1
|
Cameselle-García S, Abdulkader-Nallib I, Sánchez-Ares M, Cameselle-Teijeiro JM. Cribriform morular thyroid carcinoma: Clinicopathological and molecular basis for both a preventive and therapeutic approach for a rare tumor (Review). Oncol Rep 2024; 52:119. [PMID: 39027989 PMCID: PMC11292300 DOI: 10.3892/or.2024.8778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Cribriform morular thyroid carcinoma (CMTC) has been included within the group of thyroid tumors of uncertain histogenesis in the recent World Health Organization classification of endocrine tumors. Most CMTCs occur in young euthyroid women with multiple (and bilateral) thyroid nodules in cases associated with familial adenomatous polyposis (FAP) or as single nodules in sporadic cases. CMTC generally behaves indolently, while aggressiveness and mortality are associated with high‑grade CMTC. This tumor histologically displays a distinctive combination of growth patterns with morular structures. Strong diffuse nuclear and cytoplasmic immunostaining for β‑catenin is the hallmark of CMTC. Tumor cells are also positive for thyroid transcription factor‑1 and for estrogen and progesterone receptors, but negative for thyroglobulin and calcitonin. It is possible that the CMTC phenotype could result from blockage in the terminal/follicular differentiation of follicular cells (or their precursor cells) secondary to the permanent activation of the Wnt/β‑catenin pathway. In CMTC, the activation of the Wnt/β‑catenin pathway is the central pathogenetic event, which in FAP‑associated cases results from germline mutations of the APC regulator of WNT signaling pathway (APC) gene, and in sporadic cases from somatic inactivating mutations in the APC, AXIN1 and CTNNB1 genes. Estrogens appear to play a tumor‑promoting role by stimulating both the PI3K/AKT/mTOR and the RAS/RAF/MAPK signaling pathways. Additional somatic mutations (i.e. RET rearrangements, or KRAS, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit α, telomerase reverse transcriptase or tumor protein 53 mutations) may further potentiate the development and progression of CMTC. While hemithyroidectomy would be the treatment of choice for sporadic cases without high‑risk data, total thyroidectomy would be indicated in FAP‑associated cases. There is insufficient clinical data to propose therapies targeting the Wnt/β‑catenin pathway, but multikinase or selective inhibitors could be used in a manner analogous to that of conventional thyroid tumors. It is also unknown whether adjuvant antiestrogenic therapy could be useful in the subgroup of women undergoing surgery with high‑risk CMTC, as well as when there is tumor recurrence and/or metastasis.
Collapse
Affiliation(s)
- Soledad Cameselle-García
- Department of Medical Oncology, University Hospital Complex of Ourense, Galician Healthcare Service (SERGAS), 32005 Ourense, Spain
| | - Ihab Abdulkader-Nallib
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Galician Healthcare Service (SERGAS), 15706 Santiago de Compostela, Spain
- School of Medicine, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - María Sánchez-Ares
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Galician Healthcare Service (SERGAS), 15706 Santiago de Compostela, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Galician Healthcare Service (SERGAS), 15706 Santiago de Compostela, Spain
- School of Medicine, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Wu J, Bai Y, Lu Y, Yu Z, Zhang S, Yu B, Chen L, Li J. Role of sex steroids in colorectal cancer: pathomechanisms and medical applications. Am J Cancer Res 2024; 14:3200-3221. [PMID: 39113870 PMCID: PMC11301278 DOI: 10.62347/oebs6893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Given that the colon represents the most extensive hormone-responsive tissue in the human body, it prompts a compelling inquiry into whether the progression of its cancer is intimately linked to hormonal dynamics. Consequently, the interplay between sex steroids - a pivotal constituent of hormones - and colorectal cancer has increasingly captivated scientific interest. Upon a comprehensive review of pertinent literature both domestically and internationally, this study delineates the present landscape of three pivotal steroids - estrogen, progestin, and androgen - in the context of colorectal cancer. More specifically, this investigation probes into the potential utility of these steroids in providing therapeutic interventions, diagnostic insights, and prognostic indicators. Furthermore, this study also delves into the mechanistic pathways through which sex steroid interventions exert influence on colorectal cancer. It was discovered that the trio of sex steroid hormones partakes in an array of biological processes, thereby influencing the onset and progression of colorectal cancer. In conclusion, this study posits that a profound interconnection exists between colorectal cancer and sex steroids, suggesting that elucidating the targets of their action mechanisms could unveil novel avenues for the diagnosis and prevention of colorectal cancer.
Collapse
Affiliation(s)
- Jianglan Wu
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Yanan Bai
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Yuwen Lu
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Zixuan Yu
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Shumeng Zhang
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Bin Yu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan University of Traditional Chinese MedicineChangsha 410007, Hunan, China
| | - Lingli Chen
- Hunan Provincial Key Laboratory of Pathogenic Biology Based on Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Jie Li
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| |
Collapse
|
3
|
Hasegawa Y, Nakano M, Hosouchi T, Watanabe T, Yamaguchi I, Nakayama M, Ohara O. A cell competition system with one gene expression from a single-copy gene in one cell. PLoS One 2024; 19:e0302451. [PMID: 38968258 PMCID: PMC11226009 DOI: 10.1371/journal.pone.0302451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 07/07/2024] Open
Abstract
Even with advanced plasmid and viral vectors, attaining copy numbers of multiple genes among different transfected cells is challenging. We achieved one gene expression from a single-copy gene in one cell using a transgene competition system, a combination of the Kazusa cDNA clones and our dual recombinase-mediated cassette exchange system. All 48 nuclear receptors were simultaneously expressed in one dish at the same expression level in HEK293 using this system, and the cell proliferation rate was compared. Significant differences were observed between cells transfected with CMV- or EF1 promoter-driven expression of the 48 nuclear receptors after 8 weeks. The EF1-NR1I2 cell line, which exhibited the highest increase from 2 to 8 weeks, showed 1.13-fold higher proliferation than the EF1-DsRed line. On the other hand, the EF1-NR4A1 cell line, which showed the maximum decrease at 8 weeks, showed 0.88-fold lower proliferation than the EF1-DsRed line. The results were confirmed in both our transgene competition system and long-term growth experiments. Our transgene competition system offers a wide-range, simple, and accurate cell competition method.
Collapse
Affiliation(s)
- Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Megumi Nakano
- Kazusa Genome Technologies Inc., Kisarazu, Chiba, Japan
| | - Tsutomu Hosouchi
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Takashi Watanabe
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Izumi Yamaguchi
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| |
Collapse
|
4
|
Vanacker JM, Forcet C. ERRα: unraveling its role as a key player in cell migration. Oncogene 2024; 43:379-387. [PMID: 38129506 DOI: 10.1038/s41388-023-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Cell migration is essential throughout the life of multicellular organisms, and largely depends on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a major regulator of cell migration in both physiological and pathological conditions. ERRα is an orphan member of the nuclear hormone receptor superfamily of transcription factors and displays many biological functions. ERRα is a global regulator of energy metabolism, and it is also highly involved in bone homeostasis, development, differentiation, immunity and cancer progression. Importantly, in some instances, the regulation of these biological processes relies on the ability to orchestrate cell movements. Therefore, this review describes how ERRα-mediated cell migration contributes not only to tissue homeostasis but also to tumorigenesis and metastasis, and highlights the molecular and cellular mechanisms by which ERRα finely controls the cell migratory potential.
Collapse
Affiliation(s)
- Jean-Marc Vanacker
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Atay S. A 15-Gene-Based Risk Signature for Predicting Overall Survival in SCLC Patients Who Have Undergone Surgical Resection. Cancers (Basel) 2023; 15:5219. [PMID: 37958393 PMCID: PMC10649828 DOI: 10.3390/cancers15215219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a malignancy with a poor prognosis whose treatment has not progressed for decades. The survival benefit of surgery and the selection of surgical candidates are still controversial in SCLC. This study is the first report to identify transcriptomic alterations associated with prognosis and propose a gene expression-based risk signature that can be used to predict overall survival (OS) in SCLC patients who have undergone potentially curative surgery. An integrative transcriptome analysis of three gene expression datasets (GSE30219, GSE43346, and GSE149507) revealed 1734 up-regulated and 2907 down-regulated genes. Cox-Mantel test, Cox regression, and Lasso regression analyses were used to identify genes to be included in the risk signature. EGAD00001001244 and GSE60052-cohorts were used for internal and external validation, respectively. Overall survival was significantly poorer in patients with high-risk scores compared to the low-risk group. The discriminatory performance of the risk signature was superior to other parameters. Multivariate analysis showed that the risk signature has the potential to be an independent predictor of prognosis. The prognostic genes were enriched in pathways including regulation of transcription, cell cycle, cell metabolism, and angiogenesis. Determining the roles of the identified prognostic genes in the pathogenesis of SCLC may contribute to the development of new treatment strategies. The risk signature needs to be validated in a larger cohort of patients to test its usefulness in clinical decision-making.
Collapse
Affiliation(s)
- Sevcan Atay
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
6
|
Hases L, Birgersson M, Indukuri R, Archer A, Williams C. Colitis Induces Sex-Specific Intestinal Transcriptomic Responses in Mice. Int J Mol Sci 2022; 23:ijms231810408. [PMID: 36142324 PMCID: PMC9499483 DOI: 10.3390/ijms231810408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
There are significant sex differences in colorectal cancer (CRC), including in incidence, onset, and molecular characteristics. Further, while inflammatory bowel disease (IBD) is a risk factor for CRC in both sexes, men with IBD have a 60% higher risk of developing CRC compared to women. In this study, we investigated sex differences during colitis-associated CRC (CAC) using a chemically induced CAC mouse model. The mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) and followed for 9 and 15 weeks. We performed RNA-sequencing of colon samples from males (n = 15) and females (n = 15) to study different stages of inflammation and identify corresponding transcriptomic sex differences in non-tumor colon tissue. We found a significant transcriptome response to AOM/DSS treatment in both sexes, including in pathways related to inflammation and cell proliferation. Notably, we found a stronger response in males and that male-specific differentially expressed genes were involved in NFκB signaling and circadian rhythm. Further, an overrepresented proportion of male-specific gene regulations were predicted to be targets of Stat3, whereas for females, targets of the glucocorticoid receptor (Gr/Nr3c1) were overrepresented. At 15 weeks, the most apparent sex difference involved genes with functions in T cell proliferation, followed by the regulation of demethylases. The majority of sex differences were thus related to inflammation and the immune system. Our novel data, profiling the transcriptomic response to chemically induced colitis and CAC, indicate clear sex differences in CRC initiation and progression.
Collapse
Affiliation(s)
- Linnea Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Madeleine Birgersson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Rajitha Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
- Correspondence:
| |
Collapse
|