ICGC-LIRI-JP cohorts. Univariate and multivariate Cox regression analyses were applied to establish a TF-based prognostic signature. The receiver operating characteristic (ROC) curve was used to assess the predictive efficacy of the signature. Subsequently, correlations of the risk model with clinical features and treatment response in HCC were also analyzed. The TF target genes underwent Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, followed by protein-protein-interaction (PPI) analysis. Results: A total of 25 differentially expressed TFs were screened, 16 of which were related to the prognosis of HCC in the TCGA-LIHC cohort. A 2-TF risk signature, comprising high mobility group AT-hook protein 1 (HMGA1) and MAF BZIP transcription factor G (MAFG), was constructed and validated to negatively related to the overall survival (OS) of HCC. The ROC curve showed good predictive efficiencies of the risk score regarding 1-year, 2-year and 3-year OS (mostly AUC >0.60). Additionally, the risk score independently predicted OS for HCC patients both in the training cohort of TCGA-LIHC dataset (HR = 2.498, p = 0.007) and in the testing cohort of ICGC-LIRI-JP dataset (HR = 5.411, p < 0.001). The risk score was also positively correlated to progressive characteristics regarding tumor grade, TNM stage and tumor invasion. Patients with a high-risk score were more resistant to transarterial chemoembolization (TACE) treatment and agents of lapatinib and erlotinib, but sensitive to chemotherapeutics. Further enrichment and PPI analyses demonstrated that the 2-TF signature distinguished tumors into 2 clusters with proliferative and metabolic features, with the hub genes belonging to the former cluster. Conclusion: Our study identified a 2-TF prognostic signature that indicated tumor heterogeneity with different clinical features and treatment preference, which help optimal therapeutic strategy and improved survival for HCC patients.
Collapse
Affiliation(s)
- Yanbing Yang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xuenian Ye
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Haibin Zhang
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Zhaowang Lin
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Min Fang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jian Wang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yuyan Yu
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xuwen Hua
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxuan Huang
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Liu
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, China,*Correspondence: Ling Liu, ; Zhan Lin,
| | - Zhan Lin
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Ling Liu, ; Zhan Lin,
| |
Collapse
|
4
|
Lee HC, Lai WL, Lin CY, Zeng CW, Sheu JC, Chou TB, Tsai HJ. Anp32a Promotes Neuronal Regeneration after Spinal Cord Injury of Zebrafish Embryos. Int J Mol Sci 2022; 23:ijms232415921. [PMID: 36555564 PMCID: PMC9786895 DOI: 10.3390/ijms232415921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
After spinal cord injury (SCI) in mammals, neuronal regeneration is limited; in contrast, such regeneration occurs quickly in zebrafish. Member A of the acidic nuclear phosphoprotein 32 (ANP32a) family is involved in neuronal development, but its function is controversial, and its involvement in zebrafish SCI remains unknown. To determine the role of zebrafish ANP32a in the neuronal regeneration of SCI embryos, we microinjected ANP32a mRNA into embryos from zebrafish transgenic line Tg(mnx1:GFP) prior to SCI. Compared to control SCI embryos, the results showed that the regeneration of spinal cord and resumption of swimming capability were promoted by the overexpression of ANP32a mRNA but reduced by its knockdown. We next combined fluorescence-activated cell sorting with immunochemical staining of anti-GFAP and immunofluorescence staining against anti-PH3 on Tg(gfap:GFP) SCI embryos. The results showed that ANP32a promoted the proliferation and cell number of radial glial cells at the injury epicenter at 24 h post-injury (hpi). Moreover, when we applied BrdU labeling to SCI embryos derived from crossing the Tg(gfap:GFP) and Tg(mnx1:TagRFP) lines, we found that both radial glial cells and motor neurons had proliferated, along with their increased cell numbers in Anp32a-overexpression SCI-embryos. On this basis, we conclude that ANP32a plays a positive role in the regeneration of zebrafish SCI embryos.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wei-Lin Lai
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chih-Wei Zeng
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100008, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100008, Taiwan
| | - Tze-Bin Chou
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-Jen Tsai
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Wei R, Zhu Y, Zhang Y, Zhao W, Yu X, Wang L, Gu C, Gu X, Yang Y. AIMP1 promotes multiple myeloma malignancy through interacting with ANP32A to mediate histone H3 acetylation. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1185-1206. [PMID: 36042007 DOI: 10.1002/cac2.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is the second most common hematological malignancy. An overwhelming majority of patients with MM progress to serious osteolytic bone disease. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) participates in several steps during cancer development and osteoclast differentiation. This study aimed to explore its role in MM. METHODS The gene expression profiling cohorts of MM were applied to determine the expression of AIMP1 and its association with MM patient prognosis. Enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting were used to detect AIMP1 expression. Protein chip analysis, RNA-sequencing, and chromatin immunoprecipitation and next-generation sequencing were employed to screen the interacting proteins and key downstream targets of AIMP1. The impact of AIMP1 on cellular proliferation was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro and a xenograft model in vivo. Bone lesions were evaluated using tartrate-resistant acid phosphatase staining in vitro. A NOD/SCID-TIBIA mouse model was used to evaluate the effect of siAIMP1-loaded exosomes on bone lesion formation in vivo. RESULTS AIMP1 expression was increased in MM patients and strongly associated with unfavorable outcomes. Increased AIMP1 expression promoted MM cell proliferation in vitro and in vivo via activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Protein chip assays and subsequent experiments revealed that AIMP1 interacted with acidic leucine-rich nuclear phosphoprotein 32 family member A (ANP32A) to regulate histone H3 acetylation. In addition, AIMP1 increased histone H3 acetylation enrichment function of GRB2-associated and regulator of MAPK protein 2 (GAREM2) to increase the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2). Furthermore, AIMP1 promoted osteoclast differentiation by activating nuclear factor of activated T cells c1 (NFATc1) in vitro. In contrast, exosome-coated small interfering RNA of AIMP1 effectively suppressed MM progression and osteoclast differentiation in vitro and in vivo. CONCLUSIONS Our data demonstrate that AIMP1 is a novel regulator of histone H3 acetylation interacting with ANP32A in MM, which accelerates MM malignancy via activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Rongfang Wei
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yuanjiao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Wene Zhao
- Department of Analytical and Testing Center, Nanjing Medical University, Nanjing, Jiangsu, 211112, P. R. China
| | - Xichao Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Ling Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Xiaosong Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, P. R. China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
6
|
ANP32 Family as Diagnostic, Prognostic, and Therapeutic Biomarker Related to Immune Infiltrates in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:5791471. [PMID: 35280441 PMCID: PMC8913125 DOI: 10.1155/2022/5791471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, with high incidence and mortality rate. There is an urgent need to identify effective diagnostic and prognostic biomarkers for HCC. Members of the acidic leucine-rich nucleophosphoprotein 32 (ANP32) family, which mainly includes ANP32A, ANP32B, and ANP32E, are abnormally expressed and have prognostic value in certain cancers. However, the diagnostic, prognostic, and therapeutic value of ANP32 family members in HCC has not yet been fully studied. In this study, we identified the diagnostic and prognostic value of ANP32 family members in HCC. Transcriptome data from public databases, such as the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, suggested that ANP32A, ANP32B, and ANP32E were upregulated in HCC tissues, and high expression of ANP32 family members was associated with advanced pathologic stage and histologic grade. Our immunohistochemistry and western blot results further verified the differential expression of ANP32 family members. ANP32A, ANP32B, and ANP32E had an outstanding diagnostic potential. Survival analysis of HCC patients in TCGA databases demonstrated that ANP32A, ANP32B, and ANP32E were associated with poor overall survival (OS) and disease-specific survival (DSS). Univariate and multivariate Cox analyses suggested the capability of ANP32B and ANP32E to independently predict the OS and DSS of HCC patients. Gene set enrichment analysis (GSEA) showed that ANP32 family members were associated with immune response, epidermal cell differentiation, and stem cell proliferation. Expression of ANP32 family members was associated with immune cell infiltration and immune status in the tumor microenvironment of HCC, and patients with high ANP32 family expression had poor sensitivity to immunotherapy. Finally, we identified potential chemotherapy drugs for HCC patients with high ANP32 family expression by CellMiner database. This study suggested the diagnostic, prognostic, and therapeutic roles of the ANP32 family in HCC patients, providing potential therapeutic targets for HCC.
Collapse
|
7
|
Novel Gene Signatures as Prognostic Biomarkers for Predicting the Recurrence of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14040865. [PMID: 35205612 PMCID: PMC8870597 DOI: 10.3390/cancers14040865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary A high percentage of patients who undergo surgical resection for hepatocellular carcinoma (HCC) experience recurrence. Therefore, identification of accurate molecular markers for predicting recurrence of HCC is important. We analyzed recurrence and non-recurrence HCC tissues using two public omics datasets comprising microarray and RNA-sequencing and found novel gene signatures associated with recurrent HCC. These molecules might be used to not only predict for recurrence of HCC but also act as potential prognostic indicators for patients with HCC. Abstract Hepatocellular carcinoma (HCC) has a high rate of cancer recurrence (up to 70%) in patients who undergo surgical resection. We investigated prognostic gene signatures for predicting HCC recurrence using in silico gene expression analysis. Recurrence-associated gene candidates were chosen by a comparative analysis of gene expression profiles from two independent whole-transcriptome datasets in patients with HCC who underwent surgical resection. Five promising candidate genes, CETN2, HMGA1, MPZL1, RACGAP1, and SNRPB were identified, and the expression of these genes was evaluated using quantitative reverse transcription PCR in the validation set (n = 57). The genes CETN2, HMGA1, RACGAP1, and SNRPB, but not MPZL1, were upregulated in patients with recurrent HCC. In addition, the combination of HMGA1 and MPZL1 demonstrated the best area under the curve (0.807, 95% confidence interval [CI] = 0.681–0.899) for predicting HCC recurrence. In terms of clinicopathological correlation, CETN2, MPZL1, RACGAP1, and SNRPB were upregulated in patients with microvascular invasion, and the expression of MPZL1 and SNRPB was increased in proportion to the Edmonson tumor differentiation grade. Additionally, overexpression of CETN2, HMGA1, and RACGAP1 correlated with poor overall survival (OS) and disease-free survival (DFS) in the validation set. Finally, Cox regression analysis showed that the expression of serum alpha-fetoprotein and RACGAP1 significantly affected OS, whereas platelet count, microvascular invasion, and HMGA1 expression significantly affected DFS. In conclusion, HMGA1 and RACGAP1 may be potential prognostic biomarkers for predicting the recurrence of HCC after surgical resection.
Collapse
|
8
|
Khatun A, Hasan M, Abd El-Emam MM, Fukuta T, Mimura M, Tashima R, Yoneda S, Yoshimi S, Kogure K. Effective Anticancer Therapy by Combination of Nanoparticles Encapsulating Chemotherapeutic Agents and Weak Electric Current. Biol Pharm Bull 2022; 45:194-199. [PMID: 35110506 DOI: 10.1248/bpb.b21-00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Delivery of medicines using nanoparticles via the enhanced permeability and retention (EPR) effect is a common strategy for anticancer chemotherapy. However, the extensive heterogeneity of tumors affects the applicability of the EPR effect, which needs to overcome for effective anticancer therapy. Previously, we succeeded in the noninvasive transdermal delivery of nanoparticles by weak electric current (WEC) and confirmed that WEC regulates the intercellular junctions in the skin by activating cell signaling pathways (J. Biol. Chem., 289, 2014, Hama et al.). In this study, we applied WEC to tumors and investigated the EPR effect with polyethylene glycol (PEG)-modified doxorubicin (DOX) encapsulated nanoparticles (DOX-NP) administered via intravenous injection into melanoma-bearing mice. The application of WEC resulted in a 2.3-fold higher intratumor accumulation of nanoparticles. WEC decreased the amount of connexin 43 in tumors while increasing its phosphorylation; therefore, the enhancing of intratumor delivery of DOX-NP is likely due to the opening of gap junctions. Furthermore, WEC combined with DOX-NP induced a significant suppression of tumor growth, which was stronger than with DOX-NP alone. In addition, WEC alone showed tumor growth inhibition, although it was not significant compared with non-treated group. These results are the first to demonstrate that effective anticancer therapy by combination of nanoparticles encapsulating chemotherapeutic agents and WEC.
Collapse
Affiliation(s)
- Anowara Khatun
- Graduate School of Biomedical Sciences, Tokushima University
| | - Mahadi Hasan
- Graduate School of Biomedical Sciences, Tokushima University.,Tokyo Biochemical Research Foundation
| | - Mahran Mohamed Abd El-Emam
- Graduate School of Pharmaceutical Sciences, Tokushima University.,Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University
| | - Tatsuya Fukuta
- Graduate School of Biomedical Sciences, Tokushima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Miyuki Mimura
- Faculty of Pharmaceutical Sciences, Tokushima University
| | - Riho Tashima
- Faculty of Pharmaceutical Sciences, Tokushima University
| | - Shintaro Yoneda
- Graduate School of Pharmaceutical Sciences, Tokushima University
| | | | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
9
|
Wang M, Guo H, Zhang X, Wang X, Tao H, Zhang T, Peng M, Zhang M, Huang Z. Small peptide targeting ANP32A as a novel strategy for acute myeloid leukemia therapy. Transl Oncol 2021; 15:101245. [PMID: 34678588 PMCID: PMC8529559 DOI: 10.1016/j.tranon.2021.101245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
H3BP targeted ANP32A against AML by competitively disrupting ANP32A and H3 interaction and decreasing H3 acetylation and the expression of lipid metabolism genes. Expressed H3BP-GFP and synthetic TAT-H3BP peptide impaired H3 acetylation on multiple locus of target genes that reduced proliferation and caused apoptosis of leukemia cells in vitro. TAT-H3BP exhibits potent efficacy against leukemia in vivo: Intra-tumor injection of TAT-H3BP peptide prominently diminished the volume of subcutaneous tumors in nude mice; AMKL mice engrafted with TAT-H3BP-pretreated 6133/MPL W515L cells displayed dramatically moderated disease burden and prolonged survival time. TAT-H3BP peptide possess a therapeutic potential in patients with AML for micromole concentration of TAT-H3BP peptide efficiently inhibited the proliferation and CFU of human primary leukemia cells from AML patients. High ANP32A levels in human primary AML cells correlate with the intervention effect of TAT-H3BP peptide.
Clinic therapy of acute myeloid leukemia (AML) remains unsatisfactory that urges for development of novel strategies. Recent studies identified ANP32A as a novel biomarker of unfavorable outcome of leukemia, which promoted leukemogenesis by increasing H3 acetylation and the expression of lipid metabolism genes. It is of great significance to investigate whether targeting ANP32A is a novel strategy for leukemia therapy. To target ANP32A, we identified a peptide that competed with ANP32A to bind to histone 3 (termed as H3-binding peptide, H3BP). Disrupting ANP32A and H3 interaction by the overexpression of H3BP-GFP fusion protein mimicked the effect of ANP32A knockdown, impaired H3 acetylation on multiple locus of target genes, reduced proliferation, and caused apoptosis in leukemia cells. Furthermore, a synthesized membrane-penetrating peptide TAT-H3BP effectively entered into leukemia cells and phenocopied such effect. In vivo, TAT-H3BP showed potent efficacy against leukemia: Intra-tumor injection of TAT-H3BP significantly reduced the volume of subcutaneous tumors in nude mice and recipient mice engrafted with TAT-H3BP-pretreated 6133/MPL W515L cells exhibited ameliorated leukemia burden and prolonged survival. Noticeably, TAT-H3BP efficiently suppressed proliferation and colony-forming unit of human primary AML cells without affecting normal cord blood cells. Our findings demonstrate that intervening the physical interaction of ANP32A with H3 impairs the oncogenicity of ANP32A and may be a promising therapeutic strategy against AML.
Collapse
Affiliation(s)
- Manman Wang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Hao Guo
- Medical Research Institute, Wuhan University, Wuhan, Hubei, PR China
| | - Xuechun Zhang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Xiyang Wang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Hu Tao
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Tan Zhang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei PR China
| | - Min Zhang
- Department of Hematology, Union Hospital of Huazhong University of Science and Technology, Wuhan, Hubei PR China
| | - Zan Huang
- School of Life Sciences, Key Laboratory of Cell Hemostasis of Hubei Province, Wuhan University, No. 299 Bayi Road, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
10
|
Hupfer A, Brichkina A, Adhikary T, Lauth M. The mammalian Hedgehog pathway is modulated by ANP32 proteins. Biochem Biophys Res Commun 2021; 553:78-84. [PMID: 33761414 DOI: 10.1016/j.bbrc.2021.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Transcriptional profiling has so far delineated four major MB subgroups of which one is driven by uncontrolled Hedgehog (Hh) signaling (SHH-MB). This pathway is amenable to drug targeting, yet clinically approved compounds exclusively target the transmembrane component Smoothened (SMO). Unfortunately, drug resistance against SMO inhibitors is encountered frequently, making the identification of novel Hh pathway components mandatory, which could serve as novel drug targets in the future. Here, we have used MB as a tool to delineate novel modulators of Hh signaling and have identified the Acidic Nuclear Phosphoprotein 32 (ANP32) family of proteins as novel regulators. The expression of all three family members (ANP32A, ANP32B, ANP32E) is increased in Hh-induced MB and their expression level is negatively associated with overall survival in SHH-MB patients. Mechanistically, we could find that ANP32 proteins function as positive modulators of mammalian Hh signaling upstream of GLI transcription factors. These findings add hitherto unknown regulators to the mammalian Hh signaling cascade and might spur future translational efforts to combat Hh-driven malignancies.
Collapse
Affiliation(s)
- Anna Hupfer
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany
| | - Anna Brichkina
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany
| | - Till Adhikary
- Philipps University Marburg, Center for Tumor Biology and Immunology (ZTI), Institute of Medical Bioinformatics and Biostatistics, Institute of Molecular Biology and Tumor Research, Germany
| | - Matthias Lauth
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany.
| |
Collapse
|