1
|
Critical Factors in Human Antizymes that Determine the Differential Binding, Inhibition, and Degradation of Human Ornithine Decarboxylase. Biomolecules 2019; 9:biom9120864. [PMID: 31842334 PMCID: PMC6995573 DOI: 10.3390/biom9120864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 02/04/2023] Open
Abstract
Antizyme (AZ) is a protein that negatively regulates ornithine decarboxylase (ODC). AZ achieves this inhibition by binding to ODC to produce AZ-ODC heterodimers, abolishing enzyme activity and targeting ODC for degradation by the 26S proteasome. In this study, we focused on the biomolecular interactions between the C-terminal domain of AZ (AZ95–228) and ODC to identify the functional elements of AZ that are essential for binding, inhibiting and degrading ODC, and we also identified the crucial factors governing the differential binding and inhibition ability of AZ isoforms toward ODC. Based on the ODC inhibition and AZ-ODC binding studies, we demonstrated that amino acid residues reside within the α1 helix, β5 and β6 strands, and connecting loop between β6 and α2 (residues 142–178), which is the posterior part of AZ95–228, play crucial roles in ODC binding and inhibition. We also identified the essential elements determining the ODC-degradative activity of AZ; amino acid residues within the anterior part of AZ95–228 (residues 120–145) play crucial roles in AZ-mediated ODC degradation. Finally, we identified the crucial factors that govern the differential binding and inhibition of AZ isoforms toward ODC. Mutagenesis studies of AZ1 and AZ3 and their binding and inhibition revealed that the divergence of amino acid residues 124, 150, 166, 171, and 179 results in the differential abilities of AZ1 and AZ3 in the binding and inhibition of ODC.
Collapse
|
2
|
Ghalali A, Rice JM, Kusztos A, Jernigan FE, Zetter BR, Rogers MS. Developing a novel FRET assay, targeting the binding between Antizyme-AZIN. Sci Rep 2019; 9:4632. [PMID: 30874587 PMCID: PMC6420652 DOI: 10.1038/s41598-019-40929-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/22/2019] [Indexed: 11/17/2022] Open
Abstract
Antizyme inhibitor (AZIN) stimulates cell proliferation by binding to and sequestering the cell cycle suppressor antizyme. Despite the important role of the antizyme-AZIN protein-protein interaction (PPI) in cell cycle regulation, there are no assays for directly measuring the binding of AZIN to antizyme that are amenable to high throughput screening. To address this problem, we developed and validated a novel antizyme-AZIN intramolecular FRET sensor using clover and mRuby2 fluorescent proteins. By introducing alanine mutations in the AZIN protein, we used this sensor to probe the PPI for key residues governing the binding interaction. We found that like many PPIs, the energy of the antizyme-AZIN binding interaction is distributed across many amino acid residues; mutation of individual residues did not have a significant effect on disrupting the PPI. We also examined the interaction between Clover-AZIN and antizyme-mRuby2 in cells. Evidence of a direct interaction between Clover-AZIN and antizyme-mRuby2 was observed within cells, validating the use of this FRET sensor for probing intracellular antizyme-AZIN PPI. In conclusion, we have developed and optimized a FRET sensor which can be adapted for high throughput screening of either in vitro or intracellular activity.
Collapse
Affiliation(s)
- Aram Ghalali
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James M Rice
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Silicon Therapeutics, Boston, MA, USA
| | - Amanda Kusztos
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Infectious Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Finith E Jernigan
- Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Silicon Therapeutics, Boston, MA, USA
| | - Bruce R Zetter
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Rogers
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Yamamoto Y, Makino T, Kudo H, Ihn H, Murakami Y, Matsufuji S, Fujiwara K, Shin M. Expression and distribution patterns of spermine, spermidine, and putrescine in rat hair follicle. Histochem Cell Biol 2017; 149:161-167. [PMID: 29159700 DOI: 10.1007/s00418-017-1621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 11/29/2022]
Abstract
No expression and distribution patterns of polyamines (PAs), spermine, spermidine, and their precursor putrescine in mammalian hair follicle are available, although polyamines are known to correlate well with hair growth and epidermal tumor genesis. Immunohistochemistry (IHC) using our original two monoclonal antibodies (mAbs) ASPM-29 specific for spermine or spermidine, and APUT-32 specific for putrescine allowed us to detect immunoreactivity for polyamines in hair follicles from normal adult rats. A wide range of immunoreactivity for the total spermine and spermidine was observed in the compartments of hair follicle: The highest degree of immunoreactivity for polyamines was observed in the matrix, in the Huxley's layer, in the deeper Henle's layer, and in the cuticle of the inner root sheath/the hair cuticle, while moderate immunoreactivity existed in the lower-to-mid cortex and the companion layer, followed by lower immunoreactivity in the outer root sheath, including the bulge region and in the deeper medulla, in which the immunoreactivity was also evident in their nuclei. In addition, somewhat surprisingly, with IHC by APUT-32 mAb, we detected significant levels of putrescine in the compartments, in which the immunostaining pattern was the closely similar to that of the total spermine and spermidine. Thus, among these compartments, the cell types of the matrix, the Huxley's layer, the deeper Henle's layer, and the cuticle of the inner root sheath/the hair cuticle seem to have the biologically higher potential in compartments of anagen hair follicle, maybe suggesting that they are involved more critically in the biological event of hair growth. In addition, we noted sharp differences of immunostaining by IHCs between ASPM-29 mAb and APUT-32 mAb in the epidermis cells and fibroblast. ASPM-29 mAb resulted in strong staining in both the cell types, but APUT-32 mAb showed only very light staining in both types. Consequently, the use of the two IHCs could be extremely useful in further studies on hair cycle and epidermal tumor genesis experimentally or clinically.
Collapse
Affiliation(s)
- Yutaro Yamamoto
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1Honjyo, Kumamoto, 860-8556, Japan
| | - Hideo Kudo
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1Honjyo, Kumamoto, 860-8556, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1Honjyo, Kumamoto, 860-8556, Japan
| | - Yasuko Murakami
- Department of Molecular Biology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Senya Matsufuji
- Department of Molecular Biology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kunio Fujiwara
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082, Japan.
| | - Masashi Shin
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082, Japan
| |
Collapse
|
4
|
Kang B, Jiang D, Ma R, He H, Yi Z, Chen Z. OAZ1 knockdown enhances viability and inhibits ER and LHR transcriptions of granulosa cells in geese. PLoS One 2017; 12:e0175016. [PMID: 28362829 PMCID: PMC5376318 DOI: 10.1371/journal.pone.0175016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/20/2017] [Indexed: 11/18/2022] Open
Abstract
An increasing number of studies suggest that ornithine decarboxylase antizyme 1 (OAZ1), which is regarded as a tumor suppressor gene, regulates follicular development, ovulation, and steroidogenesis. The granulosa cells in the ovary play a critical role in these ovarian functions. However, the action of OAZ1 mediating physiological functions of granulosa cells is obscure. OAZ1 knockdown in granulosa cells of geese was carried out in the current study. The effect of OAZ1 knockdown on polyamine metabolism, cell proliferation, apoptosis, and hormone receptor transcription of primary granulosa cells in geese was measured. The viability of granulosa cells transfected with the shRNA OAZ1 at 48 h was significantly higher than the control (p<0.05). The level of putrescine and spermidine in granulosa cells down-regulating OAZ1 was 7.04- and 2.11- fold higher compared with the control, respectively (p<0.05). The CCND1, SMAD1, and BCL-2 mRNA expression levels in granulosa cells down-regulating OAZ1 were each significantly higher than the control, respectively (p<0.05), whereas the PCNA and CASPASE 3 expression levels were significantly lower than the control (p<0.05). The estradiol concentration, ER and LHR mRNA expression levels were significantly lower in granulosa cells down-regulating OAZ1 compared with the control (p<0.05). Taken together, our results indicated that OAZ1 knockdown elevated the putrescine and spermidine contents and enhanced granulosa cell viability and inhibited ER and LHR transcriptions of granulosa cells in geese.
Collapse
Affiliation(s)
- Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (BK); (DMJ)
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (BK); (DMJ)
| | - Rong Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Hui He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhixin Yi
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ziyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
5
|
Effect of Oaz1 overexpression on goose ovarian granulosa cells. Amino Acids 2017; 49:1123-1132. [DOI: 10.1007/s00726-017-2411-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
|
6
|
Liu YC, Lee CY, Lin CL, Chen HY, Liu GY, Hung HC. Multifaceted interactions and regulation between antizyme and its interacting proteins cyclin D1, ornithine decarboxylase and antizyme inhibitor. Oncotarget 2016; 6:23917-29. [PMID: 26172301 PMCID: PMC4695161 DOI: 10.18632/oncotarget.4469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022] Open
Abstract
Ornithine decarboxylase (ODC), cyclin D1 (CCND1) and antizyme inhibitor (AZI) promote cell growth. ODC and CCND1 can be degraded through antizyme (AZ)-mediated 26S proteasomal degradation. This paper describes a mechanistic study of the molecular interactions between AZ and its interacting proteins. The dissociation constant (Kd) of the binary AZ-CCND1 complex and the respective binding sites of AZ and CCND1 were determined. Our data indicate that CCND1 has a 4-fold lower binding affinity for AZ than does ODC and an approximately 40-fold lower binding affinity for AZ than does AZI. The Kd values of AZ-CCND1, AZ-ODC and AZ-AZI were 0.81, 0.21 and 0.02 μM, respectively. Furthermore, the Kd values for CCND1 binding to the AZ N-terminal peptide (AZ34–124) and AZ C-terminal peptide (AZ100–228) were 0.92 and 8.97 μM, respectively, indicating that the binding site of CCND1 may reside at the N-terminus of AZ, rather than the C-terminus. Our data also show that the ODC-AZ-CCND1 ternary complex may exist in equilibrium. The Kd values of the [AZ-CCND1]-ODC and [AZ-ODC]-CCND1 complexes were 1.26 and 4.93 μM, respectively. This is the first paper to report the reciprocal regulation of CCND1 and ODC through AZ-dependent 26S proteasomal degradation.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, Taiwan
| | - Chien-Yun Lee
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University (NCHU), Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Chi-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Yi Chen
- Biotechnology Center, National Chung-Hsing University (NCHU), Taichung, Taiwan.,Agricultural Biotechnology Center (ABC), National Chung-Hsing University (NCHU), Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology & Immunology, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University (NCHU), Taichung, Taiwan.,Agricultural Biotechnology Center (ABC), National Chung-Hsing University (NCHU), Taichung, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University (NCHU), Taichung, Taiwan
| |
Collapse
|
7
|
Nowotarski SL, Feith DJ, Shantz LM. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines. CANCER GROWTH AND METASTASIS 2015; 8:17-27. [PMID: 26380554 PMCID: PMC4558889 DOI: 10.4137/cgm.s21219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/16/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Department of Biochemistry, The Pennsylvania State University Berks College, Reading, PA, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
8
|
WANG XING, JIANG LI. Effects of ornithine decarboxylase antizyme 1 on the proliferation and differentiation of human oral cancer cells. Int J Mol Med 2014; 34:1606-12. [DOI: 10.3892/ijmm.2014.1961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/16/2014] [Indexed: 11/06/2022] Open
|
9
|
Arumugam A, Weng Z, Chaudhary SC, Afaq F, Elmets CA, Athar M. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch. Biochem Biophys Res Commun 2014; 451:394-401. [PMID: 25094045 DOI: 10.1016/j.bbrc.2014.07.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022]
Abstract
Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15±2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8±1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced in these two murine models suggesting the specificity of Notch pathway in this regard. These data provide a novel role of ODC in augmenting tumorigenesis via negatively regulated Notch-mediated expansion of stem cell compartment.
Collapse
Affiliation(s)
- Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Sandeep C Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA; Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA; Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Abstract
Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion.
Collapse
|
11
|
Arumugam A, Weng Z, Talwelkar SS, Chaudhary SC, Kopelovich L, Elmets CA, Afaq F, Athar M. Inhibiting cycloxygenase and ornithine decarboxylase by diclofenac and alpha-difluoromethylornithine blocks cutaneous SCCs by targeting Akt-ERK axis. PLoS One 2013; 8:e80076. [PMID: 24260338 PMCID: PMC3832653 DOI: 10.1371/journal.pone.0080076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 01/04/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common type of skin cancer in Caucasian populations. Its increasing incidence has been a major public health concern. Elevated expressions of ODC and COX-2 are associated with both murine and human NMSCs. Inhibition of these molecular targets singly employing their respective small molecule inhibitors showed limited success. Here, we show that combined blockade of ODC and COX-2 using their potent inhibitors, DFMO and diclofenac respectively abrogates growth of A431 epidermal xenograft tumors in nu/nu mice by more than 90%. The tumor growth inhibition was associated with a diminution in the proliferation and enhancement in apoptosis. The proliferation markers such as PCNA and cyclin D1 were reduced. TUNEL-positive apoptotic cells and cleaved caspase-3 were increased in the residual tumors. These agents also manifested direct target-unrelated effects. Reduced expression of phosphorylated MAPKAP-2, ERK, and Akt (ser(473) & thr(308)) were noticed. The mechanism by which combined inhibition of ODC/COX attenuated tumor growth and invasion involved reduction in EMT. Akt activation by ODC+COX-2 over-expression was the key player in this regard as Akt inhibition manifested effects similar to those observed by the combined inhibition of ODC+COX-2 whereas forced over-expression of Akt resisted against DFMO+diclofenac treatment. These data suggest that ODC+COX-2 over-expression together leads to pathogenesis of aggressive and invasive cutaneous carcinomas by activating Akt signaling pathway, which through augmenting EMT contributes to tumor invasion.
Collapse
Affiliation(s)
- Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarang S. Talwelkar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
12
|
Feith DJ, Pegg AE, Fong LYY. Targeted expression of ornithine decarboxylase antizyme prevents upper aerodigestive tract carcinogenesis in p53-deficient mice. Carcinogenesis 2012; 34:570-6. [PMID: 23222816 DOI: 10.1093/carcin/bgs377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Upper aerodigestive tract (UADT) cancers of the oral cavity and esophagus are a significant global health burden, and there is an urgent need to develop relevant animal models to identify chemopreventive and therapeutic strategies to combat these diseases. Antizyme (AZ) is a multifunctional negative regulator of cellular polyamine levels, and here, we evaluate the susceptibility of keratin 5 (K5)-AZ transgenic mice to tumor models that combine chemical carcinogenesis with dietary and genetic risk factors known to influence human susceptibility to UADT cancer and promote UADT carcinogenesis in mice. First, p53(+/-) and K5-AZ/p53(+/-) (AZ/p53(+/-)) mice were placed on a zinc-deficient (ZD) or zinc-sufficient (ZS) diet and chronically exposed to 4-nitroquinoline 1-oxide. Tongue tumor incidence, multiplicity and size were substantially reduced in both ZD and ZS AZ/p53(+/-) mice compared with p53(+/-). AZ expression also reduced progression to carcinoma in situ or invasive carcinoma and decreased expression of the squamous cell carcinoma biomarkers K14, cyclooxygenase-2 and metallothionein. Next, AZ-expressing p53(+/-) and p53 null mice were placed on the ZD diet and treated with a single dose of N-nitrosomethylbenzylamine. Regardless of p53 status, forestomach (FST) tumor incidence, multiplicity and size were greatly reduced with AZ expression, which was also associated with a significant decrease in FST epithelial thickness along with reduced proliferation marker K6 and increased differentiation marker loricrin. These studies demonstrate the powerful tumor suppressive effects of targeted AZ expression in two distinct and unique mouse models and validate the polyamine metabolic pathway as a target for chemoprevention of UADT cancers.
Collapse
Affiliation(s)
- David J Feith
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
13
|
Shi C, Cooper TK, McCloskey DE, Glick AB, Shantz LM, Feith DJ. S-adenosylmethionine decarboxylase overexpression inhibits mouse skin tumor promotion. Carcinogenesis 2012; 33:1310-8. [PMID: 22610166 DOI: 10.1093/carcin/bgs184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neoplastic growth is associated with increased polyamine biosynthetic activity and content. Tumor promoter treatment induces the rate-limiting enzymes in polyamine biosynthesis, ornithine decarboxylase (ODC), and S-adenosylmethionine decarboxylase (AdoMetDC), and targeted ODC overexpression is sufficient for tumor promotion in initiated mouse skin. We generated a mouse model with doxycycline (Dox)-regulated AdoMetDC expression to determine the impact of this second rate-limiting enzyme on epithelial carcinogenesis. TetO-AdoMetDC (TAMD) transgenic founders were crossed with transgenic mice (K5-tTA) that express the tetracycline-regulated transcriptional activator within basal keratinocytes of the skin. Transgene expression in TAMD/K5-tTA mice was restricted to keratin 5 (K5) target tissues and silenced upon Dox treatment. AdoMetDC activity and its product, decarboxylated AdoMet, both increased approximately 8-fold in the skin. This enabled a redistribution of the polyamines that led to reduced putrescine, increased spermine, and an elevated spermine:spermidine ratio. Given the positive association between polyamine biosynthetic capacity and neoplastic growth, it was somewhat surprising to find that TAMD/K5-tTA mice developed significantly fewer tumors than controls in response to 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate chemical carcinogenesis. Importantly, tumor counts in TAMD/K5-tTA mice rebounded to nearly equal the levels in the control group upon Dox-mediated transgene silencing at a late stage of tumor promotion, which indicates that latent viable initiated cells remain in AdoMetDC-expressing skin. These results underscore the complexity of polyamine modulation of tumor development and emphasize the critical role of putrescine in tumor promotion. AdoMetDC-expressing mice will enable more refined spatial and temporal manipulation of polyamine biosynthesis during tumorigenesis and in other models of human disease.
Collapse
Affiliation(s)
- Chenxu Shi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
14
|
Welsh PA, Sass-Kuhn S, Prakashagowda C, McCloskey D, Feith D. Spermine synthase overexpression in vivo does not increase susceptibility to DMBA/TPA skin carcinogenesis or Min-Apc intestinal tumorigenesis. Cancer Biol Ther 2012; 13:358-68. [PMID: 22258329 DOI: 10.4161/cbt.19241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated a link between elevated polyamine biosynthesis and neoplastic growth, but the specific contribution of spermine synthase to epithelial tumor development has never been explored in vivo. Mice with widespread overexpression of spermine synthase (CAG-SpmS) exhibit decreased spermidine levels, increased spermine and a significant rise in tissue spermine:spermidine ratio. We characterized the response of CAG-SpmS mice to two-stage skin chemical carcinogenesis as well as spontaneous intestinal carcinogenesis induced by loss of the Apc tumor suppressor in Apc (Min) (/+) (Min) mice. CAG-SpmS mice maintained the canonical increases in ornithine decarboxylase (ODC) activity, polyamine content and epidermal thickness in response to tumor promoter treatment of the skin. The induction of S-adenosylmethionine decarboxylase (AdoMetDC) activity and its product decarboxylated AdoMet were impaired in CAG-SpmS mice, and the spermine:spermidine ratio was increased 3-fold in both untreated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated skin. The susceptibility to 7,12-dimethylbenz[a]anthracene (DMBA)/TPA skin carcinogenesis was not altered in CAG-SpmS mice, and SpmS overexpression did not modify the previously described tumor resistance of mice with targeted antizyme expression or the enhanced tumor response in mice with targeted spermidine/spermine-N ( 1) -acetyltransferase expression. CAG-SpmS/Min mice also exhibited elevated spermine:spermidine ratios in the small intestine and colon, yet their tumor multiplicity and size was similar to Min mice. Therefore, studies in two of the most widely used tumorigenesis models demonstrate that increased spermine synthase activity and the resulting elevation of the spermine:spermidine ratio does not alter susceptibility to tumor development initiated by c-Ha-Ras mutation or Apc loss.
Collapse
Affiliation(s)
- Patricia A Welsh
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
15
|
Ornithine decarboxylase mRNA is stabilized in an mTORC1-dependent manner in Ras-transformed cells. Biochem J 2012; 442:199-207. [PMID: 22070140 DOI: 10.1042/bj20111464] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Upon Ras activation, ODC (ornithine decarboxylase) is markedly induced, and numerous studies suggest that ODC expression is controlled by Ras effector pathways. ODC is therefore a potential target in the treatment and prevention of Ras-driven tumours. In the present study we compared ODC mRNA translation profiles and stability in normal and Ras12V-transformed RIE-1 (rat intestinal epithelial) cells. While translation initiation of ODC increased modestly in Ras12V cells, ODC mRNA was stabilized 8-fold. Treatment with the specific mTORC1 [mTOR (mammalian target of rapamycin) complex 1] inhibitor rapamycin or siRNA (small interfering RNA) knockdown of mTOR destabilized the ODC mRNA, but rapamycin had only a minor effect on ODC translation initiation. Inhibition of mTORC1 also reduced the association of the mRNA-binding protein HuR with the ODC transcript. We have shown previously that HuR binding to the ODC 3'UTR (untranslated region) results in significant stabilization of the ODC mRNA, which contains several AU-rich regions within its 3'UTR that may act as regulatory sequences. Analysis of ODC 3'UTR deletion constructs suggests that cis-acting elements between base 1969 and base 2141 of the ODC mRNA act to stabilize the ODC transcript. These experiments thus define a novel mechanism of ODC synthesis control. Regulation of ODC mRNA decay could be an important means of limiting polyamine accumulation and subsequent tumour development.
Collapse
|
16
|
Zhang AL, Wu XY, Li JQ, Zhang Z, Zhang H. Molecular characterization, tissue expression and nucleotide variation of the porcine AZ1 gene. Gene 2012; 501:79-84. [PMID: 22310384 DOI: 10.1016/j.gene.2012.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/31/2011] [Accepted: 01/10/2012] [Indexed: 11/18/2022]
Abstract
Antizyme 1 (AZ1) is a member of the antizyme family that is involved in many biological processes. As a natural inhibitor, AZ1 controls the normal level of polyamines, which is indispensable to cellular function. Our prior research showed that the expression of the AZ1 gene in Longissimus doris of Landrace pigs was higher (P<0.05) than in Lantang pigs. The AZ1 gene might be involved in the development of muscle and potentially serves as an important target for muscle improvement in pigs. In this study, the molecular characterization, tissue expression, and sequence variation of porcine AZ1 gene were analyzed. A 4082 bp sequence including the 5'-flanking region and gene sequence was obtained through RACE and sequencing. The genomic sequence of AZ1 gene consists of six exons and five introns. The mRNA of AZ1 gene contains three elements: 5'-untranslated regions (UTR, 79 bp), CDS (684 or 207 bp), and 3'-UTR (161 or 423 bp for the two transcripts). Three termination signals of AATAAA were found in the longer 3'-UTR. The mRNA sequence of the AZ1 gene contained two ORFs with a frameshifting site at the 69th codon. The amino acid sequence from the porcine AZ1 gene was similar to other vertebrates and exhibited the highest similarity to cattle. The partial 5'-flanking region was 852 bp with typical cis-regulatory elements such as TATA boxes and CAAT boxes. By DNA pooling and sequencing, nine and 12 single nucleotide polymorphisms (SNPs) were detected in the 5'-flanking region and introns, respectively. Except the SNP at -713, the other eight SNPs were found in putative cis-acting elements and might alter the binding of trans-acting factors. Expression patterns showed that in Lantang pig, the AZ1 gene is differentially expressed in various tissues and displayed higher expression in lung and skeletal muscle.
Collapse
Affiliation(s)
- Ai-Ling Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics, Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | | | | | | | | |
Collapse
|
17
|
Liu YC, Hsu DH, Huang CL, Liu YL, Liu GY, Hung HC. Determinants of the differential antizyme-binding affinity of ornithine decarboxylase. PLoS One 2011; 6:e26835. [PMID: 22073206 PMCID: PMC3207831 DOI: 10.1371/journal.pone.0026835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/05/2011] [Indexed: 01/26/2023] Open
Abstract
Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140 play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ binding interaction. The Kd value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 μM, while the Kd value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 μM. The greater than 50-fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ. For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the Kd was 1.4 and 1.2 μM, respectively. These affinities are 6-fold higher than the WT_ODC Kd, which suggests that residues 119 and 137 play a role in AZ binding.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Den-Hua Hsu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Chi-Liang Huang
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| |
Collapse
|
18
|
Hsieh JY, Yang JY, Lin CL, Liu GY, Hung HC. Minimal antizyme peptide fully functioning in the binding and inhibition of ornithine decarboxylase and antizyme inhibitor. PLoS One 2011; 6:e24366. [PMID: 21931692 PMCID: PMC3170320 DOI: 10.1371/journal.pone.0024366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/08/2011] [Indexed: 01/10/2023] Open
Abstract
Antizyme (AZ) is a protein with 228 amino acid residues that regulates ornithine decarboxylase (ODC) by binding to ODC and dissociating its homodimer, thus inhibiting its enzyme activity. Antizyme inhibitor (AZI) is homologous to ODC, but has a higher affinity than ODC for AZ. In this study, we quantified the biomolecular interactions between AZ and ODC as well as AZ and AZI to identify functional AZ peptides that could bind to ODC and AZI and inhibit their function as efficiently as the full-length AZ protein. For these AZ peptides, the inhibitory ability of AZ_95-228 was similar to that of AZ_WT. Furthermore, AZ_95-176 displayed an inhibition (IC50: 0.20 µM) similar to that of AZ-95-228 (IC50: 0.16 µM), even though a large segment spanning residues 177–228 was deleted. However, further deletion of AZ_95-176 from either the N-terminus or the C-terminus decreased its ability to inhibit ODC. The AZ_100-176 and AZ_95-169 peptides displayed a noteworthy decrease in ability to inhibit ODC, with IC50 values of 0.43 and 0.37 µM, respectively. The AZ_95-228, AZ_100-228 and AZ_95-176 peptides had IC50 values comparable to that of AZ_WT and formed AZ-ODC complexes with Kd,AZ-ODC values of 1.5, 5.3 and 5.6 µM, respectively. Importantly, our data also indicate that AZI can rescue AZ peptide-inhibited ODC enzyme activity and that it can bind to AZ peptides with a higher affinity than ODC. Together, these data suggest that these truncated AZ proteins retain their AZI-binding ability. Thus, we suggest that AZ_95-176 is the minimal AZ peptide that is fully functioning in the binding of ODC and AZI and inhibition of their function.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- Department of Life Sciences and Institute of Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Jung-Yen Yang
- National Nano Device Laboratories and Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology & Immunology, Chung Shan Medical University, and Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (H-CH); (G-YL)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (H-CH); (G-YL)
| |
Collapse
|
19
|
Murai N, Murakami Y, Matsufuji S. Protocols for studying antizyme expression and function. Methods Mol Biol 2011; 720:237-67. [PMID: 21318878 DOI: 10.1007/978-1-61779-034-8_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Antizyme (AZ) is a key molecule in feedback regulation of cellular polyamines. It is induced by polyamines through stimulation of ribosomal frameshifting during its translation. In mammals, AZ is diverged into three paralogs, AZ1-3. Tissue and subcellular distribution are different among the paralogs, as determined by immunochemical methods or expression of fluorescent-tagged proteins. Only AZ2 is known to be phosphorylated. AZ regulates cellular polyamine levels through multiple mechanisms. It binds to ornithine decarboxylase (ODC) to form an inactive complex and to trigger degradation of ODC by 26S proteasomes. The AZ activity to promote ODC degradation can be measured both in vitro and in cells. AZ also inhibits cellular uptake of polyamines. This chapter comprises seven subchapters describing methods for studying expression and function of AZ.
Collapse
Affiliation(s)
- Noriyuki Murai
- Department of Molecular Biology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
20
|
Abstract
Polyamines are organic cations shown to control gene expression at the transcriptional, posttranscriptional, and translational levels. Multiple cellular oncogenic pathways are involved in regulation of transcription and translation of polyamine-metabolizing enzymes. As a consequence of genetic alterations, expression levels and activities of polyamine-metabolizing enzymes change rapidly during tumorigenesis resulting in high levels of polyamines in many human epithelial tumors. This review summarizes the mechanisms of polyamine regulation by canonical tumor suppressor genes and oncogenes, as well as the role of eukaryotic initiation factor 5A (EIF5A) in cancer. The importance of research utilizing pharmaceutical inhibitors and cancer chemopreventive strategies targeting the polyamine pathway is also discussed.
Collapse
Affiliation(s)
- Edwin A Paz
- Cancer Biology Interdisciplinary Graduate Program, Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | | | | |
Collapse
|
21
|
Abstract
Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
22
|
Abstract
Cloning of genes related to polyamine metabolism has enabled the generation of genetically modified mice and rats overproducing or devoid of proteins encoded by these genes. Our first transgenic mice overexpressing ODC (ornithine decarboxylase) were generated in 1991 and, thereafter, most genes involved in polyamine metabolism have been used for overproduction of the respective proteins, either ubiquitously or in a tissue-specific fashion in transgenic animals. Phenotypic characterization of these animals has revealed a multitude of changes, many of which could not have been predicted based on the previous knowledge of the polyamine requirements and functions. Animals that overexpress the genes encoding the inducible key enzymes of biosynthesis and catabolism, ODC and SSAT (spermidine/spermine N1-acetyltransferase) respectively, appear to possess the most pleiotropic phenotypes. Mice overexpressing ODC have particularly been used as cancer research models. Transgenic mice and rats with enhanced polyamine catabolism have revealed an association of rapidly depleted polyamine pools and accelerated metabolic cycle with development of acute pancreatitis and a fatless phenotype respectively. The latter phenotype with improved glucose tolerance and insulin sensitivity is useful in uncovering the mechanisms that lead to the opposite phenotype in humans, Type 2 diabetes. Disruption of the ODC or AdoMetDC [AdoMet (S-adenosylmethionine) decarboxylase] gene is not compatible with mouse embryogenesis, whereas mice with a disrupted SSAT gene are viable and show no harmful phenotypic changes, except insulin resistance at a late age. Ultimately, the mice with genetically altered polyamine metabolism can be used to develop targeted means to treat human disease conditions that they relevantly model.
Collapse
|
23
|
Kahana C. Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 2009; 66:2479-88. [PMID: 19399584 PMCID: PMC11115672 DOI: 10.1007/s00018-009-0033-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/29/2009] [Accepted: 04/07/2009] [Indexed: 12/14/2022]
Abstract
The polyamines are small basic molecules essential for cellular proliferation and viability. An autoregulatory circuit that responds to the intracellular level of polyamines regulates their production. In the center of this circuit is a family of small proteins termed antizymes. Antizymes are themselves regulated at the translational level by the level of polyamines. Antizymes bind ornithine decarboxylase (ODC) subunits and target them to ubiquitin-independent degradation by the 26S proteasome. In addition, antizymes inhibit polyamine transport across the plasma membrane via an as yet unresolved mechanism. Antizymes may also interact with and target degradation of other growth-regulating proteins. An inactive ODC-related protein termed antizyme inhibitor regulates polyamine metabolism by negating antizyme functions. The ability of antizymes to degrade ODC, inhibit polyamine uptake and consequently suppress cellular proliferation suggests that they act as tumor suppressors, while the ability of antizyme inhibitors to negate antizyme function indicates their growth-promoting and oncogenic potential.
Collapse
Affiliation(s)
- Chaim Kahana
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
24
|
Shon YH, Kim MK, Jang JS, Jung EJ, Nam KS. Effect of Deep Sea Water on Phase I, Phase II and Ornithine Decarboxylase. ACTA ACUST UNITED AC 2008. [DOI: 10.5352/jls.2008.18.3.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Abstract
Studies over many years have suggested that increased polyamine synthesis may be necessary for neoplastic growth. This review summarizes recent work on the regulation of putrescine production both de novo and via the degradation of higher polyamines and provides a summary of studies using transgenic mice in which the levels of proteins that regulate these processes (L-ornithine decarboxylase, antizyme and spermidine/spermine-N(1)-acetyltransferase) are altered.
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
26
|
Feith DJ, Shantz LM, Shoop PL, Keefer KA, Prakashagowda C, Pegg AE. Mouse skin chemical carcinogenesis is inhibited by antizyme in promotion-sensitive and promotion-resistant genetic backgrounds. Mol Carcinog 2007; 46:453-65. [PMID: 17219416 DOI: 10.1002/mc.20294] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevated polyamine content and increased ornithine decarboxylase (ODC) activity have been associated with neoplastic growth in numerous animal models and human tissues. Antizyme (AZ) is a negative regulator of polyamine metabolism that inhibits ODC activity, stimulates ODC degradation, and suppresses polyamine uptake. Preliminary evidence, obtained from transgenic mice with tissue specific overexpression of AZ indicates that tumor development can be suppressed by AZ. To extend these studies, we have examined the effect of keratin 5 (K5)- or K6-driven AZ transgenes on 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical carcinogenesis of the skin, in promotion-resistant C57BL/6 and promotion-sensitive DBA/2 mice. On both genetic backgrounds, K6-AZ mice showed a reduction in tumor multiplicity, with 85% fewer tumors than wild-type controls on the C57BL/6 background and 50% fewer tumors on the DBA/2 background. K5-AZ mice developed 50% fewer tumors than controls on both backgrounds. The percent of mice with tumors and tumor size were also reduced in the K5-AZ and K6-AZ groups. Tumor and TPA-treated skin sections from K6-AZ mice exhibited the strongest AZ expression, with localization mainly in suprabasal keratinocytes. K6-AZ mice also had slightly reduced cell proliferation rates in tumors and TPA-treated skin. The lack of a more pronounced effect on cell proliferation is probably explained by the observation that AZ staining did not colocalize with proliferating cell nuclear antigen (PCNA), a marker for the proliferative compartment. These studies demonstrate a tumor-suppressive effect of AZ in C57BL/6 and DBA/2 mice, and confirm the importance of ODC and polyamines in tumor development.
Collapse
Affiliation(s)
- David J Feith
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
27
|
Origanti S, Shantz LM. Ras Transformation of RIE-1 Cells Activates Cap-Independent Translation of Ornithine Decarboxylase: Regulation by the Raf/MEK/ERK and Phosphatidylinositol 3-Kinase Pathways. Cancer Res 2007; 67:4834-42. [PMID: 17510413 DOI: 10.1158/0008-5472.can-06-4627] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and generally rate-limiting enzyme in polyamine biosynthesis. Deregulation of ODC is critical for oncogenic growth, and ODC is a target of Ras. These experiments examine translational regulation of ODC in RIE-1 cells, comparing untransformed cells with those transformed by an activated Ras12V mutant. Analysis of the ODC 5' untranslated region (5'UTR) revealed four splice variants with the presence or absence of two intronic sequences. All four 5'UTR species were found in both cell lines; however, variants containing intronic sequences were more abundant in Ras-transformed cells. All splice variants support internal ribosome entry site (IRES)-mediated translation, and IRES activity is markedly elevated in cells transformed by Ras. Inhibition of Ras effector targets indicated that the ODC IRES element is regulated by the phosphorylation status of the translation factor eIF4E. Dephosphorylation of eIF4E by inhibition of mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) or the eIF4E kinase Mnk1/2 increases ODC IRES activity in both cell lines. When both the Raf/MEK/ERK and phosphatidylinositol 3-kinase/mammalian target of rapamycin pathways are inhibited in normal cells, ODC IRES activity is very low and cells arrest in G(1). When these pathways are inhibited in Ras-transformed cells, cell cycle arrest does not occur and ODC IRES activity increases, helping to maintain high ODC activity.
Collapse
Affiliation(s)
- Sofia Origanti
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
28
|
Shantz LM, Levin VA. Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 2007; 33:213-23. [PMID: 17443268 DOI: 10.1007/s00726-007-0531-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 02/01/2007] [Indexed: 01/10/2023]
Abstract
The activity of ornithine decarboxylase (ODC(1)), the first enzyme in polyamine biosynthesis, is induced during carcinogenesis by a variety of oncogenic stimuli. Intracellular levels of ODC and the polyamines are tightly controlled during normal cell growth, and regulation occurs at the levels of transcription, translation and protein degradation. Several known proto-oncogenic pathways appear to control ODC transcription and translation, and dysregulation of pathways downstream of ras and myc result in the constitutive elevation of ODC activity that occurs with oncogenesis. Inhibition of ODC activity reverts the transformation of cells in vitro and reduces tumor growth in several animal models, suggesting high levels of ODC are necessary for the maintenance of the transformed phenotype. The ODC irreversible inactivator DFMO has proven to be not only a valuable tool in the study of ODC in cancer, but also shows promise as a chemopreventive and chemotherapeutic agent in certain types of malignancies.
Collapse
Affiliation(s)
- L M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
29
|
Ivanov IP, Atkins JF. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 2007; 35:1842-58. [PMID: 17332016 PMCID: PMC1874602 DOI: 10.1093/nar/gkm035] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein antizyme is a negative regulator of intracellular polyamine levels. Ribosomes synthesizing antizyme start in one ORF and at the codon 5′ adjacent to its stop codon, shift +1 to a second and partially overlapping ORF which encodes most of the protein. The ribosomal frameshifting is a sensor and effector of an autoregulatory circuit which is conserved in animals, fungi and protists. Stimulatory signals encoded 5′ and 3′ of the shift site act to program the frameshifting. Despite overall conservation, many individual branches have evolved specific features surrounding the frameshift site. Among these are RNA pseudoknots, RNA stem-loops, conserved primary RNA sequences, nascent peptide sequences and branch-specific ‘shifty’ codons.
Collapse
Affiliation(s)
- Ivaylo P. Ivanov
- Biosciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- *Correspondence may be addressed to either author at +1-353 21 490 1313+1-353 23 55147 and
| | - John F. Atkins
- Biosciences Institute, University College Cork, Cork, Ireland and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- *Correspondence may be addressed to either author at +1-353 21 490 1313+1-353 23 55147 and
| |
Collapse
|
30
|
Liu GY, Liao YF, Hsu PC, Chang WH, Hsieh MC, Lin CY, Hour TC, Kao MC, Tsay GJ, Hung HC. Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases' cascade. Apoptosis 2006; 11:1773-88. [PMID: 16927018 DOI: 10.1007/s10495-006-9512-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antizymes delicately regulate ornithine decarboxylase (ODC) enzyme activity and polyamine transportation. One member of the family, antizyme-1, plays vital roles in molecular and cellular functions, including developmental regulation, cell cycle, proliferation, cell death, differentiation and tumorigenesis. However, the question of how does it participate in the cell apoptotic mechanism is still unsolved. To elucidate the contribution of human antizyme-1 in haematopoietic cell death, we examine whether inducible overexpression of antizyme enhances apoptotic cell death. Antizyme reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells, acute T leukemia Jurkat cells and mouse macrophage RAW 264.7 cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G(1) appearance, loss of mitochondrial membrane potential (Deltapsi( m )), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following conditional antizyme overexpression, all protein levels of cyclin-dependent kinases (Cdks) and cyclins are not significantly reduced, except cyclin D, before their entrance into apoptotic cell death. However, introduced cyclin D1 into Jurkat T tetracycline (Tet)-On cell system still couldn't rescue cells from apoptosis. Antizyme doesn't influence the expression of tumor suppressor p53 and its downstream p21, but it interferes in the expressions of Bcl-2 family. Inducible antizyme largely enters mitochondria resulting in cytochrome c release from mitochondria to cytosol following Bcl-xL decrease and Bax increase. According to these data, we suggest that antizyme induces apoptosis mainly through mitochondria-mediated and cell cycle-independent pathway. Furthermore, antizyme induces apoptosis not only by Bax accumulation reducing the function of the Bcl-2 family, destroying the Deltapsi( m ), and releasing cytochrome c to cytoplasm but also by the activation of apoptosomal caspase cascade.
Collapse
Affiliation(s)
- G-Y Liu
- Institute of Immunology, Chung-Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, Taiwan, ROC.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gilmour SK. Polyamines and nonmelanoma skin cancer. Toxicol Appl Pharmacol 2006; 224:249-56. [PMID: 17234230 PMCID: PMC2098876 DOI: 10.1016/j.taap.2006.11.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 12/31/2022]
Abstract
Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer.
Collapse
Affiliation(s)
- Susan K Gilmour
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA.
| |
Collapse
|