1
|
Zhang JX, Shen YB, Ma DD, Li ZH, Zhang ZY, Jin WD. LINC01857 promotes cell proliferation and migration while dampening cell apoptosis in pancreatic cancer by upregulating CDC42EP3 via miR-450b-5p. Heliyon 2024; 10:e38427. [PMID: 39524859 PMCID: PMC11547965 DOI: 10.1016/j.heliyon.2024.e38427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Pancreatic cancer (PC) is a devastating human malignancy with a poor survival outcome (5-year survival less than 10 %). In recent years, the regulatory roles of long non-coding RNAs (lncRNAs) in various types of cancers have been widely reported. Based on bioinformatics analysis, LINC01857 is shown to be highly expressed in PC tissue. Nevertheless, the role of LINC01857 in PC is limitedly reported. Hence, this study aimed to explore the effects of lncRNA LINC01857 on PC cell process and the related mechanism. Methods RT-qPCR and fluorescence in situ hybridization (FISH) assay were conducted to measure LINC01857 expression and distribution in PANC-1 and MIA PaCa-2 cells. Colony formation and wound healing assays as well as flow cytometry analyses were employed to estimate the proliferation, migration, and apoptosis of PC cells transfected with pcDNA3.1-LINC01857 or si-LINC01857 compared with the behavior of PC cells transfected with empty pcDNA3.1 vector (control) or si-negative control (NC). Furthermore, RNA pulldown and luciferase reporter assays were utilized to demonstrate the interaction of LINC01857 and miR-450b-5p or to validate the binding of miR-450b-5p and cell division cycle 42 effector protein 3 (CDC42EP3). Results LINC01857 was highly expressed in PANC-1 and MIA PaCa-2 cells in contrast to its expression in pancreatic ductal epithelial cells (8.9 folds and 7.1 folds, p < 0.001). Silencing LINC01857 significantly reduced cell proliferation and migration while enhancing apoptosis (p < 0.0005). In contrast, overexpression of LINC01857 markedly (p < 0.05) accelerated these malignant behavior of PC cells. MiR-450b-5p was targeted and inversely regulated by LINC01857. Moreover, CDC42EP3 was verified to be targeted by miR-450b-5p, and CDC42EP3 was correlated to LINC01857 in a positive manner (p < 0.001). Rescue experiments manifested that silencing CDC42EP3 effectively (p < 0.05) reversed the promoting effect of LINC01857 on malignant behavior of PC cells. Conclusion LINC01857 promotes PC cell proliferation and migration while obstructing cell apoptosis by binding to miR-450b-5p and thus regulating CDC42EP3 expression. The study presents a novel and promising regulatory axis, which holds potential for the identification of biomarkers and development of therapeutic strategies for PC treatment.
Collapse
Affiliation(s)
| | | | - Dan-Dan Ma
- Department of General Surgery, The Central Theater Hospital of the Chinese People's Liberation Army, Wuhan, 430070, China
| | - Zhong-Hu Li
- Department of General Surgery, The Central Theater Hospital of the Chinese People's Liberation Army, Wuhan, 430070, China
| | - Zhi-Yong Zhang
- Department of General Surgery, The Central Theater Hospital of the Chinese People's Liberation Army, Wuhan, 430070, China
| | - Wei-Dong Jin
- Department of General Surgery, The Central Theater Hospital of the Chinese People's Liberation Army, Wuhan, 430070, China
| |
Collapse
|
2
|
Huang N, Peng L, Yang J, Li J, Zhang S, Sun M. FAM111B Acts as an Oncogene in Bladder Cancer. Cancers (Basel) 2023; 15:5122. [PMID: 37958297 PMCID: PMC10648174 DOI: 10.3390/cancers15215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Bladder cancer (BLCA) is a prevalent malignancy of the urinary system, associated with a high recurrence rate and poor prognosis. FAM111B, which encodes a protein containing a trypsin-like cysteine/serine peptidase domain, has been implicated in the progression of various human cancers; however, its involvement in BLCA remains unclear. In this study, we investigated the expression of FAM111B gene in tumor tissues compared to para-tumor tissues using immunohistochemistry and observed a significantly higher FAM111B gene expression in tumor tissues. Furthermore, analysis of clinical characteristics indicated that the increased FAM111B gene expression correlated with lymphatic metastasis and reduced overall survival. To investigate its functional role, we employed FAM111B-knockdown BLCA cell models and performed cell proliferation, wound-healing, transwell, and flow cytometry assays. The results showed that decreased FAM111B gene expression inhibited proliferation and migration but induced apoptosis in BLCA cells. In vivo experiments further validated that FAM111B knockdown suppressed tumor growth. Overall, our findings suggest that FAM111B acts as an oncogene in BLCA, playing a critical role in tumorigenesis, progression, and metastasis of BLCA. In conclusion, we have demonstrated a strong correlation between the expression of FAM111B gene and the development, progression, and metastasis of bladder cancer (BLCA). Thus, FAM111B is an oncogene associated with BLCA and holds promise as a molecular target for future treatment of this cancer.
Collapse
Affiliation(s)
- Ning Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Lei Peng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Jiaping Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Jinqian Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| | - Sheng Zhang
- Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (N.H.); (L.P.); (J.Y.); (J.L.)
| |
Collapse
|
3
|
Tomasso MR, Padrick SB. BORG family proteins in physiology and human disease. Cytoskeleton (Hoboken) 2023; 80:182-198. [PMID: 37403807 DOI: 10.1002/cm.21768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
The binder of rho GTPases (BORG)/Cdc42 effector proteins (Cdc42EP) family is composed of five Rho GTPase binding proteins whose functions and mechanism of actions are of emerging interest. Here, we review recent findings pertaining to the family as a whole and consider how these change our understanding of cellular organization. Recent studies have implicated BORGs in both fundamental physiology and in human diseases, mainly cancers. An emerging pattern suggests that BORG family members cancer-promoting properties are related to their ability to regulate the cytoskeleton, with many impacting the organization of acto-myosin stress fibers. This is consistent with the broader literature indicating that BORG family members are regulators of both the septin and actin cytoskeleton networks. The exact mechanism through which BORGs modify the cytoskeleton is not clear, but we consider here a few data-supported and speculative possibilities. Finally, we delve into how the Rho GTPase Cdc42 modifies BORG function in cells. This remains open-ended as Cdc42's effects on BORGs appear cell type- and cell state-dependent. Collectively, these data point to the importance of the BORG family and suggest broader themes in their function and regulation.
Collapse
Affiliation(s)
- Meagan R Tomasso
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Yang Z, Xu T, Xie T, Yang L, Wang G, Gao Y, Xi G, Zhang X. CDC42EP3 promotes glioma progression via regulation of CCND1. Cell Death Dis 2022; 13:290. [PMID: 35365622 PMCID: PMC8975815 DOI: 10.1038/s41419-022-04733-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Gliomas are the most common brain malignancies characterized by high degree of aggressiveness and high mortality. However, the underlying mechanism of glioma progression remains unclear. Here, we probed the role of CDC42EP3 (CDC42 effector protein 3) played in glioma development and its potential downstream mechanism. The expression of CDC42EP3 in tumor and normal brain tissues were examined through immunohistochemistry and we found the likelihood of CDC42EP3 overexpression was positively correlated with pathological grading. Patients with higher expression of CDC42EP3 were more likely to suffer from recurrence as well. Through constructing CDC42EP3-knockdown cell models, we discovered that silencing CDC42EP3 significantly restricted cell proliferation and migration but facilitated cell apoptosis in vitro. Inhibition on tumor growth mediated by CDC42EP3 depletion was further verified in vivo. Regarding downstream target of CDC42EP3, we found that it may positively regulate the expression of CCND1 through c-Myc-mediated transcription. Furthermore, our findings affirmed that effects of CDC42EP3 overexpression on cell proliferation, migration and apoptosis could be confined by depleting CCND1. In a word, this study reported the tumor-promoting role of CDC42EP3 in glioma progression which probably functioned through targeting CCND1.
Collapse
Affiliation(s)
- Zhigang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liangliang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiping Wang
- Department of Neurology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gangming Xi
- Department of Neurology, Shanghai Xuhui Central Hospital, Shanghai, China.
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Yan Y, Liang Q, Xu Z, Yi Q. Integrative bioinformatics and experimental analysis revealed down-regulated CDC42EP3 as a novel prognostic target for ovarian cancer and its roles in immune infiltration. PeerJ 2021; 9:e12171. [PMID: 34616622 PMCID: PMC8449529 DOI: 10.7717/peerj.12171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a significant clinical challenge as no effective treatments are available to enhance patient survival. Recently, N6-methyladenosine (m6A) RNA modification has been demonstrated to play a pivotal role in tumorigenesis and progression. However, the roles of m6A target genes in ovarian cancer haven’t been clearly illustrated. In this study, we presented a comprehensive bioinformatics and in vitro analysis to evaluate the roles of m6A target genes. Cell division cycle 42 effector protein 3 (CDC42EP3), one probable m6A target gene, was identified to be down-regulated in ovarian cancer tissues and cells. Meanwhile, quantitative PCR (qPCR) and western blot were used to confirm the down-regulated CDC42EP3 in ovarian cancer cells A2780 and TOV112D. The biological function of CDC42EP3 in ovarian cancer was further validated with several algorithms, such as PrognoScan, K-M plotter, LinkedOmics and TISIDB. These findings indicated that lower expression of CDC42EP3 was correlated with poor prognosis in patients with ovarian cancer. In addition, CDC42EP3 expression was significantly associated with a diverse range of tumor-infiltrating immune cells, including natural killer cells (NK), T central memory cells (Tcm), T gamma delta cells (Tgd), etc. Taken together, this study uncovered the potential roles of m6A target gene CDC42EP3 in the regulation of immune microenvironment in the ovarian cancer, and identified CDC42EP3 as a novel prognostic target.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|