1
|
Paudel S, Mishra N, Agarwal R. Phytochemicals as Immunomodulatory Molecules in Cancer Therapeutics. Pharmaceuticals (Basel) 2023; 16:1652. [PMID: 38139779 PMCID: PMC10746110 DOI: 10.3390/ph16121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Phytochemicals are natural plant-derived products that provide significant nutrition, essential biomolecules, and flavor as part of our diet. They have long been known to confer protection against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treatment of cancer-unrestrained cell proliferation due to the loss of tight regulation on cell growth and replication-has been the focus of recent research. Particularly, the immunomodulatory role of phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been studied extensively. The immune system is a critical component of the tumor microenvironment, and it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals and their products have demonstrated immune regulation, such as macrophage migration, nitric oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmentation, and NFκB, TNF, and apoptosis regulation. There is a dearth of extensive accounts of the immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.
Collapse
Affiliation(s)
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.P.); (N.M.)
| |
Collapse
|
2
|
Dioguardi M, Spirito F, Sovereto D, La Femina L, Campobasso A, Cazzolla AP, Di Cosola M, Zhurakivska K, Cantore S, Ballini A, Lo Muzio L, Troiano G. Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis. BIOLOGY 2022; 11:biology11050651. [PMID: 35625379 PMCID: PMC9138061 DOI: 10.3390/biology11050651] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide; in fact, it is among the top six neoplasms, with an incidence of about 370,000 new cases per year. The 5-year survival rate, despite chemotherapy, radiotherapy, and surgery for stages 3 and 4 of the disease, is low. MicroRNAs (miRNAs) are a large group of small single-stranded non-coding endogenous RNAs, approximately 18-25 nucleotides in length, that play a significant role in the post-transcriptional regulation of genes. Recent studies investigated the tissue expression of miR-155 as a prognostic biomarker of survival in HNSCC. The purpose of this systematic review is, therefore, to investigate and summarize the current findings in the literature concerning the potential prognostic expression of tissue miR-155 in patients with HNSCC. The revision was performed according to PRISMA indications: three databases (PubMed, Scopus, and the Cochrane Register) were consulted through the use of keywords relevant to the revision topic. Totally, eight studies were included and meta-analyzed. The main results report for the aggregate HR values of 1.40 for OS, 1.36 for DFS, and 1.09 for DPS. Finally, a trial sequencing analysis was also conducted to test the robustness of the proposed meta-analysis.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
- Correspondence:
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Lucia La Femina
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Alessandra Campobasso
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Stefania Cantore
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.C.); (A.B.)
- Faculty of Dentistry (Fakulteti i Mjekësisë Dentare-FMD), University of Medicine, 1001 Tirana, Albania
| | - Andrea Ballini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (S.C.); (A.B.)
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (D.S.); (L.L.F.); (A.C.); (A.P.C.); (M.D.C.); (K.Z.); (L.L.M.); (G.T.)
| |
Collapse
|